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Abstract 

In this paper we study the combined assignment-intersection control 
problem and show that it descends from the more general Equilibrium 
Network Design Problem (ENDP) in the case of locally optimized control 
systems (e. g. adaptive traffic-lights). Previous studies deal with this 
problem using Deterministic User Equilibrium (DUE) assignment 
models; in this paper we propose a Stochastic User Equilibrium (SUE) 
model with asymmetric delay functions. In the paper theoretical 
properties of the model are investigated. Moreover we propose and test 
some algorithms to solve the problem, with different locally optimized 
signal control rules, and we estimate their convergence speed. 
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INTRODUCTION 

Traffic signal systems play an important role in the management of urban road networks, on which 
a great part of travel time is spent as waiting time at intersections (delays). The signalized 
intersection delay is function of signal settings (effective green times, cycle length, offsets between 
subsequent intersections) and, obviously, of the traffic flows at the intersections. 

If we suppose that the physical configuration of a transportation network (topology and links 
physical capacity) is known, the signal control problem is to find the values of signal settings that 
minimize an objective function (or index of performance). In this way it is defined a Global 
Optimization Signal Settings (GOSS) problem, whose solution is a system's optimum. In the 
hypothesis of flow-responsive traffic signals, i. e. signals independently responding to local flows 
following a local control strategy, the problem of simulating network performances under different 
strategies can be seen as a combined assignment-intersection control problem, as it is specified 
better in the next section; it is a fixed point problem (circular dependence among flows, costs and 
signal settings). It could be also framed as a Local Optimization Signal Settings (LOSS) problem. 

In this paper we study the combined assignment-intersection control problem (LOSS problem) and 
we propose a Stochastic User Equilibrium (SUE) model to represent the problem as well as some 
algorithms to solve it. Finally, using a test network, we investigate some properties of the 
algorithms• convergence, solution's uniqueness and robustness. 

GENERAL EQUILIBRIUM NETWORK SIGNAL SETTINGS MODELS 

The general network design models seek the topological and functional characteristics of a network 
(starting from an initial configuration) that minimize an objective function subject to some 
constraints. The problem's variables, that can be continuous or discrete, are divided into: 
decisional, if they represent the elements on which we can operate to change the network 
configuration and descriptive, if we aren't able to change them directly. 

In the urban network design problem the variables are: the y vector of the decisional variables 
different from the signal settings (width, lane number, open or closed road); the g vector of the 
signal settings (effective greens, cycle length, number of the phases), that are decisional continuous 
variables (for fixed phase plan); the f vector of the link flows, that are continuous descriptive 
variables. 

For congested networks (link costs dependent from traffic flows) the link flow vector f must be 
calculated by an equilibrium assignment; in these cases it is formulated an Equilibrium Network 
Design Problem (ENDP). 

Given a transportation network and supposing known and invariant the topologic configuration (y 
vector is made up of constant terms), we want to calculate signal settings (g vector) that optimize 
the network performances. In this way we formulate the Equilibrium Network Signal Setting 
(ENSS) problem (Cantarella and Sforza, 1995), in which the decisional variables are only the 
signal settings (g vector): 
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Ming  Z(g, f*) 

subject to: 
g  
f* E F, f* = f* (g) 

where: 
Z is the objective function (generally the total travel time on the network); 
G is the set of possible configurations for the g vector; 
f* is the link flow vector resulting from an equilibrium assignment on the network; 
F is the set of possible configurations for the link flows; 
f* = f* (g) is the formal relationship between equilibrium flow vector and decisional variables. 

The link flow vector f, resulting by an assignment model for fixed O-D demand flows, depends on 
the link costs and therefore, formally, on the link cost vector c (Cascetta, 1990): 

f= A P(AT  c) d= f(c) 	 (1) 

where: 
d is the transportation demand vector (elements of the OD matrix); 
A is the link-route incidence matrix, where the element au = 1 if the link 1 belongs to route k and 
au = 0 otherwise; 
P is the route choice probability matrix, where the element pu is the probability that the users on 
the O-D pair i choose the route k. 

The P matrix can be built in different ways according to the used route choice model which can be 
stochastic or deterninistic. 

The generic link cost ci is generally assumed as the sum of two terms: the running cost (or time), 
that depends entirely on the flow of the same link, and the waiting cost (or time) at the intersection 
that, for signalized intersections, depends on the signal settings too. Formally we can write: 

c=c(f,g) 	 (2) 

Replacing eqn (2) into eqn (1) we obtain the following equation: 

f = f(c(f , g)) 
	

(3) 

that relates flows, costs and signal settings. 

