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Abstract 

One objective of the DACCORD project is to implement and to evaluate 
different types of travel time estimation and prediction algorithms. 
Probe data are used for this purpose. If few probe data are available, 
simple averages of observed travel times display a considerable amount 
of random variation due to travel time dispersion, measurement errors 
and storage errors. Moreover, dynamics in travel time prohibit the use of 
probe data which were not observed in a period sufficiently close to the 
time instant considered. The amount of travel time dispersion and travel 
time dynamics can be identified by specifying a travel time data model 
and estimating its parameters using a maximum likelihood estimator. 
Once identified, these parameters are used to tune an new of-line travel 
time estimator, and to determine the minimum number of probe data 
required for a certain accuracy level. 
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INTRODUCTION 

The DACCORD (Development and Application of Co-ordinated Control of Corridors) project is 
part of the Telematics Applications Programme (TAP) initiated by the European Commission. The 
project's main objective is to design, implement and validate a practical Dynamic Traffic 
Management System (DTMS) for the network-wide control of inter-urban corridors. An overview 
of the DACCORD objectives and activities can be found in (Kroes et al., 1998). The present paper 
is primarily concerned with the evaluation task within DACCORD (an overview of which is given 
in the next section), and more specifically the evaluation of travel time estimators and predictors. 

Within DACCORD different methods of estimating and predicting travel time are applied to a 
variety of sites and circumstances. This is done to learn more about the performance of these 
estimators. The performance is assessed by comparing the estimates and predictions to average 
experienced travel time for the corresponding time interval. This average travel time is observed by 
measuring the travel times experienced by a limited number of probe vehicles. This requires either 
the presence of road-side observers or participation of drivers. Because this is expensive it is 
important to know the minimum amount of probe data that is required to determine the average 
experienced travel time sufficiently accurate. 

The estimation of travel time from probe vehicles has been investigated by various researchers. The 
majority of these studies are feasibility studies for probe based data collection systems for ITS 
applications. As little empirical material is available most studies resort to simulation or 
mathematical analysis to determine the number of probes needed to produce sufficiently reliable 
travel time estimates or incident detection. Examples of such approaches can be found in 
(Srinivasan am Jovanis, 1995) and (Westerman, 1995). The present paper aims to investigate the 
number of probes required based on an analysis of empirical data. 

To this end a model of travel time data is specified, a maximum likelihood estimator for its 
parameters is derived, a smoothing algorithm to estimate travel time is implemented and a 
theoretical minimum number of probe data is determined. The theory presented in this paper is 
checked using two large data-sets, obtained from toll-tickets and automated vehicle identification 
respectively. These experiments involve selecting probe vehicle data from a large pool of travel 
time data and analyzing the accuracy of the travel time estimates based on these data. 

DACCORD EVALUATION 

The DACCORD evaluation framework 

The specific objectives of the DACCORD project are (see also Kroes et al. 1998): 
• evaluation of on-line short-term estimation and forecasting techniques of flows and speeds in 

order to estimate or predict travel times; 
• assessment of practical results from motorway-to-motorway control, both in tenns of 

operational methodologies and in terns of impacts on traffic flow; 
• development of methodologies for integrated and co-ordinated control, including its effects on 

network-wide traffic flows, speeds and travel times; 
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Figure 1 - Outline of evaluation approach: computing indicator values 

• development of an open system architecture. That is, providing a framework for the integration 
of existing and future dynamic traffic management applications, consequently improving inter-
operability, and contributing towards an open European market for products and services, by 
improving competitiveness of the European industry, and the efficiency of services of public 
interest. 

hi the course of the TAP, much attention is devoted to evaluation and demonstration. Hoogendoorn 
et al. (1996) developed a framework for the performance evaluation of co-ordinated control 
strategies and measures developed within the DACCORD project. This framework adheres to the 
CONVERGE methodology (Zhang et a1.,1996). A large part of the activities in DACCORD are 
devoted to developing on-line estimators and predictors of travel time and making these 
operational. These methodologies aim to determine the experienced travel times, either by direct 
estimation from induction loop measurements (Haj Salem et al.,1997) or by indirect estimation or 
prediction using traffic network models (Van Grol et al.,1997). See also (Van Grol et a/.,1998) for 
an overview. Therefore, the evaluation and cross-site comparison of travel time estimations and 
predictions is one of the priorities within the evaluation of DACCORD. This task requires the 
collection of credible reference data, preferably collected by directly observing vehicle trajectories. 

