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Abstract 

The literature on choice modelling offers limited evidence on the 
variations in elasticity as we move from an MNL model based on 
revealed preference (RP) data, to MNL based on stated preference (SP) 
data, to combined RP-SP data estimated with partial relaxation of the 
differential variance in the unobserved effects by the `nested logit' 
method, and then as free variance across all RP and SP alternatives by 
heteroscedastic extreme value (HEV) estimation. The evidence herein 
suggests that constraining the variance of the unobserved effects tends 
to over-estimate the elasticities sufficiently to distort the behavioural 
sensitivity of attributes influencing choice. 
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INTRODUCTION 

Much progress has been made in understanding individual travel behaviour in the context of the 
utility maximisation paradigm, which mainly has been applied to discrete choice, revealed 
preference (RP) data. More recently, there also has been progress in extending this paradigm to 
include the use of stated choice (SC) data to enrich model estimation, (eg, Hensher's 1994 Special 
Issue of Transportation on SP methods, Bradley and Daly 1992, 1997, Hensher and Bradley 1993, 
Morikawa 1989, Swait et al 1994, Hensher, 1998a). Thus, recognition also is growing that benefits 
can be realised by fusing complementary sources of preference and choice data, which has 
coincided with advances in relaxing some assumptions of basic multinomial logit (MNL). 

Specifically, different variances may be associated with unobserved random effects in 
complementary data sets (MNL imposes constant variances). In turn, this leads to (constant) scale 
parameters for all observed attributes. If scale parameters are not constant, this must be taken into 
account or attribute taste weights will be confounded with scale. In the case of MNL, one must 
rescale each data set to insure comparability of taste weights, and transfer information between data 
sets. General rescaling procedures now allow one to derive unique scale parameters for each 
alternative within and between data sets. The purpose of this paper is to compare and assess the 
implications of direct and cross price travel time choice elasticities estimated from three models that 
have different scale implications: 1) Sequential MNL (SMNL) 2) FIML `Nested Logit' (FNL) and 
3) Joint Heteroscedastic Extreme Value (HEV). 

This paper is organised as follows. We first discuss the rationale for rescaling and outline 
approaches used to estimate scale parameters to obtain appropriate elasticity estimates. Next, we 
discuss the empirical context and study example, emphasising designed choice experiments. Then 
we present our empirical results comparing estimated elasticities and values of time savings. The 
paper concludes with a summary of our major findings. 

Relaxing the constant variance assumption 

The 13 parameter of each attribute in the indirect utility expression for an alternative reflects its 
contribution to variation in the level of relative utility. Each ß is the product of a scale parameter 
and a taste weight parameter. In the MNL case, the scale parameter (hereafter X) indexes variability 
in unobserved effects (and can be set = 1.0 arbitrarily). Simple MNL assumes that X is independent 
of alternatives in choice sets; so does not affect comparisons of values across alternatives 
(McFadden 1981). This assumption often may be unsatisfactory. For example, if the unobserved 
effects of public transport options have higher variances than auto options, a constant variance 
assumption can overestimate the value of travel time savings for public transport use relative to 
automobile use. 

Relaxing constant variance assumptions requires more complex models like HEV. Allenby and 
Glinter (1995), Bhat (1995) and Hensher (1997, 1998) provide recent examples of HEV model 
applications. The behavioural choice rule for the HEV model can be characterised as follows: 

Pi = Prob[Ui > Ui] for all j not equal toi 	 (1) 

= 	rc(j#i) F(%j){Vi-Vj+Ei }]%,if[%,i£i]d£i 

(2) 
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where f(t) is the density function defined as exp(-t)*exp(-exp(-t)), equal to -F(t)*log(F(t)). The 
probabilities must be evaluated numerically because there is no closed-form solution for the integral 
in equation (2). The scale parameter is 1/X (X2 « 1/62 of the random component e;). The integral can 
be approximated using Gauss-Laguerre quadrature (Bhat 1995); hence, equation (2) can be replaced 
with equation (3), where w is the weight and z(1) is the abscissa of the Gauss-Laguerre polynomial. 
A 68 point approximation has proven sufficient in numerical simulations. 

