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Abstract 
TILT is a model for integrated analysis of household location and travel 
choices. In this paper, we describe the way travel patterns are modeled. 
The purpose is to develop a way to model trip patterns when time and 
money constraints are taken into account and when individuals are 
assumed to prefer variation over destinations. Each individual chooses a 
travel pattern that maximizes utility subject to budget and time 
constraints. The travel pattern consists of a set of trip frequencies to 
different destinations with different modes. When choosing trip 
frequencies to destinations, individuals are assumed to prefer variation to 
some extent, measured by a set of parameters to be estimated. 
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INTRODUCTION 

TILT, Tool for Integrated analysis of Location and Transport, is a model for integrated analysis of 
household location and travel. Households choose location together with a bundle of other choices, 
such as car ownership, mode choices and trip frequencies to various destinations given the location 
of activities to visit and prices of housing. Prices are then calculated to make demand equal supply 
for each zone and each house type. The price-supply functions are exogenous to the model. 

The TILT model contains a few somewhat novel ideas on how to calculate location and travel 
patterns consistently. This paper deals with the way travel patterns are calculated. The entire TILT 
model is explained more thoroughly in Eliasson and Mattsson (1997), which also contains more 
references and a brief review of and comparison with similar models. 

Traditionally, most land-use models have modeled interaction between the infrastructure system and 
land-use in a rather aggregate way, most often using some kind of aggregate accessibility measure. 
Travel models, on the other hand, most often take land-use as fixed, and also calculate trip 
generation in either a rather crude way, or treating trip frequencies as fixed. While these approaches 
are suitable for many purposes, there are questions that cannot be treated in a consistent way under 
these assumptions. 

Both land-use and travel models often restrict themselves to dealing only with accessibility to 
employment and work trips, respectively. But when dealing with household location, accessibility to 
other things than jobs is obviously an important determinant for the location choice. It is also 
obvious that we, if we want to analyze how changes in land-use affect the total travel pattern in a 
region, cannot restrict ourselves to modeling work trips. 

If we generalize a little, it is reasonable to say that most traffic models deal with the decisions 
involved with a single trip. This means that there is no way of modeling the individual's desire for 
varying her destination choice, and that the "trip frequency", if modeled at all, is simply the choice 
of whether or not to make this single trip. Land-use models, if we generalize again, do not deal with 
trips but rather with accessibility. There is usually no connection between how many trips (or, more 
generally speaking, which "trip pattern") that are generated and the level of accessibility. 

TILT is an attempt to model an explicit connection between location and trip generation, where "trip 
generation" includes frequency, destination and mode choice. 

The assumption of the model is that households make a joint choice of location (zone and house 
type), car ownership and travel pattern. This travel pattern includes trip frequencies, destination 
choices and mode choices for a number of trip types. All of these choices are treated in a coherent, 
microeconomic framework, which makes it possible for households to trade, for example, 
accessibility for cheaper or better housing. "Accessibility" is not treated as a single, aggregate 
measure, but is handled directly through its actual components: time and money devoted to trips, and 
precisely those trips that are made (described by their destinations and modes). 

Land-use/transportation interaction models draw from several modeling traditions. This is natural, 
since the field encompasses so much of human activities in general. The three most influential 
approaches or traditions have been urban economics, spatial interaction (gravity) models and discrete 
choice models. 

A brief review of these modeling traditions is given in Eliasson and Mattsson (1997). 

16 	VOLUME 4 
8TH WCTR PROCEEDINGS 



A SUMMARY OF THE MODEL 

We will here briefly summarize how the TILT model operates. 

The region is divided into zones i = 1, ..., I. The housing stock is divided into house types a = 1, ..., 
A. The cost for a household to live in zone i and house type a is p,',. This price will be endogenously 
determined so that demand equals supply for all zones and house types. The location of firms is 
assumed to be fixed and known. This influences the households' choice of location through 
accessibility to service and employment. The households are divided into groups h = 1, ..., H, and the 
number of h-households is denoted by N"'. For each price vector p, the number of households 
choosing to live in zone i and house type a is denoted by Nhk, (p). For each price vector p, the supply 
of housing of type a in zone i is denoted by S;,, (p). This function is assumed to be known. In the 
short run, the supply can be assumed to be totally inelastic. For most prediction purposes, the 
housing supply for each zone and house type has natural upper and lower bounds (due to e.g. 
planning restrictions), with a price-elastic part in-between. The model then finds a price vector that 
clears all markets: 

S,„(p)=~N (p) V i,a 	 (1 .) 