Fixed a signal settings vector g, the traffic flows vector f* at equilibrium can be expressed as: 

f* = f (c(f*, g)) 
	

(4) 

When g is fixed and the cost functions are assumed separable, it can be shown under some 
assumptions the existence and uniqueness of the solution, whatever is the route choice model 
(either stochastic or deterministic) (Sheffi, 1985; Cascetta, 1990). The univocal relation 
(application) between f* and g can be written as: 

f* = f*(g) 
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In this context two different ENSS problems can be defined depending on the level of network 
optimization and the type of traffic control system. 

Figure 1 - Graphic representation of GOSS and LOSS solutions 

The Global Optimization Signal Settings (GOSS) problem is to find the g^ vector, and the 
corresponding f^ = f*(g^), such that: 

g^ = Ming  Z(f*(g), g) 

The g^ vector is a constrained optimum, where the constrain is the relation f* = f*(g) (see fig. 1). 

If we draw the function f* = f*(g) in a plane' (fig. 1) and the contours of the system objective 
function Z(f, g) (Cantarella et al., 1991), the constrained system optimal point (f^, g") must belong 
to the r(g) curve. In general, it will be different from the unconstrained optimal point (f' , g') that 
isn't, instead, a feasible solution of the problem. All the points of the f*(g) curve are feasible 
solutions: they represent the unique equilibrium link flow vector f that corresponds to each signal 
settings vector g by an equilibrium assignment. For a study of the GOSS problem see Cascetta et 
al. (1998). 

The Local Optimization Signal Settings (LOSS) problem arises when the signal control parameters 
g are optimized locally, typically in response to intersection flows. In flow-responsive traffic-lights, 
the signal settings adapt themselves to the flows at the single intersection. A fixed flow-responsive 
control policy2  calculates the locally optimal signal settings vector g in function of the link flow 
vector f, therefore we can write: 

g = g(f) 	 (5) 

so the relations (2) and (3) become respectively: 
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c = c(f , g(f)) 

f = f(c(f , g(f))) 

(6)  

(7)  

In this second case the problem is to calculate an f* vector that reproduces itself in the eqn (7), 
once defined the control policy (eqn (4)). At the equilibrium the eqn (7) becomes: 

f* = f(c(f* , g(f*))) 	 (8) 

and the f* vector is named equilibrium flow vector. 

The vector g*= g (f*) is the signal settings vector at the equilibrium, solution of the ENSS problem 
for flow-responsive signals and a solution of the Local Optimization Signal Settings (LOSS) 
problem. In this case we fonnulate the combined assignment-intersection control problem. 

If we draw in the plane of fig. 1 also the g = g(f) curve, (f*, g*) is a mutually consistent point, and 
it is in general different from the system optimal solution (f^, g^). The relation between signal 
settings and link flows (g= g(f)) represents the system planner's decision; instead, the relation 
between the sanie variables f* = f*(g) expresses the result of users' choices. 

The fixed point problem so defined doesn't have a trivial solution, because the cost dependence on 
signal settings involves the fact that the cost functions aren't separable and therefore this is an 
asymmetric equilibrium problem, that presents some difficulties relating to the existence and 
uniqueness of solution. 

The GOSS and LOSS problems can be seen in the framework of game theory. In fact the interaction 
between the flow vector f and signal settings vector g can be seen, by game theory, like a game 
between two players: the travelers and the system planner (Fisk, 1984). The firsts tend to minimize 
their individual perceived costs, while the second wants to optimize the objective function Z (f, g) 
on the whole network. The GOSS problem can be seen as a "Stackelberg game" and the LOSS 
problem as a "Nash gain". 

PREVIOUS RESEARCH ON LOCAL OPTIMIZATION SIGNAL SETTINGS 
EQUILIBRIUM MODELS 

Several authors studied the combined assigmnent-intersection control problem (LOSS problem) 
under a DUE assignment model. Smith (1979a) formulated conditions guaranteeing existence, 
uniqueness and stability of the equilibrium. For a detailed treatment on the uniqueness conditions 
see Meneguzzer (1990). In real situations such conditions aren't respected with conventional 
control policy (equisaturation and delay minimization). 