~ 

J
rc(j~i) F[t(jli)] exp[-u(i)] du(i) ~ E(1) w(1) F(z(1)) 

(3) 

HEV allows differential cross-elasticities among all pairs of alternatives, such that two options have 
the same elasticity only if both scale parameters are equal. The effect of a marginal change in the 
indirect utility of an alternative in on the probability of choosing alternative i may be written as 
equation (4) (see also Bhat, 1995 and Hensher, 1998): 

aP_` J 	1 exp [ —Vi +V —.1z1 	F V —v+A;z
An 	lm 	J jEC . j*+ 	- 	A . 

f (z)dz (4) 

  

where z = e;/X;. The impact of a marginal change in the indirect utility of alternative i on the 
probability of choosing i is given by equation (5) 

à =— ~ ~ 
aV. 	I EC.I xi aV, 

(5) 

The cross-elasticity for alternative i with respect to a change in the kth variable in the mth 
alternative's observed utility, sum, is 

_ raP 1 
av,,,' P J % ß

~ X~ k,,, ' 

where /3k is the estimated taste weight on the kth variable. 

The corresponding direct-elasticity for alternative i with respect to a change in ïR; is 

F raP 
n<,; 

=~aV
IPJ*ß~*Xk;. 

Bradley and Daly (1992) (and others) have used nested logit (NL) to estimate the values of scale 
parameter(s) to pool RP and SP data sources. NL allows scale parameter differences within and 
between SP and RP data sources, which is a convenient way to estimate scale parameters as 
inclusive value (IV) parameters, although estimates of X's are unbounded. IV parameters allow 
different cross-substitution elasticities, unlike MNL. The elasticity formulae for NL models depend 
on whether an alternative (direct elasticity) or a pair of alternatives (cross elasticity) are associated 
with the same branch in a nested partition. Direct elasticities are identical to MNL elasticities for 
any alternative in in a non-nested partition of the tree. If in is in a partitioned part of the tree, the 
formula is modified to accommodate correlation between alternatives within a branch, as follows: 

[(1 - Pm) + {1/%G1(1-PmIG)]RkXmk 	 (8) 

(6)  

(7)  
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The NL cross elasticity for alternatives m and m' in a partition of the nest is: 

-[Pm + ((l -X0  )/ %G }PmIGJ ßkXmk 	 (9) 

Even if the X's for each branch do not differ statistically from 1.0, a tree structure may not be 
correct statistically and/or behaviourally. Instead, several trees should be evaluated, and if the 7,'s 
differ from 1.0, log-likelihoods of each tree should be compared using likelihood ratio tests: the tree 
exhibiting the lowest log-likelihood and better statistical fit then would be the preferred model. 

M 
In general, there are 2 possible combinations of elemental alternatives without a structured 
partitioning process. Thus, one must use a priori critieria to partition alternatives initially, a key 
criterion being expected correlations between the random components of alternatives in each 
subset. HEV models potentially can help identify promising tree structure(s), thereby avoiding 
laborious examination of many potential tree structures. 

THE EMPIRICAL STUDY 

A stated choice experiment was part of a broader research effort examining potential impacts of 
transport policy instruments on reductions in greenhouse gas emissions in six Australian capital 
cities (Hensher et al 1995; Louviere, et al. 1994). The full choice set included currently available 
modes plus two `new' modes (light rail and busway). Respondents chose among commuting 
options between their home and workplace locations in designed scenarios that varied different 
levels of policy-sensitive attributes so as to observe and model their coping strategies in each 
scenario. 

Four alternatives appeared in each choice scenario: a) car (no toll), b) car (toll), c) bus or busway, 
and d) train or light rail. Showcards were used to describe 12 different combinations of trip length 
(3) and public transport pairs (4): bus vs. light rail, bus vs. train (heavy rail), busway vs. light rail, 
and busway vs. train. The public transport pairs evaluated by each respondent was determined by an 
experimental design (attribute levels summarised in Table 1). Accompanying contextual questions 
are available from the authors on request. 

Five 3-level attributes described public transport alternatives (attribute definitions available from 
the authors on request): a) total in-vehicle time, b) frequency of service, c) closest stop to home, d) 
closest stop to destination and e) fare. Attributes of car alternatives were: a) travel times, b) fuel 
costs, c) parking costs, d) travel time variability, and for toll roads e) departure times and f) toll 
charges. The design allows us to estimate alternative-specific main effects for each mode (car no 
toll; car toll road; bus; busway; train; light rail), and alternative-specific linear x linear 2-way 
interaction effects for both car modes and generic (interaction) effects for bus/busway and 
train/light rail modes. 

Scenarios were made from a 27 x 327  factorial: an orthogonal fraction was used to make 81 choice 
sets (the 27-level factor created 27 versions of three pairs of alternatives). An orthogonal fraction of 
the 327  insured independent estimation of the aforementioned effects. This design resulted in 
bus/train options appearing in 36 scenarios and busway/light rail in 45. 

