
ARTIFICIAL NEURAL NETWORK AND STATISTICAL MODELLING 
OF TRAFFIC FLOWS - THE BEST OF BOTH WORLDS 

STEPHEN D. CLARK 
Institute for Transport Studies 
University of Leeds 
LEEDS, LS2 9JT 
England 

HAIBO CHEN 
Institute for Transport Studies 
University of Leeds 
LEEDS, LS2 9JT 
England 

SUSAN M. GRANT-MULLER 
Institute for Transport Studies 
University of Leeds 
LEEDS, LS2 9JT 
England 

Abstract 

This paper uses motorway traffic flow data to evaluate the performance 
of a number of forecasting techniques. These techniques are: naïve 
methods; ARIMA time series methods; Artificial Neural Network 
methods and a composite SOM/ARIMA method. The performance was 
evaluated using the root mean square and mean percentage forecast 
error and additionally a weighted index. The SOM/ARIMA method was 
found to perform well on all measures. 
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Figure 1 - Location of test site 

INTRODUCTION 

The UK Highways Agency is responsible for the management and control of the UK trunk road and 
motorway networks. The Agency has recently embarked on a programme of extensive instrumentation 
of the London orbital Motorway, the M25 (see figure 1) as part of the MIDAS programme (Nuttall, 1995 
and Maxwell and Beck, 1996). Lane specific detector loops are implemented at 500m intervals and 
information on the traffic state is collected from these loops every minute, 24 hours a day. 

This information is used by the 
Highways Agency to assess the state 
of traffic and, when and where 
appropriate, engage a system of 
Variable Speed Regulation signs to 
advise drivers of a new speed limit. 
An enhancement to this approach 
would be to anticipate the conditions 
and engage the system so as to 
forestall the breakdown in traffic 
conditions. 

The Highways Agency commissioned 
the Institute for Transport Studies at 
the University of Leeds to develop 
techniques to produce accurate short 
term forecasts of the traffic state. The 
work involves two main strands, firstly 
the use of solely Artificial Neural 
Network techniques to produce 
forecasts of traffic flows and travel 
times and secondly, a combined 
Artificial Neural Network and 
statistical time series methodology to 
forecast traffic flows alone. It is this 
latter strand which is considered in 
this paper. 

MODELLING APPROACHES 

A considerable body of work exists on the modelling of traffic flows using traditional and innovative 
modelling techniques (Clark, Dougherty and Kirby, 1993 and Conner, Martin and Atlas, 1994 provide 
a flavour of the work). 

Traditional techniques include time-distance and statistical modelling. Time distance techniques use 
information on the spatial configuration of a network of roads to project forward the movement in traffic 
across space and time to arrive at a forecast, displaced in time and space from the reference sight. In the 
simple case of a junction free stretch of road, a vehicle travelling at 60 kilometres per hour could be 
expected to be 5 km's further downstream in five minutes. Statistical modelling techniques can include 
classes of naive techniques, regression, smoothing, decomposition and Box-Jenkins (1976) approaches. 
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More innovative techniques include the use of artificial neural networks. These two class of techniques 
have their own advantages and disadvantages. The advantage of the statistical techniques is that their 
structure is largely transparent and its behaviour may be rationalised. An advantage of artificial neural 
networks is that they can capture complex, potentially non-linear, relationships in a system. 

JOINT APPROACH 

Other papers (Van der Voort, Dougherty and Watson, 1996) have demonstrated that a combined used 
of traditional statistical and artificial neural network techniques may enhance the performance of a 
forecasting system. Following the work of Van der Voort, an artificial neural network based Self 
Organising Map (SOM) (Kohonen, 1988) was deployed to classify a series of traffic patterns. A 
reasonable ARIMA model was then associated with each of the resultant clusters and the performance 
evaluated. 

SELF ORGANISING MAP 

As mentioned above, the detection infrastructure on the M25 is able to measure traffic flow 
(vehicles/hour), vehicle speed (km/hour), detector occupancy (percentage of time occupied by a vehicle) 
and vehicle headways (seconds) at regular 500m intervals in each lane, both clockwise and anti-
clockwise. This information is available on a minute by minute basis. In order to reduce the effect of 
individual missing observations and produce useful time horizon forecasts these one minute lane 
measurements were combined with a weighted mean to produce a single observation per 15 minute 
period, per link. The measures used to capture the traffic state were flow, speed and occupancy at a 
triplet of adjacent detectors. An example of these three measures at a site for a 6:00am to 21:OOpm 
period for five days (excluding Saturdays and Sundays) in March 1997 is shown in figures 2 to 4. 