Such an equilibrium price vector p exists and is unique under mild assumptions. Details can be 
found in Eliasson (1997). 

Given the prices of housing for each zone and house type, each household makes a joint choice of 
residential zone, house type, car ownership level and travel pattern. This choice is modeled as a 
nested choice with four steps: choice of residential zone and house type, choice of car ownership, 
choice of trip frequencies to all destinations and mode choice for each trip. 

All of these choices are outcomes of a single optimization process. This has the advantage of making 
all choices consistent with each other; for example, the marginal utility of money will be the same 
both when choosing travel mode and choosing location. The consistency of the valuations stems 
from using a single pair of budget and time constraints for the entire problem; unfortunately, it is not 
uncommon that different valuations of e.g. money or time are induced at different steps of a model. 
This consistency seems to be a desirable feature in the present context, when we are studying long-
term choices. Clearly, it may be a less realistic assumption if we were looking at short-term behavior. 

Through the choice of distribution of the stochastic terms in the optimization problem, the first, 
second and fourth choices (which are discrete choices) will be specified as logit models. The third 
step is a continuous choice. 

The purpose is not necessarily to construct a framework for predicting households' actual travel 
choices as precisely as possible. Our primary concern is rather to reflect the considerations of a 
household choosing a location, and conversely the impact of locational changes on a region's overall 
travel pattern. Most travel choice models typically model the choices involved with a single trip or a 
single day. But when choosing a location, a more realistic assumption is that the household decides 
for a "typical” travel pattern for a longer period of time. 

CHOOSING A TRAVEL PATTERN 

We will here explain how the choice of a travel pattern is modeled. 

Consider an individual about to choose a travel pattern for a certain time period, for example a 
month. At her disposal is a monetary budget Y and a time budget T. The travel pattern consists of the 
elements .1.;,,,, which is the number of trips to destination j with mode in. We will deal with only one 
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trip type here; we can think of this as for example shopping trips. The model is easily extended to 
several trip types; this is done in Eliasson and Mattsson (1997). To reduce the number of indices, we 
will also suppress the index of the fixed residential zone i. For example, we will denote the travel 
cost from i to destination zone j with b;, rather than 

A fairly general way to state this problem would be the following maximization problem: 

max{a In y+ /j  In t + u(x)} 	 (2.) 

subject to 

V j, in 

where we have introduced 

a, ß parameters 
y 	money left for other consumption 
t 	time left for other activities 
bp„ 	monetary cost for a round trip to j with mode m (from home) 
t1,,, 	travel time for a round trip to j with mode in (from home) 
x 	the vector of trip frequencies {x,,,,} 
u(x) 	utility of making the trips x 

The advantage of stating thè problem in this way is that the disposable time and income are explicitly 
taken into account. Furthermore, we are able to deal with trip patterns over long time periods. This 
will be clear in the next section. 

When choosing a location, the households are assumed to solve this problem for each possible 
location (zone and house type), and then choose the location with the maximal utility. This location 
choice is modeled by a nested logit model, with house types, zones and car ownership at different 
choice levels. 

CHOOSING A TRIP UTILITY FUNCTION u(x) 

We will now consider the following problem: Construct a function u(x) that measures the utility of 
making the trips x = {x,,,,}. The travel pattern x consists of all trips a household will make during a 
fixed time period. First, we make three observations: 

1. The utility of making one additional trip to zone j depends on which other trips one has made. 
To be specific, the marginal utility of a j-trip should decline with the number of j-trips, and also 
(to a lesser extent) with the total number of trips (remember that we are only considering one 
trip type here). 

2. People differ in their valuation of different destinations, both across individuals, but also across 
time. This means that we cannot hope to predict behavior exactly, and that some kind of 
stochastic model is appropriate. But it is important to realize that this variation over individuals 
and time has a principally different cause than the strive to vary the destination choice that we 
argued for above. 

3. Apart from the time and cost nuisance, travel is also a disutility "in itself'. This means that even 
if travel were very cheap and very fast, people would not travel infinitely much. This is because 
the marginal utility of travel is decreasing, but this disutility component is constant. 
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Several functions fulfilling the conditions suggested above can be imagined. We will choose a type 
of constant elasticity of substitution (CES) function, since this is a fairly flexible function. Another 
attractive feature is the possibility to construct "nested" CES-functions (Varian, 1992). 