EMPIRICAL RESULTS 

Table 2 summarises the final models for stand-alone SP, stand-alone RP and resealed RP using a 
sequentially derived set of SP attribute taste weights. Table 3 displays the jointly estimated SP-RP 
HEV model with free variances. Table 4 contains the joint SP-RP `nested logit' model with scale 
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parameter normalised to 1.0 for RP and a single variance-scale ratio estimate across all SP 
alternatives. Finally, Table 5 presents the joint SP-RP `nested logit' model with partitioning of 
alternatives guided by the HEV model variance profile. 

Table 1 - The set of attributes and attribute levels in the travel choice experiment 
(all cost items are in Australian $'s, all time items are in minutes) 

Short (< 30 Mins.) Car no 
toll 

Car toll rd Public 
Transport 

Bus Train Bus way Light 
Rail 

Travel time to work 15,20,25 10,12,15 Total time in 
the vehicle 
(one-way) 

10,15,20 10,15,20 10,15,20 10,15,20 

Pay toll if you leave at 
this time (otherwise free) 

None 6-10, 6:30- 
8:30, 6:30-9 

Frequency 
of service 

Every 
5,15,25 

Every 
5,15,25 

Every 
5,15,25 

Every 
5,15,25 

Toll (one-way) None 1,1.5,2 Time from 
home to 

closest stop 

Walk 
5,15,25 
Car/Bus 

4,6,8 

Walk 
5,15,25 
Car/Bus 

4,6,8 

Walk 
5,15,25 
Car/Bus 

4,6,8 

Walk 
5,15,25 
Car/Bus 

4,6,8 
Fuel cost (per day) 3,4,5 1,2,3 Time to 

destination 
from 

closest stop 

Walk 
5,15,25 

Bus 
4,6,8 

Walk 
5,15,25 

Bus 
4,6,8 

Walk 
5,15,25 

Bus 4,6,8 

Walk 
5,15,25 

Bus 
4,6,8 

Parking cost (per day) Free,$10,$ 
20 

Free,$10,$20 Return fare 1,3,5 1,3,5 1,3,5 1,3,5 

Time variability 0, ±4,±6 0,±1,±2 
Medium (30-45 mins.) 
Travel time to work 30,37,45 20,25,30 Total time 

in the 
vehicle 

(one-way) 

20,25,30 20,25,30 20,25,30 20,25,30 

Pay toll if you leave at 
this time (otherwise free) 

None 6-10, 6:30- 
8:30, 6:30-9 

Frequency 
of service 

Every 
5,15,25 

Every 
5,15,25 

Every 
5,15,25 

Every 
5,15,25 

Toll (one-way) None 2,3,4 Time from 
home to 

closest stop 

Walk 
5,15,25 
Car/Bus 

4,6,8 

Walk 
5,15,25 
Car/Bus 

4,6,8 

Walk 
5,15,25 
Car/Bus 

4,6,8 

Walk 
5,15,25 
Car/Bus 

4,6,8 
Fuel cost (per day) 6,8,10 2,4,6 Time to 

destination 
from 

closest stop 

Walk 
5,15,25 

Bus 
4,6,8 

Walk 
5,15,25 

Bus 
4,6,8 

Walk 
5,15,25 

Bus 4,6,8 

Walk 
5,15,25 

Bus 
4,6,8 

Parking cost (per day) Free,$10,$ 
20 

Free,$10,$20 Return fare 2,4,6 2,4,6 2,4,6 2,4,6 

Time variability 0, t7, 111 0, ±2, ±4 
Long (>45 mins.) 
Travel time to work 45,55,70 30,37,45 Total time in 

the vehicle 
(one-way) 

30,35,40 30,35,40 30,35,40 30,35,40 

Pay toll if you leave at 
this time (otherwise free) 

None 6-10, 6:30- 
8:30, 6:30-9 

Frequency 
of service 

Every 
5,15,25 

Every 
5,15,25 

Every 
5,15,25 

Every 
5,15,25 

Toll (one-way) None 3,4.5,6 Time from 
home to 

closest stop 

Walk 
5,15,25 
Car/Bus 

4,6,8 

Walk 
5,15,25 
Car/Bus 

4,6,8 

Walk 
5,15,25 
Car/Bus 

4,6,8 

Walk 
5,15,25 
Car/Bus 

4,6,8 
Fuel cost (per day) 9,12,15 3,6,9 Time to 

destination 
from 

closest stop 

Walk 
5,15,25 

Bus 
4,6,8 

Walk 
5,15,25 

Bus 
4,6,8 

Walk 
5,15,25 

Bus 4,6,8 

Walk 
5,15,25 

Bus 
4,6,8 

Parking cost (per day) Free,$10,$ 
20 

Free,$10,$20 Return fare 3,5,7 3,5,7 3,5,7 3,5,7 

Time variability 0, 111, 
*17 

0, ±7, 111 
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Table 2 - Simple multinomial logit, sequential sp and resealed rp, optimal lambda = 0.475 
Attribute Alternative(s) SP estimates (t- 

value) ** 
RP estimates 

(t-value)* 
Rescaled RP 

estimates (t-value)* 
In-vehicle cost All -.54834 (-8.12) -.4697 (-4.31) -.54834 (fixed) 