Time (5 days, 6am to 9pm) 
	

Tune (5 days, bam to 9pm) 

Figure 2 - Flow (vehicles/hour) 
	

Figure 3 - Speed (km/hour) 
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Figure 5 - Formation of SOM Clusters Figure 6 - Speed / Flow relationship 

So 

Tune (S days, bam to 9pn) 

Figure 4 - Occupancy (percent) 

A SOM network was trained using three weeks of 15 minute aggregated traffic data from October 1996. 
The SOM map, shown in figure 5, formed four distinct clusters, one large, one medium and the other 
two of a smaller size. Bi-variate scatter plots of the three measures where the cluster membership is 
denoted by a 1, 2, 3 or 4 are given in figures 6 to 8. 
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Speed (imohr) 
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Figure 7 - Occupancy / Flow relationship 	Figure 8 - Occupancy / Speed relationship 

Reassuringly these graphs conform to recognised relationships in traffic flow theory. Also the clusters 
now have an interpretation. Cluster 1 is associated with traffic in free-flowing conditions, cluster 3 is 
a transition phase between free-flow and congested conditions and also the point of maximum 
throughput for the network. Cluster 2 is the initial stages of congested conditions and cluster 4 is high 
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congestion (low flow and speeds but high link occupancies). Inspection of the transition from one state 
to another also shows plausible results ie the system does not move from cluster 1 state to or from cluster 
4 state without first passing through states 3 or 2 or both first. 

GOODNESS OF FIT 

To assess the performance of a forecasting methodology some measure of goodness of fit is required. 
At the heart of our performance measure is the residual, r,. 

I: = fr- l't 
Where f, is the forecast flow at time t; 

v, is the observed flow at time t; 

A simple and intuitive measure of performance would be to sum the residuals over all time periods. The 
obvious drawback to this is that the positive and negative residuals will cancel out, giving a distorted, 
optimistic view of the performance. A better approach would be to sum the absolute value of the 
residuals. A further distortion still exists in the approach. A given value of a residual will be more 
significant when the underlying value of the series, v,, is low. Thus a residual of 10 when the observed 
flow is 100 will be more serious than when the observed flow is 1,000. To overcome this, the percentage 
absolute error may be more appropriate. Formally this can be written as eqn (2). Thus the mean error 
per forecast can be calculated by dividing E by the number of forecasts made, N. 

N 
E = 100 ~ 

r=, 

NAIVE MODELS 

Before embarking on a complex modelling exercise consideration should be given as to whether a 
simpler, almost naive, method may be more effective. For this study five such naive methods have been 
proposed. 

NAIVE - 1 
l'r+7 = V, 	 (3) 

This simple method assumes that the best information about what is to happen is what is currently 
happening. 

NAIVE - 2 

l'r +~ = 2 
	

(4) 

This method applies the growth seen in the previous two time periods to the current period, in effect 
continuing a trend. 

NAIVE-3 

v,+,= 0.5 v , + 0.5 t,,., 
Similar to naive method one, but the average of the two most recent observations is used, making it less 
sensitive to sudden changes in flow. 

J ,-l'r 
vr 

(2) 

  

(5) 
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NAIVE - 4 

vt+1 = 0.5 v   + 0.25 vt - , + 0.25 v t _ 2  
(6) 

A slight variant on method 3, but greatest weight is given to the most recent observation, and a residual 
weight to the remaining previous two observations. 

NAIVE - 5 

vt+1 = 0.25 vt  + 0.25 v t ., + 0.25 v t _ 2  + 0.25 vt.s 
	 (7) 

This is a naive method will a "long memory". 

A danger is that any further variants on the above methods would no longer fulfil the criterion that the 
method is unsophisticated in structure, simple to apply and easy to comprehend. 

STATISTICAL MODELLING 

A range of statistical modelling techniques are available. This project selected the Box-Jenkins 
methodology for a number of reasons. The autoregressive component of the ARIMA model 
encompasses the technique of regression whilst the moving average component can provide a smoothing 
approach. Decomposition was not thought to be appropriate since no systematic components were 
apparent in the data. 