Florian and Spiess (1982) gave a sufficient condition for the local convergence of the 
diagonalization algorithm of a general asymmetric (non diagonal) user equilibrium assignment 
model; this condition is even more restrictive than the one required for the uniqueness. Proposed 
conditions are only sufficient, but not necessary, for the solution uniqueness and algorithmic 
convergence. 

Smith and Van Vuren (1993) demonstrated that "non conventional" control policies could be used 
to building a general theory; this theory integrates the deterministic user equilibrium assignment 
and signal settings into a single equilibrium model. In fact, choosing an opportune control policy, 
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the combined assignment-intersection control problem is equivalent to a minimization problem of a 
convex function. 

The algorithms proposed to solve the combined assignment-intersection control problem follow in 
two different approaches. Simultaneous algorithms solve a unique problem, in which the signal 
settings and the equilibrium traffic flows are considered as unknown variables. Sequential 
algorithms, instead, solve alternatively a problem of signal regulation (with flows known) and an 
equilibrium network assignment (with signal settings known). 

Different simultaneous algorithms have been proposed in literature; for instance Dafermos (1980, 
1982), Fisk and Nguyen (1982), Florian and Spiess (1982), Meneguzzer (1995). Sequential 
algorithms were by Allsop (1974) and Cantarella et al. (1991). 

AN ASYMMETRIC SUE MODEL AND SOME ALGORITHMS FOR THE LOCAL 
OPTIMIZATION SIGNAL SETTINGS PROBLEM 

In this section we propose a formulation of the LOSS problem as a fixed point problem and some 
algorithms for its solution. The proposed approach is based on stochastic equilibrium assignment 
(SUE) models; these models, formalized by Daganzo and Sheffi (1977), are derived under random 
utility route choice models. For the fixed point formulation of SUE see Cascetta (1990, 1998) and 
Cantarella (1997). 

In this case the elements of the probability choice matrix P are continuous functions of the route 
costs and the equilibrium flows could be defined by: 

f*= AP[ ATc (f*, g(f*))] d 	 (9) 

where g(f) expresses the relations between control variables and flows, depending on the local 
optimization rules. 

The existence of a solution is ensured by the continuity of the functions by Brouwer's theorem 
(1912). This requirement is typically satisfied as the vectorial function f is continuous under quite 
mild assumptions. For random utility route-choice models with non-zero variance (det 1E1 # 0) the 
P matrix elements are continuous functions of path costs. The elements of the c vector 
[cq(f*, g(f*))] are composed functions of continuous functions, being continuous the c;(f), the c,(g) 

(the delay formulas used are always continuous in their feasibility set) and the generic component gi 
of the g vector, which is continuous function of the flows for commonly adopted local control 
strategies. 

A sufficient condition for the uniqueness of the fixed point solution is that the Jacobian of the cost 
functions is a positive definite matrix (Sheffy and Powell, 1981). This is true if the elements of P 
matrix are monotone non increasing with route costs and the link cost functions are derivable, 
continuous with their first order derivatives and strictly increasing with flows. This last condition 
usually is not satisfied for the combined assignment-intersection control problem. 

The fixed-point problem (9) can be solved by MSA algorithm, that can be seen as a fixed point 
algorithm (Cantarella, 1997; Cascetta, 1998) or a feasible descent algorithm for an equivalent 
optimization problem (Sheffy and Powell, 1981); this algorithm is demonstrated to be convergent 
(Powell and Sheffy, 1982; Cantarella, 1997) in the hypothesis that the Jacobian is symmetric and 
definite positive. Again the positive definiteness of Jac(c) is not usually guaranteed and the MSA 
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algorithm cannot proved to be convergent in the asymmetric SUE model fonnulated in this paper. 

In the following, to solve the fixed point problem eqn (9) we propose three new heuristic 
algorithms, derived by the MSA structure, but adapted to the specific problem at hand. 

Algorithm with external calculation of signal settings (Al-e-1) 

This algorithm is similar to the IOA (Allsop, 1974) but it weighs the result of the assignment at the 
iteration k with the preceding iterations with an MSA method. It is evident that the Al-e-1 
algorithm solves the problem with a sequential approach. The steps of the algorithm are: 

Step 0 - Initialization. 
Set iteration counter k = 1 and fix a stop test. Determine a vector of initial settings g° and calculate, 
with a SUE assignment (with link costs corresponding to zero flows: c°= c(0)), the flow vector 
f suE. This is the first iteration flow vector: 

f1= f-0SUE 

Step 1 - Updating signal settings (g vector). 
The new signal setting vector is calculated with the control policy in function ofli current flow 
vector: 

gk= g(~) 

Step 2 - Calculation of the support flow vector. 
Using the signal setting vector gk a new SUE assignment is carried out and it is indicated with t sue 
the resulting flow vector. 