Main mode time DA, RS -.06087 (-6.17) .007539 (-1.03) -.06087 (fixed) 
Personal income DA .007949 (1.46) -.01723 (-2.31) .02033 (1.96) 

Car availability index DA .33059 (2.16) 0.9477 (2.60) 1.1152 (2.5) 
Main mode time BS,TN,LR,BWY -.07509 (-5.99) -.009577 (-1.44) -.07509 (fixed) 

Access & egress mode 
time 

BS,TN,LR,BWY -.02927 (-4.56) -.05872 (-3.46) -.02927 (fixed) 

Drive alone constant DA -.4213 (-1.12) -.2752 (-.44) 0.7966 (2.14) 
Ride share constant RS -.31343 (-1.08) -1.331 (-2.77) -.4791 (-2.14) 

Train specific constant TN .22401 (1.19) 0.2405 (1.01) 
Light rail specific 

constant 
LR .35496 (2.00) 

Busway specifc 
constant 

BWY .01641 (.09) 

Bus specific constant BS 0 0.3866 (1.52) 
Scale parameter 0.475 

Sample Size 2016 672 1344 
Log-likelihood at 

convergene 
-2366.83 -266.30 -320.06 

Pseudo-R2  0.344 .710 0.654 
Note: RP choice set excludes light rail and busway system. *Based on choice-based weights; ** Choice-based weights 
are meaningless for an SP model 

Table 3 - Joint estimation 
Attribute 

In-vehicle cost 
Main mode time 
Personal income 
Car availability index 
Main mode time 
Access & egress mode time 
Drive alone constant 
Ride share constant 
Train specific constant 
Light rail specific constant 
Busway specifc constant 
Bus specific constant  

extreme value SP-RP model  
SP estimates (t-value) ** 	RP estimates (t-value)* 

-.14604 (-1.94) 	 -.14604 (-1.94) 
-.01995 (-1.86) 	 -.01995 (-1.86) 
.002632 (0.79) 	 .002632 (0.79) 
0.17412 (1.65) 	 0.17412 (1.65) 
-.002997 (1.79) 	 -.002997 (1.79) 
-.0047483 (-1.84) 	 -.0047483 (-1.84) 
6.6437 (1.21) 	 9.7134 (1.29) 
6.9206 (1.25) 	 8.3335 (1.27) 
6.5841 (1.20) 	 - 
6.6781 (1.23) 
6.0799 (1.09) 

7.8315 (1.34) 

of heteroscedastic 
Alternative(s) 

All 
DA, RS 

DA 
DA 

BS,TN,LR,BWY 
BS,TN,LR,BWY 

DA 
RS 
TN 
LR 

BWY 
BS 

Scale parameters: 
Lambda 
Lambda 
Lambda 
Lambda 
Lambda 
Lambda 

DA 
RS 
BS 
TN 
LR 
BS 

0.851 (2.10) 
0.487 (1.97) 
4.343 (1.78) 
0.476 (1.89) 
0.468 (1.77) 
1.282 (fixed) 

1.213 (1.92) 
0.731 (1.54) 
1.439 (1.99) 
3.340 (1.76) 

    

Sample Size 	 9408 
Log-likelihood at convergence 	-1350.8 
Pseudo-R2 	 .651  
*Based on choice-based weights; ** Choice based weights are meaningless for SP models 

Table 4 - Nested logit joint SP-RP - standard with all RP inclusive value =1 
Attribute 	 Alternative(s) 	SP estimates (t-value)** 	RP estimates (t-value)* 

In-vehicle cost 
Main mode time 
Personal income 
Car availability index 
Main mode time 
Access & egress mode time 
Drive alone constant 
Ride share constant 
Train specific constant 
Light rail specific constant 
Busway specifc constant 
Bus specific constant 
Scale parameters : 

All 	 -.2833 (-6.57) 	 -.2833 (-6.57) 
DA, RS 	 -..02377 (-6.48) 	 -..02377 (-6.48) 