The trip utility function 

We choose a function of the following general form: 

1 u(x)=—ln 	wx:J_ /flx /,,, (3.) 

where 
x1 ,,, 	number of jm-trips 
x1 	number of j-trips (xi  = E,,, xi,,,) 
w1 	utility of visiting zone j 

disutility of making a fin-trip 
r 	relative similarity between destinations 

The first term is a CES function, and describes the utility of our visit. Note that this term does not 
depend on which modes we use to make our j-trips. All that matters is that we get there. The second 
term is a sum of travel disutilities. This term does depend on which modes we use. These disutilities 
can be further separated into components like number of changes for transit modes and so on. It 
could also be used to introduce different weights on different time components for e.g. public transit. 
Note that this term does not include physical travel times or out of pocket travel costs; these are 
handled through the time and money constraints. 

The attractiveness measure w1  is a standard tool, and can be constructed in many different ways. It is 
often taken to be proportional to the share of floor space or the number of employed in the zone, and 
can also include agglomeration effects. 

To reflect that people have different preferences, we let w = {w1} and q = {q,,,} be stochastic. We 
assume that w is fixed for each individual, but varies across individuals. w is hence stochastic only 
from the modeler's point of view. 

On the other hand, we assume that q is stochastic also from the individual's point of view. More 
precisely, we assume that once a particular trip is about to be made, when the individual has already 
made the choice of destination and frequency, then (but not until then), she knows the outcome of q. 
The choice of destination and frequency (i.e., the choice of the vector {x,}) is thus made with the 
knowledge that once the trip is about to be made, we choose the optimal mode given the outcome of 
q. The choice of (xd, on the other hand, is made ex ante, only knowing the probability distribution 
of q. A new drawing of q is then performed each time a trip is made. 

The mode choice 

Consider the situation where we are about to make a trip. This means that we are looking at problem 
(2) with u(x) taken from eqn (3), but with {x1} given. It still remains to choose how to distribute 
these trips across modes. 

It turns out that for each j, there will only be one optimal mode, namely the m that minimizes the 
generalized cost ci ,,,: 

c w Ab  + ot,,,, + 9 	 (4.) 

9 
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where X and 6 are the Lagrange multipliers corresponding to the budget and time constraint, 
respectively. We assume that the q j,,,:s have means q p,,, and are independent and distributed such that 
-q1,,, are Gumbel distributed with dispersion parameter ri,. This means that over a longer period of 
time, a certain (stochastic) share of the j-trips will be made with each mode ni. The expected share of 
j-trips made with mode ni becomes 

P„,ii = 	exp l ti; (Ab
;,» + 	+  + g; » 

exp~ ~; ~~b~,,, + ßt ;,,, + tl » 

and we have 

E(X jm) = -1jPmlj (6.) 
Our individual now solves the optimization problem in a probabilistic sense, maximizing the 
expected value of the objective function while requiring the constraints to hold in a probabilistic 
sense: 

1 (  
max alny+ßlnt+—In ~w % x i r t. 

■ / 

subject to 	
E[ 

+1,b1,,,x,,,,] =Y 

E[t 	,,,,]=T 

y,t,x , ?0 	Vj 

Recall the ex ante decision situation: we choose the trip frequencies {x,) and the expected residual 
time and money t and y, knowing that when the trip is about to be made, we choose the optimal 
mode knowing the outcome of q. Problem (7) reduces to 

1  
max alny+ßlnt+— In Ew,xi -Eg ~. 

~ ' 
subject to 	y +1,b;x i = ~' 

t+Et,x; =T 

y,t,x , >_0 	Vj 

where we have introduced expected costs, times and disutilities: 

= 	b;,,,P„~; (9.)  

t; 	= 	, t;,,, 	,,l; (10.)  

q, =c,(ß,6)—.1,b; —6t ; (11.)  

and where cj(X,o) is the expected generalized cost 

cr 	
E min {Ab;,,,+ 	 + q 	 ]= in 

-L in 	exp{_q, + t,,, + g ,,, 1 (12.)  

(5.) 

(7.)  

(8.)  
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The destination choice 

The solution to problem (8) is 

a 
y = A— 

t=-- 
a 

	

-[
1 	 

X 	 (A, a)J 

where we have introduced 

X = 	1h';x;f 	 (16.) 