Methodology of evaluating travel time estimation and prediction methods 

The methodology used to evaluate the performance of travel time estimators and predictors is 
outlined in figure 1. Travel time estimates are compared to observations of travel time, the 
differences are expressed in indicators. Values of indicators are informative only if they can be 
compared to values of indicators that relate to reference methods of which the performance is 
known. Such a reference method may be a naive predictor of travel time such as: "the predicted 
travel time equals the moving average of the observed travel time at comparable time intervals 
during the last two weeks". If multiple methods of estimating or predicting travel times are 
available, these methods may be compared based on their indicator values (see Figure 2). 
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Figure 2 - Outline of evaluation approach; interpreting indicator values 

MODELLING OF TRAVEL TIME DATA 

In order to evaluate an estimate of mean travel time the actual mean travel time must be observed 
sufficiently accurate. The errors in observed mean (probe) travel have a number of sources: 
• Observation errors. These errors are due to inaccuracies in the data collection equipment 

(detection errors) or inaccuracies in storing the data (e.g. rounding errors). 
• Sampling errors. Errors due to random variation. These errors are due to the variability in 

individual vehicle speeds. They occur if the observed vehicles are not representative for the 
entire population. 

• Detection lag errors. These errors are due to the variability in prevailing average speeds 
through time. Observations done at one instant in time may not be representative for other 
time instants. 

• Errors due to bias. These errors may be caused by errors in the experimental setup, such as 
failing to select the probe vehicles randomly or selectively missing out on observations of fast 
or slow vehicles. 

The advantage of using probe vehicles .is that the last category of error can be avoided. Errors of the 
other categories may still be considerable especially if only few observations are available. 
However, this mainly affects the possibilities to assess the absolute accuracy of the estimated travel 
time. As long as probe data yield unbiased observations of travel time they may still be used to 
assess the relative perfonnance of different travel time estimation methods. 

The observed travel time of an individual vehicle is a result of individual factors such as preferred 
speed and common factors such as prevailing traffic conditions. We model this with the following 
equation: 
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Ti =fu(ti)+ei 
E[ei ]= 0 

var[ei ] = 62 
(I) 

with: 
The observed travel time of the ith vehicle (in seconds) 
Time of entry of the ith vehicle (in seconds) 
The prevailing travel time at instant ti (in seconds) 
Error tenu accounting for individual factors and detection errors 
(in seconds) 
Variance of individual error tenu, also referred to as travel time dispersion. 

ei : 

62:  

The prevailing travel time slowly changes in time according to the following random walk model: 

E[vi+l,i ] = 0 	 (2) 

var[vi+t,i ] = (ti+1 - /0  0)2  

with: 
vi+l i : 	The change in prevailing travel time between ti and ti+i 

The mean squared change in prevailing travel time per second 

In addition to assumptions (1) and (2) we assume that the error tenns s and y are normally 
distributed and independent. This assumptions are a prerequisite for the quantitative analysis 
presented in the subsequent sections. Above equations imply conditional independence of µ(ti) 
given µ(tî.1) from p.(ti.k), k>1. In other words : once µ(tî_1) is known, older data does not carry any 
information about µ(t1). 

MAXIMUM LIKELIHOOD ESTIMATION OF THE TRAVEL TIME DATA 
MODEL PARAMETERS 

The travel time data model has two unknown parameters: the mean squared difference between 
mean and individual travel time, denoted with n2, and the mean squared change in travel time per 
second, denoted with cot. Given a series of observed travel times {tii,t2..TN} the maximum 
likelihood (ML) estimate for these parameters can be obtained by solving the following problem: 

2 -2 argmax 	2 2 [6 ,w ] = 2 2 L[6 ‚CO ;T1..TN ] 	 (3) 6 
CO  

where L[.] is the likelihood function of the observations, given by: 
L[62 ,w2;T1..TNJP[T1..ZN 162,602 ] 	 (4) 

The right hand side of this equation may be rearranged into a product of conditional expectations in 
the following manner: 

P[T1..zN]=flP[Ti ITi-1>Ti-2>..Z1] i=1 

w2 :  