DA 	 .003176 (-1.96) 	 .003176 (-1.96) 
DA 	 .19003 (3.70) 	 - 

BS,TN,LR,BWY 	-.033211 (-6.66) 	 -.033211 (-6.66) 
BS,TN,LR,BWY 	-.01604 (-5.56) 	 -.01604 (-5.56) 

DA 	 -.3052 (1.82) 	 .65907 (2.4) 
RS 	 .01359 (.11) 	 -.57755 (-2.28) 
TN 	 -.03136 (-.15) 
LR 	 .11692 (.68) 

BWY 	 .13257 (.81) 	 - 
BS 	 - 	 -.13035 (-.62)  

Combined SP-RP: 
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In-vehicle cost 	 All 	 -.6831 (-9.58) 
Main mode time 	 DA, RS 	 -.0699 (-6.08) 
Personal income 	 DA 	 .006638 (1.40) 
Car availability index 	 DA 	 0.6168 (4.05) 
Main mode time 	 BS,TN,LR,BWY 	-.06278 (-5.91) 
Access & egress mode time 	 BS,TN,LR,BWY 	-.03796 (-6.98) 
Drive alone constant 	 DA 	 -1.3821 (-3.13) 
Ride share constant 	 RS 	 -.58842 (-1.83) 
Train specific constant 	 TN 	 -.3096 (-.91) 
Light rail specific constant 	 LR 	 -.1622 (-.48) 
Busway specifc constant 	 BWY 	 -.4831 (-1.31) 
Bus specific constant 	 BS 	 - 

-..6831 (-9.58) 
-.0699 (-6.08) 
.006638 (1.40) 
0.6168 (4.05) 
-.06278 (-5.91) 
-.03796 (-6.98) 
-.71558 (-1.35) 
-2.462 (-4.47) 

-.8771 (-1.63) 
Scale parameters : 	 Combined SP-RP: 

Lambda 	 RP (DA, RS) SP (BW), 	1.34 (7.42) 
Lambda 	 RP(RS) SP(DA) 	1.55 (9.09) 
Lambda 	 SP(RS,TN,LR) 	1.41 (8.45) 

	
1.16 

Lambda 	 RP(TN) SP(BS) 	1.16 (7.11)  
Sample size 	 9408 
Log-likelihood at convergence 	 -2652.5 
Pseudo-R2 	 0.577 
*Choice-based weights used in estimation; ** choice-based weights are meaningless for an SP model 
SetA=SPRS,SPTN,SPLR; SetB= RPRS,SPDA; SetC= RPDA, RPBS, SPBWY, SetD=RPTN, SPBS 

Table 4 - continued 

Attribute 	 Alternative(s) 	SP estimates (t-value)** 	RP estimates (t-value)* 
k 	 RP (all), 	 1.00 
X 	 SP(DA) 	 0.51 (6.95) 
X 	 SP(RS) 	 0.40 (6.92) 
X 	 SP(BS) 	 0.51(5.76) 
X 	 SP(TN) 	 0.56(5.72) 
X 	 SP(LR) 	 0.53(6.02) 
X 	 SP(BW) 	 0.46(6.11) 

Sample size 	 9408 
Log-likelihood at convergence 	 -2647.5 
Pseudo-R2 	 .569 
*Choice-based weights used in estimation; ** choice-based weights are meaningless for an SP model 

Table 5 - Nested logit SP-RP - partitioning guided by HEV model variance profile  
Attribute 	 Alternative(s) 	SP estimates (t-value) ** 	RP estimates 

(t-value)* 

HEV X's were used to infer an appropriate NL hierarchy (Table 5). In this case NL reflects an 
absence of information revealed by the random component variances: eg, results suggest SP Bus has 
the largest unexplained variance, followed by RP train. SP Ride share, train and light rail have 
similar variances, suggesting assignment to the same branch (Thus, Table 3 suggests Nest A= 
SPRS,SPTN,SPLR; Nest B= RPRS,SPDA; Nest C= RPDA,RPBS,SPBWY; Nest D= RPTN, 
SPBS). 

Table 6 contains the direct and cross elasticities for fare, fuel and line-haul travel time, which 
generally reveal that mean estimates are systematically lower if the X's are free (normalised on one 
alternative for identification). In turn, this suggests that some unobserved effects are confounded 
with time and cost if all X's are constrained equal (MNL) or if X's are equal within subsets of 
alternatives (NL). This also suggests that the literature on MNL and NL models may systematically 
overestimate behavioural sensitivities of populations to changes in travel times and costs, which 
may explain why between-mode switching forecasts often over-predict switching compared with 
teal travel activities. 