Step 3 - Updating of the current flow vector. 
The new flow vector ff+1 is calculated like weighted average of fk and esuE: 

e+ k — 1) e + tsuE]/k 

Step 4 - Convergence test. 
It is applied to the average percentage difference between greens in two following iterations: 

Average {Igk+ilk _ gk Iil / gk+nli} < 8 

If it has come true then stop, otherwise k= k+1 and return to step 1. 

Algorithm with internal calculation of signal settings (Al-i-1) 

This algoritlun follows a simultaneous approach to the problem that is more suitable for a SUE 
asymmetric assignment problem. It is similar to the classic MSA algorithm but update the signal 
settings (and resulting costs), according to the control policy, before every SNL assignment. The 
steps of algorithm are: 

Step 0 - Initialization. 
Set iteration counter k = 1 and fix a stop test E. Determine a vector of initial settings g° and 
calculate, with a SNL assignment, the flow vector f°SNL. This is the first iteration flow vector: 

fl= fsNL 
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Step 1 - Updating signal settings (g vector). 
The new signal setting vector is calculated by the control policy in accordance with current flow 
vector: 

L = g g (~) 

Step 2 - Updating costs (c vector). 
The new link cost vector is calculated in accordance with current flow vector and signal setting 
vector calculated in the previous step: 

ck= c(1k, gk) 

Step 3 - Calculation of the support flow vector. 
Using the link cost vector ck a new SNL assignment is carried out and it is indicated with f ksNL the 
resulting flow vector. 

Step 4 - Updating of the current flow vector. 
The new flow vector f+1 is calculated like weighted average of fk and fkSNL: 

tk+1—{(k — 1) e + esNLvk 

Step 5 - Convergence test. 
It is applied to the average percentage difference between flows in two following iterations: 

Average 	—fL SNLijI/ I 
+lij}< g 

If it has come true then stop, otherwise k= k+l and return to step 1 

Modified algorithm with internal calculation of signal settings (Al-i-2) 

The structure of MSA algorithm, reducing the step length as iteration number increases, involves 
that the initial solution influences the current solution indefmitely, even though with a decreasing 
weight. This typically causes a low convergence speed, especially if the initial solution is far from 
the equilibrium point. To improve the performances of the conventional MSA and reduce the 
influence of initial solutions, we propose a modified MSA algoritlun that "refreshes" the memory 
with a frequency that is decreasing as the number of iterations increases. The modified algorithm 
will be refereed to as Method of Successive Averages with Decreasing Refreshing (MSADR). This 
algorithm increases the step length in the first iterations, when it is farther from the solution. The 
steps of algorithm are: 

Step 0 - Initialization. 
Fix an initial iteration counter k_in = 1. Set iteration counter k = k_in, fix a stop test e and a max 
number of iterations N_it (for instance 10). Determine a vector of initial settings g° and calculate, 
with a SNL assignment, the flow vector f sNL. This is the first iteration flow vector: 

f1= f9sNL 

Step 1 - Updating signal settings (g vector). 
The new signal setting vector is calculated by the control policy in accordance with current flow 
vector: 

gk = g (

Ir

)̀ 

Step 2 - Updating costs (c vector). 
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The new link cost vector is calculated in accordance with current flow vector and signal setting 
vector calculated in the previous step: 

Ck= C(e, gk) 

Step 3 - Calculation of the support flow vector. 
Using the link cost vector ck a new SNL assignment is carried out and it is indicated with t sNL the 
resulting flow vector. 

Step 4 - Updating of the current flow vector. 
The new flow vector tk+' is calculated like weighted average of tk and f;'sNL: 

e+1—[(k — 1) fk  + r sNL]/1C 

Step 5 - Convergence test. 
It is applied to the average percentage difference between flows in two following iterations: 

Average {j fk+l l  — SNL 	< s 

If it has come true then stop, otherwise k= k+1 and go to step 6. 

Step 6 - Max number of iterations test 
If k < Nit then go to step 1. 