(5) 
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Each of the terms in above equation equals a marginal distribution of the joint distribution of Ti and 
µi. Moreover, the conditional distribution of T; given µi does not depend on any older observations. 
Therefore it follows that: 

N 00 
P[z1..zN1= 	f P[1-i>iti 1-i 1>zi-2>..z~ ldfli 

1=1 o 
N cO 

_fl f P[1-; u 1pLui  
i=1 0 

At this point we use the assumption that the sampling error si and travel time change v;,,_1 are 
normally distributed. As a result the density p[fl; z1_1,z..z11 is also normal. Moreover, the 

mean and variance of this density (denoted by ft; and 6; respectively) can be obtained by 
applying a Kalman filter (see e.g. Anderson and Moore, 1979). For the system defined by equations 
(1) and (2), the Kalman filter is given by the following equations: 

2 
2 	2  

6; + 
2 2 

2 	6; 	 2 

	

6i+1 = 2 	2 	+(ti+1 -ti)w 
6; +6 

with: 
= E[,u1 I 1-i-i>Zi-2,..1-11 

6Jz = var[fli I  

This recursion is to be initialized with values 	and and ßô . By choosing a large value for ßô 

(6- >>o-2), it is made sure that the influence of this initial solution is negligible. Given that Ti 

equals the sum of µi and a normally distributed random term ei, and that µi is normally distributed 
given the previous data T,_~,..TI it follows that Ti is also normally distributed, and that its mean and 
variance are given by: 

E[zi I 1-;-1 ,1-i-2 , 1-11 = fsi 

var[p; 1-i 1>1-i 2,..1-1]=62 + 62 

Analytically this result is obtained by evaluating (6) under assumption that all distributions are 
normal. Substituting (9) in (4) we obtain: 

7N--~ 
P[Z1..TN 1 = 1 1 N[Eti 	+ 621 	 (10) 

ri i=1 
An expression for the log-likelihood function of 62 and u2 is hence given by: 

log L[62,(021=E— z log[27d— i log 6z +62]- i 10g 
i=1 

- fti )2  
6? +62 

  

The minimization of this expression was done using Nelder-Mead type simplex search method (see 
e.g. Bazaraa et al., 1993) and leads to an estimate for the travel time dispersion a2 and the rate of 
change u2. The proper functioning of this estimation procedure was checked by generating data 
according to the travel time data model (equation 1 and 2) and subsequently estimating back its 
parameters. In the last section of this paper this estimator is applied to empirical data. 

The data used for the experiments are privileged as they contain directly observed travel time data 
obtained using image processing or toll tickets. In practice, travel time estimation usually relies on 

(6) 

(7)  

(8)  

(9)  
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indirect observations such as induction loop data, see e.g. (Van Grol et al., 1998). The analysis 
described in this section is applicable to any source of travel time data, as long as these data are 
unbiased or at least constantly biased. However one should bear in mind that variability in these 
data due to detection and storage errors will be attributed to travel time dispersion. If no correction 
is applied this might lead to an overestimation of the actual travel time dispersion. 

ESTIMATING THE MEAN TRAVEL TIME 

hi view of the lack of data and the inaccuracy's such as rounding errors that may be contained in 
these data, there is a need for combining and adapting these data into an optimal estimate of 
prevailing travel time. An evaluation approach such as outlined in figure 1 usually takes place of-
line. Therefore all available probe data may be used to determine an estimate of the prevailing 
travel time at instant t. Such an approach is known as smoothing. This is opposed to filtering, 
where the prevailing travel time at instant t is estimated using only observations from periods 
preceding instant t. The difference between filtering and smoothing becomes apparent when 
filtering and smoothing of a signal that exhibits sudden change is considered. The filtered signal 
tends to follow the signal with some delay, it is biased towards to older observations. The smoothed 
signal does not display such a bias (see Figure 3). 

Because of the structure of the system defined by (1) and (2), a simple way exists to obtain the 
smoothed signal for this system. Running the Kalman filter we can obtain the distribution 

for any i. By reversing the direction of the time axis and running the Kalman filter 
again, this time starting with the last observation we could obtain the distribution p[µiIti+I ,ti+2,.. EN}. 
Reversal of the time axis is allowed for the system considered because of the simple additive 
structure that underlies the random walk model (2). 