The general form of an ARIMA(p,d,q) model is: 
1t 

vt-µ,,= E 0; (vt_;-µ„)- 
i =1 ;-, 

e ; Et-; + Et (8) 

where 	v, is the flow differenced by d periods at time t; 
II, is the mean flow; 
(1:1„  0;  are parameters to be estimated; 
et  is a N(0,G2) noise term. 

The scheme adopted for this study is to use 24 observations to estimate the parameters in the equation 
and then use this equation to produce forecasts for the next two observations. Thus observations 1 to 
24 are used to forecast 25 and 26. Then observations 2 to 25 are used to forecast 26 and 27. This 
stepping continues until the end of the series is reached. 

Data exploration 

A sample of 50, twenty-four observation series were selected at random and a range of models were 
fitted to the data. It soon became clear that the series were non-stationary in their means and variances. 
The remedy for this situation was to take the first difference of the data and then apply a logarithmic 
transformation. 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of the transformed 
series were largely inconclusive. Little pattern in significant correlations emerged at low lags (1 or 2). 
Random significant spikes occasionally happened at large lags but given the short nature of the series, 
little value was given to these spikes. 

Since the ACF and PACF were uninformative, three initial models were hypothesised: 
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ARIMA(1,1,0) 	ARIMA(0,1,1) 	ARIMA(1,1,1) 

If any of these were good (ie significant parameter estimates) then an over-parameterised model would 
be evaluated: 

ARIMA(2,1,0) 	ARIMA(0,1,2) 	ARIMA(2,1,1) 	ARIMA(1,1,2) 

and then judged against the corresponding first model set, using the significance of the estimates and 
the Akaiké s Information criterion (AIC) (Akaike, 1974) and Schwarz's Bayesian criterion (SBC) 
(Schwarz, 1978) statistics. All analysis was performed using SAS 6.1 for Windows with Unconditional 
Least Squares estimation of the parameters. 

The higher order models were inferior in all cases because: 

(a) They were unstable and the estimation procedure failed to converge; 
(b) The second order parameter was insignificant; 
(c) Both the first and second order parameters became insignificant; 
(d) The second order parameter was significant but the first order became insignificant; or 
(e) The AIC/SBC values were poor in comparison to the lower order model. 

This meant that the lower order models were always preferable. 

The ARIMA(1,1,1) suffered from the following features: 

(a) They were unstable and the estimation procedure failed; 
(b) Estimates were produced at the invertibility region (0I  » 1.0 or 01  » 1.0); or 
(e) 	Large correlations were found (>0.80) between the 4i  and 0l  parameters. 

This meant that it was inferior to the pure (ie un-mixed) models. 

Candidate Models 

Six candidate models were identified to fit a logarithmic transformation of the series. These model were: 
ARIMA(0,0,1); ARIMA(1,0,0); ARIMA(1,0,1); ARIMA(0,1,1); ARIMA(1,1,0); ARIMA(1,1,1). Ten 
attempts can be made to fit some of these models to the available data. The first six are to assume that 
one model is correct for all observations in the series. 

The seventh is to fit the model which gives the smallest sum of squares errors in the estimation 
procedure. This approach tends to favour the selection of models with the most parameters, which may 
not necessarily be the best at forecasting. An attempt to overcome this drawback is to derive a measure 
which penalises those models with a large number of parameters, such a measure is the Bayesian 
Information Criterion (BIC) (Mills, 1990). 

BIC = In 
C 

SSE  + (p + q) In (n) 	 (9) 
n. 	n 

where 	pis the number of AR parameters; 
q is the number of MA parameters; 
n is the number of observations (n=24). 

The appropriate choice is then the model of the six candidates which gives smallest BIC. This is criteria 
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eight. 

The ninth criteria for model selection is termed "hindsight". Here the model to fit at time t is the model 
which should have been fitted at time t-1. This means that when a new observation is available, its value 
is compared with the six forecasts made in the previous step. The model which gives the smallest one 
step ahead forecast should, with the benefit of hindsight, have been fitted. It is now too late to use this 
information but it can be assumed that the current step should use the model. In essence this is 
hypothesising that a model which is best for the period t to t+24 is also best for t+l to t+25. 