Since the xj:s enter on both sides of eqn (15), this is not really a closed-form solution. Moreover, 
since we will assume that w varies randomly over individuals, we would like to calculate the 
expected value of x to get the aggregate travel pattern. This would clearly involve rather heavy 
numerical simulation. Instead, we note that there are two values of the parameter r for which we can 
in fact obtain closed-form solutions: r = 0 and r = 1. We will calculate these, and approximate eqn 
(15) with a combination of these two cases. 

Consider first the case when r•- 0, and the first term in u(x) tends to a Cobb-Douglas function (see 
for example Varian, 1992). This can be interpreted as if all destinations were regarded as different 
"products". The objective function in (8) is thus replaced with 

aln y +/31nt+IW. lnx ~ —1,9;x; JJJ } 	 (17.) 
l 

and the solution (15) becomes 

W. 
a 

(18.) 

Consider next the case r = 1. This means that each individual chooses to make all their trips to one 
single destination j*, defined by 

j*=argmax   
	

(19.) 

Given that all xi = 0 for j #j*, the optimal trip frequencies become 

1 
x~ = 	if j =j*; 1= 0 otherwise 	 (20.) 

ci (2,a.) 

Approximate eqn (15) with the convex combination of eqn (18) and eqn (20): 

..,  
x = p c V,a)+(1—p )C 

(t,
6) 	5;;.= 1ifj=j*,O otherwise 	 (21.) 

p is a parameter to be estimated, and replaces the previous parameter r. When r=1 (p=1) and r=O 
(p=0), the approximation is exact. 

X; 

(13.)  

(14.)  

(15.)  

max 
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Now, remember that we assumed that w is stochastic from the modeler's point of view. What the 
modeler would be interested in is therefore the expected trip pattern E(x) that we would observe if 
we picked a random individual: 

E(v;,,,)= E(x ;R; ~ EI P c ( 6)+(1 P
~c(A,6)}P„di 	

(22.) 

When we introduced the destination attractiveness iv;, we said that they were randomly distributed 
across individuals, without specifying the distribution. We now assume that the distribution is such 
that the random error from the modeler's point of view can be written as 

YV 	 }q, ; 

and that the E,:s are independent and Gumbel distributed with zero mean and dispersion parameter µ. 

This is not such a strange assumption as it may seem. When people evaluate the utility of going to j, 
they in fact evaluate all the "sub-destinations” aggregated into zone j. This means that the utility U, 
for each j is the outcome of a maximization process over a large number of alternatives. If we 
assume that these elementary alternatives have independent and identically distributed additive 
random terms, Uj will be asympotically Gumbel distributed (under some mild assumptions; Jaïbi and 
ten Raa (1998)). What is strange with this assumption is that we cannot let the dispersion parameter 
p depend on A or a , and hence not on income Y or total available time T. This is of course 
possible in principle, but would give a model hopeless to estimate. 

This gives us 
tY 1 

E(x. )~ p 	 -41  c 	(~ 6)+ (1 P) 	c, (2,, cr) 

where V = ,/ci(%,6). 

(24.)  

Interpretation of the trip utility function 

To summarize, the expected value of the travel pattern that solves (7) is approximately given by 

     

E(x  )= E(l; lrmi; 
1 

 

eur, 	 _ 
P 	; 	+(1 — P~t'; 

e 
(25.)  

(A, 6) 

     

The basic idea behind this travel behavior model is that it might be rewarding to try to distinguish 
between intra-individual and inter-individual variation. For some travel types, like work travel and 
perhaps daily shopping, the destination is almost always the same for each individual. Inter-
individual variation, however, causes the observed "spread" over destinations. This is either because 
there is no incentive for variation (as in the case with daily shopping), or because the destination 
choice represents a long-term engagement (as in the work-travel case). The parameter 1.t measures 
this inter-individual variation in destination preferences. 

For some trip types, on the other hand, like recreational travel or non-daily shopping, there is a 
strong incentive for variation. People normally don't want to visit the same friend, shoe shop, cinem't 
or whatever over and over again. This is principally a different type of choice situation, since history 
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is suddenly a matter of concern. The parameter p then measures the influence of "history", or put 
another way, the taste for destination variation. 

Another, slightly different interpretation is that r (and hence p) measures the similarity between 
destinations. p = 1 then implies that all destinations "are the same". This explains why w1 does not 
influence the number of trips in this case (eqn 20). 

A COMPARISON WITH THE NESTED LOGIT MODEL 

For those that find the formulas above a little dry, we will here present some diagrams to show the 
principal functional form of our proposed model. We will also compare it to the standard nested logit 
model, and note differences and similarities. 