Both distributions of pi are normal and represent an independent source of information about pi. 
Combining both sources of information implies a normal distribution for pi, given by: 

6i +ai 
P[ftil zt..TN] = N[ 	z 	^2 	z 	z 	] 	 (12) 

	

6i+ +6i- 	' ai+ 

with: 
f~i- = [fsi ~ zl • •Ti ] f/i+ = E [f ri ~ zi+l ..ZN ] 

6i~ = E[/ii ~ zl ..ri ] 6 + = E[ui I Ti+i ..rN ] 

The optimal point estimate for the prevailing travel time is the expected value of this distribution. 

 

• •  S — — 

/r 

/ 
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Figure 3 - Example of real, filtered, and smoothed signal 

(13) 
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COMPUTATION OF THE MINIMUM NUMBER OF PROBES REQUIRED 

After the unknown parameters in the travel time data model have been determined and a method to 
estimate the prevailing travel time is specified, the next step is to determine the number of probes 
required to obtain a certain level of accuracy. We will first compute this number based on the 
assumption that probe data arrive at regular intervals. Moreover, we assume that the number of 
probes is much smaller than the total number of vehicles that traverses the study area. This implies 
that after observing i probes the conditional mean ft;  may be considered to be the best estimate of 
the mean speed at the time-interval containing ti. When probe data become available at regular 
intervals At the asymptotic variance of the filtered data, referred to as vp , follows from (7) and 
satisfies: 

0262  
6F —2F  2 	+ At.UI2  

aF +6 

Solving the asymptotic variance 6F from this equation yields: 

6p =?At.to2 +,1(ZA t.Ca2 )2 +At.w262  

Above equation describes the asymptotic variance of the filtered data. It should be noted that the 
asymptotic variance of the smoothed data (which will be denoted with -02  ) follows from 

substituting 6F into equation (12), i.e.: 

62 =26F =1At.wo2 +2 f(ZAt.w2)2 +At.lv2cr2 	 (16) 

Likewise, if the requirement is to reach an accuracy level 62  , the average headway between probe 
vehicles can be solved from above equation, and is given by: 

4Q4  

One should bear in mind that these results were derived using the assumptions that probe vehicles 
arrive at regular intervals and that all distributions involved are normal. As we do not expect these 
assumptions to be fully valid, a safety factor must be applied to above number before applying it in 
practice. 

EXPERIMENTS 

In order to find out how the theory presented above works out in practice a number of experiments 
based on real data have been done. The aim of these experiments is to check if the number of 
probes required is predicted in a reliable way. The strategy followed is outlined in Figure 4. Travel 
time data from two sites are analyzed. The first site is a corridor with a length of 750 meters at the 
A2 motorway in the Netherlands. Travel times at this corridor are detected with an Automated 
Vehicle Identification system that is in use to enforce the speed limit. Unfortunately, this system 
stores no data for vehicles that drive at a speed slower than 40 km/hr, so no data on congested 
conditions are available from this site. The second site is a corridor with a length of approximately 
10 kilometers on the Padua-Venice motorway in Italy. In this case travel times were derived from 
toll-tickets that were issued and received back. These data do not allow for a better accuracy than 
one minute as only the minute of entry and the minute of exit are known. 

(14)  

(15)  

At — 
002 (23 2 +62 ) 

(17) 
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Figure 4 - Set up of experiments 

Figure 5: Observed and smoothed data two different test-sites. Left: A 750m corridor on the A2 
in The Netherlands. Right: A 10 km corridor on the Padua-Venice motorway in Italy. Below: 
detailed plots of the smoothed observed travel time data. 
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Table 1 - Characterization of empirical data 
A2 (NL) Padua-Venice (IT) 

Length of corridor 750 m. ±10 km 
Number of data points 3038 2454 
Observed period 4 hours 24 hours 
Mean travel time 23.8 378 
Travel time dispersion (a2) 5.82 6060 
Rate of change 0)2)  0.0000166 0.377 

Figure 5 shows plots of the data at the two sites, as well as their moving averages, computed 
according to the algorithm described in earlier. 

The data of the two test-sites were used to estimate the dispersion parameter a2  and the rate of 
change parameter cat  in the model of travel time data. The estimated parameters that followed from 
this are shown in Table I. 