The tenth criteria is a scoring method (Beale, 1997a). Once a new observation is made available the 
model which, in the previous step, forecast closest to the observed value is accumulated a score of 5, the 
second best forecast accumulates a score of 4 and thus to a zero accumulated score for the worst 
performance. Then the model which has the highest accumulated score is selected for the current time 
step. The model with best overall performance will eventually be the most selected model. 

An eleventh criteria is a refinement to the scoring method of Beale, where the best method is allocated 
a score of 10, second best a score of 6, third best 4, fourth best 3, fifth best 2 and worst 1. This scoring 
mechanism mimics that used in grand-prix racing. 

Of course the best which can be achieved is when the model which gives the smallest one step ahead 
error is always chosen. In practice this method is not available since when the models are fitted to data 
from time t to t+24 (to forecast t+25), the observation at t+25 is not available. Using the privileged 
knowledge of t+25 enables a lower bound for E to be established and no better than this can be achieved, 
given the candidate models and data. In practice this privileged knowledge will not be available. 

Association between model selections 

For each of a representative sample of 1062 traffic situations, the candidate model which gave the least 
one-step ahead absolute percentage error in forecast was identified. This selection was then cross 
classified with the SOM cluster identified for the same observation. The cross classification is given in 
table 1. 

Table 1 - Cross classification of best ARIMA model and SOM cluster 

(0,0,1) (1,0,0) (1,0,1) (0,1,1) (1,1,0) (1,1,1) ALL 

Free flow 127 130 104 129 196 177 • 863 

Congestion 23 38 14 9 16 19 119 

Transition 6 6 2 12 4 3 33 

Congestion 6 15 9 8 6 3 47 

ALL 162 189 129 158 222 202 1062 

In free flowing conditions, no one model clearly identifies itself as a suitable choice. The choice most 
often appropriate is an ARIMA(1,1,0). In the transition phase from free-flowing to congested conditions 
an ARIMA(0,1,1) is most appropriate. For both congested conditions an ARIMA(1,0,0) is appropriate. 
This table has therefore established a correspondence between which cluster an observation in placed 
in by the SOM and the type of ARIMA model to apply (given in bold). In testing, it is clearly 
inappropriate to apply this empirical relationship on the same data set on which it was established. 
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TESTING THE METHODOLOGY 

A set of five day's data from three sites in late October 1996 was chosen for testing. Site 1 is the same 
as that used in establishing the relationship (but the training data was not used in this exercise). Site 2 
is downstream of site 1 and site 3 is upstream of site 1. A fourth site is located within a junction, some 
distance from the above three and is from March 1997. 

For each site a set of eighteen results are presented. The first five are the naive methods. The next six 
are the uniform, one model fits all, methods. The minimum SSE is the twelfth and the thirteenth is the 
minimum BIC. The fourteenth is the hindsight method and fifth and sixteenth are the scoring and grand-
prix methods. Seventeen is the best possible result using privileged information. The last result is the 
SOM selected cluster. In table 2, the figure in the first column for each site is the total absolute 
percentage error over the whole series whilst the second column is the mean percentage error per 
observation. Within each site, the best performance statistic is highlighted in bold. 

For the three within junction sites the SOM method has marginally produced the best performance, 
whilst it is only the fourth best for the within junction site. This may suggest that the correspondence 
between a SOM cluster and ARIMA model established using data from a between junction site may not 
be appropriate for a within junction site. 