First, we note that the mode choice is a normal logit model. Since this is a well-known model, we 
will not deal with this part any further, but concentrate on the construction of x;, the number of trips 
to j. 

A standard nested logit model for this 
/
would be 

es" 	exp (u . — ,u(Rb, +ot; +9 » 
X' F" l+ ear Iexp(AiK'—~~+ ;+9;~~ 

where V is the expected utility of making one trip: 

P = jt -' In 	exp(ula7; — ,u(2b, +ar ; +q )) 

and F0 is the "saturation trip frequency", the number of trips that is made when V approaches 
infinity. b1, t; and q; is travel cost, time and disutility just as before; X and a are parameters reflecting 
cost and time sensitivity, respectively, w; is the utility of visiting j, just as before. 

We remind of the corresponding expression in our model, from eqn (25) (when there is only one 
mode): 

i 

(26.)  

(27.)  

X i _ 

exp 
1 

Rb; + at +i 

a.b, + 07 + q 

,uT;  exp 
2b; + 6t +q; 

The similarities are obvious. The greatest difference is perhaps that the cost and time sensitivities X 
and a are not constant; remember that they are calculated to make the time and money constraints 
hold. Since it is probably not obvious how this function behaves, we will present a few diagrams to 
illustrate the general behavior. 

Imagine that we have three destinations to choose from. We get the same utility from visiting each of 
them, meaning that w1 = w2 = w3. To begin with, we examine the following setup: 

Destination Travel time Travel cost 
1 variable: 0-40 15 
2 17 15 
3 20 15 
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and examine what happens when we vary the travel time to destination 1. We get the following: 

Figure 1. Number of trips as a function of travel time - TILT. Example 1. 

The same example with a logit model gives: 

Figure 2. Number of trips as a function of travel time - nested logit. Example 1. 

Of course, it makes no sense to compare the numerical results; we are only interested in the principal 
shape of the curves. 

The similarities are obvious, as expected. One noticeable difference is that our function does not 
exhibit an as strong asymptotic tendency; the function "stays elastic longer". Another difference is 
that the logit function is almost symmetric around a midpoint, the point with maximum slope. This is 
not the case with our function, which has a more complicated elasticity variation. 

Another important difference becomes clear if we change the example a little (that t, is negative has 
no importance; it is just a convenient scale): 

Destination Travel time Travel cost 
1 variable: -40 — 40 22 
2 14 14 
3 22 8 
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total number of trips 
2.1 

2 

1.9 

1.8 

1.7 

1.6 

1.5 

1.4 

1.3 	  
-40 -30 -20 -10 0 10 20 30 40 

Figure 3. Number of trips as a function of travel time - TILT. Example 2. 

We see that destination 3 acts similar to an "inferior good". When tf  rises, this makes time a more 
scarce resource and thus changes the time and cost sensitivities X and 6 to make destination 2 be 
perceived as the "cheapest" destination, measured in generalized cost. This does not only decrease 
xi, but also x3, since this is the destination with highest travel time. This phenomenon would be 
regarded as an error in a nested logit model. In this context, however, it can be perfectly rational. 
The same scenario studied with the logt model gives: 

total number of trips 
2.1 

2 	  

1.9 

1.8 

1.7 

1.6 

1.5 

4 	  
-40 -30 -20 -10 0 10 20 30 40 

Figure 4. Number of trips as a function of travel time - nested logit. Example 2. 

We see that the relative shares of destination 2 and destination 3 remain unchanged. 

Perhaps the most interesting application is to study what happens when we change the budget and 
time restrictions. We will examine a budget variation. Varying the time constraint gives similar 
results. The scenario is the same as the previous example, but with t1  = 8, Y varying from 10 to 70. 

total number of trips 
1.6 

1.4 

1.2 

0.8 

0. 

	

0.4 	 

	

10 	20 	 40 	50 	60 	70 

Figure 5. Number of trips as a function of budget - TILT. 
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"other" consumption y 
45 

40 

35 

30 

25 

20 

15 

10 

5 

0 0  
40 50 60 70 

"other" consumption y 
35 

30 

25 

20 

15 

10 

5 

0 

40 	50 	60 	70 } 20 

As Y grows, X drops and the trip frequencies eventually converges asymptotically to levels where 
only travel time matter. The convergence is however rather slow. It is interesting to study time and 
money devoted to other activities (t and y): 

"other" time t 
32 

28 

26 

24 

22 

200 
	20 
	

40 	50 	60 	70 }, 

Figure 6. Residual consumption and time as a function of budget - TILT. 