The next step is to select the data that will be used as probe data. For the selection of probe data 
two strategies are considered. According to the first strategy (referred to as uniform) probe vehicles 
are selected at regular intervals. The lengths of these intervals are varied over a range of values. 
According to the second strategy (referred to as the random) the probe vehicles are randomly 
selected. This simulates a reality in which part of the vehicles act as probes. 

The data that are selected as probe-data are used to estimate the prevailing travel time using the 
algorithm described earlier. Likewise, a reference solution is computed (resulting in the curves 
shown in Figure 5). Because the number of data-points used to compute the reference solution is 
large relative to the number of probes, the reference solution is assumed to represent the 'true' 
prevailing travel time. The difference between the two solutions is expressed in the mean squared 
error (MSE). 

For each probe-headway the experiment is repeated 20 times each time using a different selection 
of probe data. This reduces the variability in the outcomes and facilitates the interpretation of 
results. Table 2 shows experimental results for the two test-sites, the different number of probes 
used, and the different sampling strategies used. hi this table, the first column mentions the site and 
the second column contains the travel time dispersion for this site (see equation 1). The third and 
fourth column contain the sampling strategy and the average probe headway that was used while 
selecting the probe data. The fifth column refers to the number of data-points that has been used. 
The sixth colunui contains the theoretic accuracy with which the prevailing travel time is estimated 
(&2 ) according to fonnula (16). Column seven contains the mean squared difference (MSE) 
between the estimated prevailing travel time computed on the basis of probe data and this number 
computed on the basis of all data. The last column of the table contains the relative standard 
deviation, which equals the square of the MSE divided by the mean travel time. Figure 7 shows the 
actual accuracy (column 7 in table 2) plotted against the theoretical accuracy (column 6) and the 
number of probes (column 5). The data shown in Figure 7 relate to a random sampling strategy. 

Figure 6 visualizes the results of one of the 20 replications that was done to compute the MSE for a 
probe-headway of 20 minutes. The left plot shows the case where probe data are selected by 
uniform sampling, the right plot shows the case with random sampling. The vertical axis contains 
the smoothed travel time data. The line marked with diamonds is based on the probe data-points 
while the solid line is based on the complete data-set. The probe data-points are also shown in the 
plots. 
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INTERPRETATION OF RESULTS 

The obtained MSE should be looked at bearing in mind the travel time dispersion that applies to 
the specific site. For example an MSE which is 10% of the site specific dispersion corresponds to 
the accuracy would be obtained from sampling 10 independent observations under the assumption 
that the prevailing travel time remains constant. In practice, more then ten observations are needed 
to obtain an MSE lower than 62/l0 because the prevailing travel time is not constant. 

For both sites a small sample of probe data is sufficient to predict the average travel time with a 
siandard deviation less than 10%. At the A2 the observation errors as well as the rate of change are 
much smaller than those at the Padua-Venice corridor. Therefore the worst accuracy at the A2 site 
(12 probes in used in 4 hours) is still better than the best accuracy at the Padua-Venice site (209 
probes used in 24 hours). 

Table 2 - Experimental results 
site Travel time Sample Headway Number of Theoretical MSE SD 

dispersion (At) probes accuracy (%) 
(621 (M 2  

A2 5.82 uniform 1 min 200 0.038 0.026 0.68 
(NL) 2 min 107 0.054 0.024 0.65 

5 min 46 0.086 0.018 0.56 
10 min 24 0.123 0.101 1.34 
20 min 12 0.176 0.319 2.37 

random 1 min 200 0.038 0.034 0.78 
2 min 107 0.054 0.078 1.17 
5 min 46 0.086 0.139 1.56 
10 min 24 0.123 0.285 2.24 
20 min 12 0.176 0.555 3.13 

Padua- 6060 uniform 5 min 209 887 470 5.74 
Venice 10 min 117 1290 529 6.09 
(IT) 20 min 64 1898 648 6.74 

40 min 33 2838 478 5.79 
60 min 22 3626 1340 9.69 

random 5 min 209 443 278 4.41 
10 min 117 645 419 5.42 
20 min 64 949 586 6.41 
40 min 33 1419 1118 8.85 
60 min 22 1813 1329 9.65 

To judge whether the number of probes is predicted in a reliable way one should compare the 
theoretic accuracy and the MSE. The theoretic accuracy is based on the assumption of uniform 
sampling. From Table 2 it can be concluded that in all but one case the actual MSE is lower than 
the theoretical accuracy. The case for which the MSE exceeds the theoretic accuracy (20 minute 
headway on the A2) relates to a sample of only 12 vehicles. 