NL models suggested by HEV scale parameter results yield weighted average elasticity estimates 
that do not reproduce the HEV results. That is, comparing a traditional NL SP-RP to an HEV-
informed NL model suggests that the latter need not yield elasticities closer to HEV than traditional 
NL. This is surprising, and suggests a need for further research to explain this disparity. 
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Table 6 - Direct and cross elasticities for Various models 
Note: Direct elasticities are shaded. 

DA DA DA DA 	DA DA RS RS RS RS 	RS RS 
Fuel/Fare MNL-SP MNL-RP SEQ SP-RP HEV SP-RP NL SP-RP NL-HEV MNL-SP MNL-RP SEQ SP-RP HEV 	NL SP-RP NL-HEV 

TRAD SP-RP SP-RP TRAD SP-RP 
DA SP -0.745 - - -0.474 	-0.803 -0.648 0.19 - - 0.161 	0.239 0.166 
DA RP - -0.087 -0.068 -0.046 	-0.052 -0.101 - 0.036 0.033 0.015 	0.022 0.037 
RS SP 0327 - - 0.268 	0.326 0258 -0.899 - - -0.593 	-1.032 -0.914 
RS RP - 0.122 0.102 0.047 	0.07 0.137 - -0.283 -0.233 -0.124 	-0.175 -0.261 
BS SP 0.278 - - 0.023 	0.306 0.249 0.167 - - 0.015 	0.181 0.137 
BS RP - 0.194 0.159 0.096 	0.115 0.223 - 0.162 0.152 0.089 	0.107 0.143 
TN SP 0.289 - - 0.276 	0.323 0.256 0.172 - - 0.172 	0.19 0.25 
TN RP - 0.106 0.101 0.015 	0.069 0.122 - 0.132 0.174 0.002 	0.084 0.107 
LR SP 0.263 - - 0.262 	0.292 0.246 0.159 - - 0.162 	0.173 0.22 
LR RP - - ? - 	 - - - - ? - 	-  
BWY SP 0.27 - - 0.056 	0.297 0.238 0.161 - - 0.034 	0.174 0.131 
BWY RP - - ? - 	 - - - - ? - 	- - 

DA DA DA DA 	DA DA RS RS RS RS 	RS RS 
Main Mode MNL-SP MNL-RP SEQ SP-RP HEV SP-RP NL SP-RP NL-HEV MNL-SP MNL-RP SEQ SP-RP HEV 	NL SP-RP NL-HEV 
Time TRAD SP-RP SP-RP TRAD SP-RP DA SP -0.852 - - -0.572 	-0.696 -:173 0232 - - 0201 	0.224 .056 
DA RP -0.023 -0.124 -0.088 	-0.071 -0.161 - 0.009 0.054 0.026 	0.027 0.054 
RS SP 0.399 - 0335 	0306 .085 -1.038 - -0.720 	.-0.921 -264 
RS RP - 0.032 0.172 0.085 	0.09 0.203 - -0.077 -0.439 -0.247 	-0.252 -0.43 
BS SP 0.308 - - 0.029 	0.258 .091 0.186 - - 0.019 	0.155 .054 
BS RP - 0.051 0.316 0.193 	0.165 0.38 - 0.047 0.298 0.187 	0.16 0.247 
TN SP 0.332 - - 0.328 	0.279 .088 0.197 - - 0.205 	0.166 .095 
TN RP - 0.028 0.190 0.029 	0.097 0.202 - 0.04 0.389 0.005 	0.136 0.207 
LR SP 0.29 - - 0.306 	0.243 .035 0.175 - - 0.191 	0.147 .036 
LR RP - - ? - 	 - - - - ? - 	- - 
BWY SP 0.302 - - 0.069 	0.251 .044 0.181 - - 0.041 	0.151 .027 
BWY RP - - ? - 	 - - - - ? - 	- - 



Table 6 - continued 

BS BS BS BS 	BS BS TN TN TN TN 	TN TN 
Fuel/Fare MNL-SP MNL-RP SEQ SP-RP HEV SP-RP NL SP-RP NL-HEV MNL-SP MNL-RP SEQ SP-RP HEV 	NL SP-RP NL-HEV 