Step 7 - `Refreshing memory". 
g1 = gk 

f' =f4  
kin = 2 kin 
Nit=2Nit 
k=k_in 
go to step 1. 

SOME NUMERICAL RESULTS 

To experiment the proposed algorithms we used the test network depicted in fig. 2. The proposed 
algorithms could be used with any stochastic route choice model, in the tests we used the C-Logit 
model (Cascetta et al., 1996) with explicit enumeration of all feasible routes. This model 
overcomes the main shortcoming of Multinomial Logit, i. e. unrealistic choice probabilities for 
paths sharing a number of links, making possible a closed analytical structure. 

The tests were run in order to: evaluate and compare algorithms performances; evaluate the 
influence of the initial solution on the final result (uniqueness of the solution); compare algorithms' 
behavior with different control policies. 

In the tests we used the delay fonnula of Doherty (1977), modified prolonging linearly the delay 
curve when the saturation degree exceeds 0.95 (Cascetta, 1990). 

All the intersections are controlled and with two phases, the cycle length C is fixed at 90 seconds; 
initial green times were calculated in proportion to the accesses widths and we used the 
equisaturation control policy (Webster, 1958). 
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Figure 2 - Test network 

The base transportation demand d is reported in tablel. 

Table 1 - Transportation demand vector d 
O-D 1-2 2-1 1-3 3-1 2-3 3-2 
Flows 850 1250 750 1000 600 700 

Table 2 - Mean and maximum saturation degrees (sd) connected with different demand levels 
Demand sd - Max sd - mean 
0.7 d 0.851 0.452 
1.0 d 1.040 0.733 
1.2 d 1.420 0.934 

Various level of network congestion were obtained by scaling vector d by a constant. A general idea 
of the resulting congestion level can be deduced by table 2 where mean and maximum saturation 
degrees connected with different demand levels are reported. 

Evaluation and comparison of the proposed algorithms 

Initially we compared the MSA algorithms with "internal" (Al-i-1 and Al-i-2) and with "external" 
(Al-e-1) calculation of signal settings, counting the number of SNL assignments for convergence. 
This comparison showed (see table 3) that the internal algorithms converge more quickly than the 
external. These results led us to test afterwards only the internal algorithms. 

The "classical" version of internal algorithm (Al-i-1) has a speed of convergence not sufficiently 
high for low coefficients of variation (see tab. 4). For instance, with coefficient of variation 0.2 and 
transportation demand level d, it requires 15 iterations (SNL assignments) to reach a value of 
convergence test of 10 %, while requires 1308 iterations to reduce this value under 5%. 
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Table 3 - Number of SNL iteration for different algorithms 

Cv Demand 
0.7 d 

0.4 	1.0 d 
1,2 cl 

Algorithm Al-e-1 
eint = 2% Eist= 0.5% 

78 
80 
64 

Algorithm Al-i-1 	Algorithm Al-i-2 
e=2% 	 a=2% 

5 
	

5 
41 
	

14 
31 	 13 

   

The Al-i-2 performs clearly better than the other two algorithms also for low coefficient of variation 
(see table 4). For instance the Al-i-2 algorithm for Cv = 0.2 and demand d converges under the 5% 
of the percentage error in 50 SNL iterations against 1308 of the Al-i-1 algorithm. 

In conclusion, the comparison among the algorithms shows that the simultaneous approach (internal 
algorithms) is better than the sequential one as for the speed of convergence; besides, between 
internal algorithms, the Al-i-2 (with the refreshing memory method) makes possible to reduce 
significantly the calculation time especially for low Cv coefficient. 

Table 4 - Number of SNL iterations of internal algorithms (A1-i-1 and Al-i-2) 

Algorithm AI-i-1 Algorithm AI-i-2 
Cv Demand e = 10% e =5% e =2% e =10% e=5% e =2% 
0.1 1.0 d 1686 >100.000 68 1021 1848 

0.7 d 3 7 60 3 7 18 
0.2 1.0 d 15 1308 23 50 99 

1.2 d 138 1183 28 45 75 
0.7 d 2 3 8 2 3 8 

0.3 1.0 d 17 28 11 13 171 
1.2 d 8 498 8 35 66 
0.7 d 2 3 5 2 3 5 

0.4 1.0 d 5 16 41 5 12 14 
1.2 d 5 10 31 5 10 13 

Influence of the initial solution 

To estimate the uniqueness of solution, the modified algorithm (Al-i-2) was applied starting from 
different initial solutions. The used starting points were: green proportional to approach widths 
(PG) and green equal to half the cycle time (EG). 