Table 2 - Performance of all methods using total absolute percentage error 

Site 1 Site 2 Site 3 Site 4 

Naive 1 3468 11.8 3622 12.3 3348 11.4 3143 10.7 

Naive 2 4669 15.9 5193 17.7 4380 14.9 4678 15.9 
Naive 3 3980 13.5 4075 13.9 3871 13.2 3412 11.6 
Naive 4 4195 14.3 4300 14.6 4085 13.9 3673 12.5 
Naive 5 4888 16.6 4991 17.0 4813 16.4 4439 15.1 
ARIMA (0,0,1) 7567 25.7 7716 26.2 7425 25.3 7168 24.4 
ARIMA (1,0,0) 3543 12.1 3731 12.7 3424 11.6 3233 11.0 
ARIMA (1,0,1) 3685 12.5 3967 13.5 3552 12.1 3416 11.6 
ARIMA (0,1,1) 3703 12.6 3972 13.5 3468 11.8 3739 12.7 
ARIMA (1,1,0) 3469 11.8 3659 12.4 3345 11.4 3267 11.1 
ARIMA (1,1,1) 3939 13.4 4471 15.2 3792 12.9 3617 12.3 
Min SSE 3978 13.5 4481 15.2 3824 13.0 3788 12.9 
Min BIC 3890 13.2 4388 14.9 3761 12.8 3916 13.3 
Hindsight 3882 13.2 4254 14.5 3917 13.3 3611 12.3 
Scoring 3565 12.1 3689 12.5 3433 11.7 3452 11.7 
Grand-prix 3504 11.9 3699 12.6 3381 11.5 3546 12.1 
Best 2151 7.3 2266 7.7 2072 7.0 1968 6.7 
SOM 3342 11.4 3482 11.8 3254 11.1 3287 11.2 

A PERFORMANCE INDEX 

Of primary importance to the Highways Agency is that the forecasting method should be most accurate 
during the transition stage between free-flow and congested conditions (typically when the flow is 
between 4,000 and 6,000 vehicles per link per hour). Also accuracy is not required when the flows are 

VOLUME 2 	223 
8TH WCTR PROCEEDINGS 



stable or very erratic (ie changes in flows outside the range 10 to 20%). Thus the performance of a 
forecasting method is based on two components - its score and its weight (Beale, 1997b). The score 
captures the accuracy of the forecast whilst the weight captures the importance of the forecast. Each of 
these two components has an element due to the level of flow and also the change and direction of 
change in flow. 

Each time point will yield a score between 0 and 1 on the accuracy of its prediction of the level of flow 
(Sf) and its prediction of in change of flow (Sd). Corresponding weights between 0 and 1 are also 
derived (Wf and Wc1). The contribution to the performance indicator for this point is given by: 

P,=(S.f+ Sd)* W f * W,i 	
(10) 

and the total value of the indicator, P„, by: 

P o = ~ P, ~-, 
If the accuracy of the predictions was 100% then both Sf and Si1 will be 1, so a maximum possible value 
on the performance indicator for a single point will be 2 * Wf * Wc1. A corresponding maximum possible 
indicator for an entire series can then be calculated as Pmxz. The ratio of P„ to Pm„, measures the 
performance of the forecasting method. Table 3 shows the results of the naive method 5 (chosen by the 
Highways Agency) compared with the SOM method. Within the table, the percentage gain of the SOM 
method over the naive method is shown in the final column (% +SOM). 

Table 3 - Performance index results 

Link Method P. Pm,. Index % +SOM 

Site 1 Naive 5 64.22 222.3 0.289 
SOM 70.81 222.3 0.319 10.3 

Site 2 Naive 5 61.93 209.3 0.296 
SOM 66.26 209.3 0.317 7.0 

Site 3 Naive 5 65.70 218.9 0.300 
SOM 68.89 218.9 0.315 4.9 

Site 4 Naive 5 43.02 152.1 0.283 
SOM 46.15 152.1 0.303 7.3 

In all cases the SOM method has produced a higher index value. A more detailed indication is given 
in figures 9 and 10. The solid line represents the flow whilst the dotted line is the forecast. The bars at 
the foot of the graph show the individual performance indicator (Pt) for the time point. 
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Figure 10 - Performance of SOM method 
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A comparison has been formed between the forecasting performances of a range of methods on the M25 
traffic flow data, with the following conclusions: 

• Using the self-organising map to "pre-cluster" the data prior to fitting an ARIMA model is a 
technique which has been found to work successfully with the data; 
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A comparison between the result for the SOM method and those for a range of other methods 
indicated that the SOM method has performed best in three of the four sites considered (based on 
the total absolute percentage error as a measure of accuracy); 

• As part of this research it has been possible to derive a new "performance index" which is more 
appropriate for traffic management needs than the statistical measure of the total absolute 
percentage error; 

• For all four sites, it was found that the SOM method out performs the chosen naive method, based 
on the performance index; 

A number of interesting issues have been raised within the course of the work which are deserving of 
further research. These include the precise definition of the performance index and the potential of 
"dynamic" neural networks for data of this type. It is hoped that results from future research into these 
issues will be reported at a later stage. 
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