TRAD SP-RP SP-RP TRAD SP-RP 
DA SP 0.076 - - 0.004 	0.082 0.089 0.08 - - 0.070 	0.078 0.07 
DA RP - 0.039 0.032 0.030 	0.026 0.089 - 0.034 0.016 0.001 	0.025 0.043 
RS SP 0.078 - - 0.004 	0.071 0.082 0.082 - - 0.074 	0.069 0.126 
RS RP - 0.125 0.112 0.104 	0.085 0.082 - 0.148 0.095 0.003 	0.103 0.166 
BS SP -0.551 - -0.036 	-0.565 -0.606 0.127 - - 0.006 	0.123 0.114 
BS RP " - -0-597 -0.507 -0306 	-0.408 -0.606 0.154 0.111 0.003 	0.109 0.155 
TN SP 0.138 - - 0.005 	0.143 0.148 -0.574 - - -0.307 	-0.539 -0.589 
TN RP - 0.142 0.206 0.002 	0.092 0.148 - -0.631 -0.737 -0.023 	-0.445 -0.729 
LR SP 0.113 - - 0.005 	0.117 0.122 0 - - 0 	0 0.094 
LR RP - - ? - 	 - 0 - - ? - 	- - 
BWY SP 0 - - 0 	 0 0 0.104 - - 0.019 	0.097 0 
BWY RP - - ? - 	 - 0.122 - ? - 	- - 

BS BS BS BS 	BS BS ITN TN TN TN 	TN TN 
Main Mode MNL-SP MNL-RP SEQ SP-RP HEV SP-RP NL SP-RP NL-HEV MNL-SP MNL-RP SEQ SP-RP HEV 	NL SP-RP NL-HEV 
Time TRAD SP-RP SP-RP TRAD SP-RP 
DA SP 0.109 - - .001 	0.115 0.088 0.13 - - .024 	0.107 0.039 
DA RP - 0.01 0.048 0.010 	0.031 0.049 - 0.008 0.021 0.000 	0.027 0 
RS SP 0.113 - - .001 	0.094 0.08 0.132 - - .025 	0.086 0.061 
RS RP - 0.029 0.170 0.031 	0.108 0.137 - 0.037 0.144 0.001 	0.133 0 
BS SP -033 - -.009 	-0.859 -0.62 - 0235 - - .002 	0208 0.125 
BS RP -0.15 -0.814 -.097 	-0.531 -0.672 - 0.054 0.240 0.001 	0.2 0.181 
TN SP 0.224 - .002 	0243 0.163 -0.992 -.107 	-0.819 -0.312 
TN RP - 0.037 0.399 0.001 	0.143 0.165 - -0.171 -1,224 -0.006 	-0.602 -0.191 
LR SP 0.174 - - .001 	0.189 0.126 0.192 - - .000 	0 0 
LRRP ? - - - ? - 	- 0 
BWY SP 0 - - .000 	0 0 - - - .007 	0.172 - 
BWY RP - - ? - 	 - - - - ? - 	- - 

~ 



ô 

Table 6 - continued 
LR LR LR LR BWY BWY BWY BWY 

Fuel/Fare MNL-SP HEV SP-RP NL SP-RP TRAD NL-HEV MNL-SP HEV SP-RP . NL SP-RP TRAD NL-HEV 
SP-RP SP-RP 

DA SP 0.102 0.094 0.105 0.093 0.093 0.020 0.109 0.097 
DA RP - - - - - - - - 
RS SP 0.105 0.098 0.093 0.157 0.096 0.020 0.095 0.088 
RS RP - - - - - - - - 
BS SP 0.15 0.009 0.15 0.133 0 0.007 0 0 
BS RP - - - - - - - - 
TN SP 0 0 0 0 0.139 0.022 0.153 0.132 
TN RP - - - - - - - - 
LR SP -0.549 -0.301 -0.538 -0.558 0.173 0.028 0.189 0.162 
LRRP - - - - - - - - 
BWY SP 0.189 0.033 0.185 0.169 -0.573 -0.127 -0.629 -0.552 
BWY RP - - - - - 

LR LR LR LR BWY BWY BWY BWY 
Main Mode Time MNL-SP HEV SP-RP NL SP-RP TRAD NL-HEV MNL-SP HEV SP-RP NL SP-RP TRAD NL-HEV 

SP-RP SP-RP 
DA SP 0.165 .032 0.142 0.105 0.137 .006 0.149 0.096 
DA RP - - - - - - - - 
RS SP 0.171 .033 0.118 0.157 0.141 .006 0.122 0.088 
RS RP - - - - - - - - 
BS SP 0.264 .003 0.246 0.157 0 .002 0 0 
BS RP - - - - - - - - 
TN SP 0 .000 0 0 0.212 .007 0.266 0.137 
TN RP - - - - - - - - 
LR SP -0.931 -.103 -0.804 =.635 0261 .009 0212 0.167 
LRRP - 
BWY SP 0.335 .012 0.308 0.202 -0.857 -.038 -0.957 -0.56 
BWY RP - - - - - 