As far as the random sampling strategy is considered we can conclude from the two top graphs in 
Figure 7 that for the Padua-Venice site the number of probes required is over-estimated, while the 
number of probes needed at the A2 site is under-estimated. The extent of the over- and under-
estimation of the number of probes required can be read from the two bottom graphs. The 
horizontal distance between the dotted and the solid-line indicates the number of extra probes 
required. For the random sampling strategy the accuracy with which the number of probes is 
predicted is not completely satisfactory: for the A2, twice the number of probes is required, while at 
the Padua-Venice site, half the number of probes would have been sufficient. 
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Figure 6 - Smoothed Travel Time (TT) data using a 20 minute headway (64 data-points) for the 
Padua-Venice motorway. Left: data obtained by uniform sampling strategy. Right: data obtained 
by random sampling strategy. 
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This discrepancy is primarily due to the fact that a random sample strategy was used to select the 
data shown in Figure 7 while a uniform sampling strategy was assumed to compute the theoretic 
accuracy. However in part it may also be due to the misspecifrcation of the travel time data model 
given by (1) and (2). 

A possible explanation for the underestimation of the number of probes required at the A2 is a 
serial correlation of the change in prevailing travel time, v ~ ; , at the A2. Such a serial correlation 
is suggested by the smoothness of the left bottom graph in 
Figure 5. Overlooking this serial correlation leads to underestimating the number of probes 
required. This is because the mean travel time displays a greater amplitude if its change in time is 
serially correlated. 

A second shortcoming of the random walk model that has been used is that it is not constrained in 
any way, while in reality the travel time seems to vary around a certain average value, i.e. the 
random walk condition does not hold. In reality the changes in prevailing travel time do not 
accumulate to the extent that is implied by the random walk model. As a result a greater accuracy is 
achieved with large probe headways than one might expect on the basis of the random walk model. 

Another observation that that follows from the results presented in table 2 is that the uniform 
sampling strategy does not necessarily lead to better results. This is because on a 24 hour time scale 
the periods with high flows coincide with the periods in which the prevailing travel time is likely to 
change. The random sampling strategy therefore on average leads to a sample of probe data in 
which periods with large changes in travel time are well represented. Figure 6 illustrates this 
phenomenon for the Padua-Venice site. 

CONCLUSIONS 

One objective of the DACCORD project is to implement and to objectively evaluate different types 
of travel time estimation and prediction algorithms The main advantage of using probe data for this 
task is that these display no bias. The collection of probe data is costly. Therefore the available data 
should be used in an optimal manner Especially if few probe data are available, simple averages of 
observed travel times display a considerable amount of random variation due to travel time 
dispersion, measurement errors and storage errors. Moreover, dynamics in travel time prohibit the 
use of probe data which were not observed in a period sufficiently close to the time instant 
considered. 

The amount of travel time dispersion and travel time dynamics can be identified by specifying a 
travel time data model and estimating its parameters using the maximum likelihood estimator 
presented in this paper. Once identified, these parameters can be used to optimally tune estimation 
algorithms and to determine the number of probe data required for a certain accuracy level. 

Evaluation is a task that can take place off-line and therefore the data used to estimate the travel 
time in a certain period need not be limited to earlier periods. This enables a 50% reduction of the 
mean squared error of estimation relative to traditional filtering approaches that can be applied on-
line. 

Experiments based on empirical data show that on average the accuracy of travel time estimates 
that is actually achieved is better than the accuracy that was predicted in advance. Experiments also 
show that the way probe vehicles are selected has an impact on the accuracy of the estimates based 
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on them. Under stationary circumstances, best results are obtained if probe vehicles are observed at 
regular intervals. However, if conditions are not stationary the periods in which travel time changes 
seem to coincide with high traffic volumes. These periods are well represented in a sample of travel 
time data that is obtained as a result of a random selection mechanism. 
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