Table 5 - Comparison of different starting point (PG and EG) in terms of SNL 

Cv Demand 
e = 2% 
(PG) 

e = 2% 
(EG) 

Average difference 
among flows (%) 

Max difference 
among flows (%) 

0.2 
0.7 d 
1.0 d 
1.2 d 

18 
99 
75 

20 
99 
77 

0.546 
0.067 
0.107 

2.254 
0.086 
1.434 

0.7 d 8 7 0.934 2.841 
0.3 1.0 d 171 168 0.082 0.632 

1.2d 66 67 0.085 0.716 
0.7d 5 4 0.956 2.669 

0.4 1.0 d 16 13 0.027 1.344 
1.2 d 13 13 0.089 0.256 

The results of these assigmnents (see table 5) seem to show the uniqueness of the solution for the 
test network; only for low demand the percentage differences between equilibrium flows are 
appreciable. These results on the uniqueness obviously cannot be generalized to all networks as 
there are not theoretical sufficient conditions ensuring it. 
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Comparison among different control policies 

All tests reported in the previous subsections were carried out using the Webster's method as 
control policy for single intersections. In table 6 the results obtained with the delay minimization 
method are reported; in this case the updating of signal settings are computed, at each iteration, 
optimizing the parameters of single intersections in order to minimize the total delay with constant 
flows e, using a monodimensional optimization method (in our tests we used the "golden section" 
method). 

The results show that with the minimization control policy the algorithm needs less iterations (SNL 
assignments) than the Webster's method, but the total calculation time is almost the same, because 
the time due to the local optimizations (updating signal settings) is longer. 

Table 6 - Comparison of total calculation time for the Al-i-2 algorithm convergence 

Algorithm Al-i-2; Doherty delay formula; Calculation time for the convergence; 6 e  2% 

Cv 
Webster's Method Delay minimization control policy 

Demand SNL Time SNL Time 

0.2 
0.7 d 
1.0 d 
1.2 d 

18 
99 
75 

0'19" 
1' 43" 
1' 26" 

2 
8 
8 

0'28" 
1' 44" 
1' 44" 

0.3 
0.7 d 
1.0 d 
1.2 d 

8 
171 
66 

0' 08" 
3' 04" 
1' 16" 

1 
6 
7 

0' 15" 
1' 18" 
1' 32" 

In table 6 the total travel time for the two control policies is compared. The results obtained show 
that the differences between total travel times for the two different control policies are modest; for 
low demand levels the Webster's method seems better while, with increasing demand, better 
values are obtained with the total delay minimization policy. 

Table 7 - Comparison of total travel time between control policies 

Cv Demand 
Total travel time (sec.) 

Webster's method 
Total travel time (sec.) 

Total delay minimization method 

0.2 
0.7 d 
1.0 d 
1.2 d 

532,448 
2,457,276 
5,613,436 

889,551 
2,313,767 
5,285,566 

0.3 
0.7 d 
1.0 d 
1.2 d 

613,883 
2,368,672 
5,749,692 

940,106 
2,492,564 
5,627,685 

CONCLUSIONS 

In this paper we proposed an asymmetric SUE model for the combined assignment-control problem 
under the hypothesis of locally optimized signal control strategies. This problem was treated in 
literature almost exclusively with deterministic models of route choice giving rise to a 
Deterministic User Equilibrium assignment model; the use of stochastic models permits to 
demonstrate easily the existence of equilibrium solution and to propose some algorithms with a 
high speed of convergence. 

In the paper three algorithms were proposed, based on modifications of standard MSA algorithm. 
Among the proposed algorithms, the Al-i-2 algorithm (MSA with refreshing memory) resulted to be 
the most effective as it sometimes reduced the speed of convergence over 10 times with respect to a 
classic asymmetric MSA (Al-i-1 algorithm). 
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The comparison of delay minimization and equisaturation local control strategies showed that the 
former produces smaller total travel time for very congested networks, while the latter was more 
effective for relatively uncongested networks. 

ENDNOTES 

1  It is possible only if is unique the signal setting to determine and the flow that influences it. 

2  For isolate intersections three control policies are usually referred in the literature: Webster's 
equisaturation method (Webster, 1958), local delay minimization and Smith's Po policy (Smith 
1980). 
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