- 

a. MNL Stated Preference and Revealed Preference (Sequential Estimation and rescaling) Note: Although the cross elasticities under the constant 
variance assumption are independent of the specific alternative, the probability weighted aggregate cross elasticities vary. Ben-Akiva and Lerman (1985, 
113) show that the 'uniform disaggregate elasticities that result from the IIA property need not hold at the aggregate level'. 
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Figure 1 - Direct price and time elasticities 

Also of interest is variation in the X. estimate for sequential SP-RP; X for sequential SP-RP = 0.475, 
but varies from 0.4 to 0.56 for joint models. The unweighted average is 0.495, which although close 
unfortunately produces different elasticities, and new modes (eg, light rail and busway) cannot be 
included in the Sequential SP-RP estimation (no one chose them). They can be included in the 
Sequential model by resealing all parameters including the busway-specific constant in the SP-stand 
alone model. The advantage of the joint FIML-NL approach is that new alternatives are accounted 
for directly in estimation, and the elasticity differences (inter alia) can be attributed to exclusion of 
light rail and busway in the sequential model. The latter result reflects the information loss inherent 
in sequential methods, especially if new alternatives are included in SP choice sets. Indeed, we 
obtained Sequential SP-RP elasticities closer to traditional NL SP-RP by re-estimating the NL 
model after removing the subsample choosing the new alternatives, which suggests that differences 
may be due to the presence/absence of new alternatives. Direct model elasticities are summarised in 
Figure 1. 

CONCLUSIONS 

The empirical evidence in this paper suggests considerable differences in potential magnitudes of 
predictive `errors' may be due to simplifications of distributional properties of random components 
of indirect utility expressions in discrete choice models. That is, we found that mean estimates of 
the direct and cross elasticities for fare, fuel and line-haul travel time were systematically lower if 
scale parameters were subject to normalisation of one alternative. In turn, this suggests that 
unobserved effects may be confounded with times and costs if all variances are constrained to be 
equal (MNL) or equal within subsets of alternatives (NL). Moreover, MNL and NL models may 
overestimate the sensitivity of populations to changes in travel times and costs systematically, 
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which may account for observations that such models often predict more modal switching than is 
observed in real markets. 

We also examined if HEV model scale parameter results help to specify NL models. Unfortunately, 
we found that weighted average elasticity estimates do not match HEV; and in fact, HEV-informed 
NL specification elasticities were no closer to HEV elasticities than those from traditional NL SP-
RP estimation. This latter finding suggests that more research is needed into the extent to which one 
can specify a more informed NL model that can replicate the more general HEV model elasticities. 

Comparison of Sequential SP-RP with FIML-NL revealed similar scale parameters for sequential 
and joint models, but different elasticities. Elasticity differences were due to exclusion of light rail 
and busway in sequential models, which reflects a loss of information in sequential methods. The 
latter is especially important if new alternatives (eg, light rail, busway) are varied in SP choice sets 
because they cannot be included in Sequential SP-RP models (they are not chosen), which confers a 
clear advantage to joint NL (new alternatives can be included directly in estimation). Another 
advantage of joint NL comes from our finding that Sequential SP-RP elasticities are closer to 
traditional NL SP-RP ones if NL models are re-estimated removing sub-samples who chose new 
alternatives. In turn, this suggests that differences may be due to presence/absence of new 
alternatives, which should be the subject of future investigation. 

In summary, our results suggest caution in using elasticity results from simple model specifications, 
but we need more research into the appropriateness of more complex and realistic models like 
HEV. Although HEV imposes less demands on analysts to know or identify correct NL 
specifications, it also increases computational complexity and has no simple closed-form for 
probabilities. We also found possibly significant limitations to sequential estimation, which do not 
seem to have been widely-appreciated previously; an obvious limitation being the inability to 
introduce new alternatives from SP in joint SP-RP estimation. Our results suggest a need for more 
process-oriented research to better understand the nature of choice processes and develop more 
accurate models. As well, it would seem that SP methods could play a more informative future role 
other than helping to stabilise estimates and/or introduce new alternatives. Instead, SP should be 
able to help us better understand process via experiments specifically designed to provide insights 
into process and/or utility forms. However, such experiments necessarily must be more 
sophisticated and complex than those often used in transport. Indeed, the wide disparity in elasticity 
estimates produced in our study suggests that better and more accurate models are needed, which 
requires more focus on process and less on prediction. Hopefully, this paper will be seen as a call 
for such research. 
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