Note that t drops as Y increases. This is because the total generalized cost for a trip decreases, which 
makes it rewarding to use more time for travel. Eventually, this converges asymptotically as price 
matters less and less. 

It is not obvious how we should model an increasing budget restriction in the logit case, but a 
common and reasonable way is to set X = 1/Y. This gives the following: 

Figure 7. Number of trips as function of budget - nested logit. 

Figure 8. Residual consumption and time as a function of budget - nested logit. 
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Once again, the similarities are obvious. The logit function shows once again a faster convergence 
towards the asymptote; that the total trip frequency converges so fast causes the peculiar shape of the 
t-curve in the fourth frame. 

Our last experiment is to examine variation in p. Remember that this parameter describes the relative 
similarity of destinations. If p = 1, the destinations are perceived as identical, and only differences in 
individual taste (measured by µ) will cause any spread over the destinations. In the other extreme, 
when p = 0, destinations are perceived as completely separate, and each individual will try to spread 
his traveling over them, proportional to the generalized cost and the utility of each destination. 

Figure 9. Trip shares as a function of similarity parameter - TILT. 

This looks as expected: the more similar destinations are, the less spread is observed. 

To summarize, the nested logit model and our model have many features in common. There are 
mainly two differences. 

The first is that the elasticity of the logit curve tends to its asymptotes faster outside the curves most 
elastic middle part. Our model has a wider interval where it is still elastic, and also shows a more 
complicated elasticity variation. Whether this is good or not is an irrelevant question; the proper way 
to choose between the two would be to test them on a real data set. Still, we might guess that the 
logit model should perform better when we consider short time periods, say one or a few days, where 
the discrete nature of trips is still very apparent. Similarly, we might guess that our model should 
perform well when we consider longer time spans, where the trip frequency more resembles a 
continuous good. 

The second difference is more important: we are able to treat time and money constraints 
consistently, and to model changes in them explicitly. We thus know that the time and cost 
sensitivity will be the same at all levels of the model. This is an attractive feature when we want to 
model long-term choices like location or employment choices. On the other hand, it might in some 
cases actually be restrictive, if we deal with time spans where we know that some choices (like 
where to work) are fixed. Here, a logit model could be more appropriate. 

CONCLUSIONS 

The purpose of this work is to construct the framework of an operational model that establishes an 
explicit connection between location choice and trip pattern, including choices of trip frequencies, 
destinations and modes, using a coherent microeconomic framework. 
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This connection is modeled by letting people choose an optimal travel pattern for each alternative 
location, and then choose the location that gives the highest expected utility. Since this utility is 
different across households, a logit location choice model follows. 

Two problems arise. The first one is that when choosing destinations for the trips, people can be 
expected to have a certain taste for variation. This rules out the standard logit destination choice. 
However, it is not reasonable to assume (a priori) that all destinations are regarded as entirely 
different products. It is more realistic to assume that different destinations to some extent are similar, 
although they in some regards are different, and that this similarity between destinations vary with 
trip purpose. This makes the standard Cobb-Douglas function unsuitable. 

The second problem is that the mode choice, as opposed to the destination/frequency choice, is a 
discrete choice, i.e. a choice between mutually exclusive alternatives. This makes the standard logit 
model a suitable choice. Combining these two types of models, a continuous choice and a discrete 
choice model, is not straightforward, but requires some care to be consistent and mathematically 
correct. 

We believe that these two difficulties are solved by our approach. The first problem is handled by 
introducing the function u(x), which has the logit model and the Cobb-Douglas model as limiting 
cases, and where the parameter r measures to what extent "history" should influence the destination 
choice. The second problem is handled by introducing a random cost associated with each mode. 

When compared to the standard nested logit model, our model exhibits a fairly similar general 
behavior. The differences are mainly that the time and cost elasticities decline slower, and that the 
time and cost sensitivities are not constant, which among other things affects the cross-elasticities. 
Our model is also possible to use to examine changes in the time and budget constraints. 

Hopefully, models of this type will allow practitioners to investigate the connections between 
infrastructure, location, travel demand and the resulting travel pattern with greater confidence in the 
results, and also making new interesting areas, such as the environmental impact of an emerging IT 
society, open for research. 
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