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Abstract 
This paper presents a system for deriving scheduling decision rules from 
activity diary data. The proposed system represents constraints as well as 
preferences in determining the sequence of a given set of activities. Rules 
are organised in a hierarchy and a systematic search procedure is used to 
optimise the rule hierarchy. A string alignment technique is used to 
measure the goodness-of-fit of the model in terms of an aggregate 
distance between observed and predicted schedules. The proposed system 
is tested based on a large-scale activity diary data set. The results suggest 
that the optimised rule-set achieves a considerable reduction of aggregate 
distance. This rule-based approach is suggested as an alternative to 
existing simultaneous choice models. Potentially, the system is more 
flexible in adapting schedules to physical or institutional changes in the 
environment. 
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INTRODUCTION 

Activity-based models of trip generation and distribution have regained considerable popularity 
recently. Such models are generally viewed to potentially better capture the complex 
interrelationships between activity choice, choice of transport mode, destination choice and timing 
decisions. Many different approaches have been suggested to model these activity patterns. An 
overview is given in Ettema and Timmermans (1997). 

One such model, currently under development by EIRASS/the Urban Planning Group and 
commissioned by the Dutch Ministry of Transportation and Public Works, is AGEATXOSS. In this 
system, activity patterns are the outcome of a sequential decision making process in which 
individuals (i) select from a household-specific long-term calendar the activities that are to be 
conducted, (ii) allocate tasks among members of the household, (iii) determine for each individual a 
schedule in terms of the sequence in which activities are conducted (iv) determine the location of 
each activity and specify trips in terms of transport mode and route choice and (v) determine the 
exact timing of the activities. The outcome of this stage is an initial schedule. Next, schedule 
decisions can be revised either in the scheduling or implementation stage to optimise the schedule, 
adapt the schedule to unforeseen events and to allow for unplanned activities. This paper focuses on 
the third step. Given an activity program for a particular individual and a particular day, the 
(sub)system proposed in this study determines the sequence in which the activities are conducted. 

Although it has been argued that individuals consider activity sequencing as an explicit decision 
(Gärling et al, 1989), it has not received much attention as such in current operational activity-based 
models. In the dominant approach, generating an activity pattern is modelled as a discrete choice 
between a given set of optional alternative patterns. The number of possible activity patterns soon 
becomes intractably large, however, so that simultaneous choice models, such as the ones proposed 
by Ben-Akiva and Bowman (1995), Ettema et al. (1997) and Algers et al. (1997), have to restrict the 
choice-set to only a small number of typical patterns. Such a reduction means, however, that these 
models are limited in describing and predicting in a sufficient degree of detail the variety of patterns 
one can observe across individuals and physical and institutional settings. The system proposed by 
Ettema et al. (1993, 1994) overcomes this problem by assuming that individuals evaluate decisions 
to add, delete and reschedule activities sequentially. However, Magic as this system is called was 
developed primarily to analyse cognitive processes and cannot be readily used for prediction 
purposes. 

The system proposed in this paper represents an alternative approach aimed at overcoming 
shortcomings of simultaneous choice models. This new model is designed as a rule-based system. 
That is, activity patterns are explained and represented in terms of a set of heuristics. The use of rule-
based systems in activity-analysis is rare, with notable exceptions of Garling et al. (1989) and Vausse 
(1997), although to our knowledge their work never materialised in an operational model. Rule-
based systems, however, have been developed for various other domains. Typically, the rules are 
derived from either expert knowledge or from protocols or similar knowledge-acquisition methods. 
We believe, however, that such rules are preferably derived from empirical data. 

This paper therefore describes a modelling approach in which rules are derived from observed 
activity patterns. The remainder of this paper is structured as follows. Section 2 first discusses the 
proposed scheduling system and formats of the rules. Then, section 3 considers principles of the 
estimation method used to derive rules from activity diary data. Next, section 4 discusses the results 
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Go to next schedule position 

R: activities not vet scheduled 

Apply constraint rules 

PR: feasible activities 

Apply preference rules 

V: preference values 

Select highest value activity 

sl s2 s3 s4 Evolving schedule 

Figure 1. Scheduling algorithm 

of an empirical study conducted to test the system. Finally, in the last section we discuss the potential 
of our approach and ways for further research. 

THE SCHEDULING SYSTEM 

The scheduling algorithm 

The actual process of scheduling activities is conceptualised as a process in which an individual 
attempts to realise particular goals, given a variety of constraints that limit the number of feasible 
activity patterns. The rules that we use to model this process operates within a pre-defined 
scheduling algorithm. As schematically shown in Figure 1, the algorithm starts with an empty 
schedule and successively adds activities from a given list of activities called the activity program. 
More formally, let: AP is the activity program to be implemented on a given day by a particular 

individual; Rk Ç AP is the subset of activities not yet scheduled in the k-th step of the scheduling 

process and Sk C AP is the complementary subset of activities that has already been scheduled, i.e. 

Vk Rk n Sr = 0 and Rk lJ Sr = AP. Initially, Rk = AP and Sr = 0. A scheduling decision sdk 

consists of adding an activity a E Rk to the end of list Sk . Formally, a scheduling decision defines the 
transformation: 

Sk = { S I , Sz , ..., Sk } • sdk ~ Sk+1 = { S I , Sp, ..., Sk , a } 
(1) 

The selection of the next activity to add is controlled by a set of rules which represents scheduling 
constraints and preferences. The rules are organised in a hierarchy. From high to low order the rules 
successively reduce the set of activities until the most preferred activity for the next position is 
uniquely identified or until all rules have been applied. In the case of indifference, the selection of an 
activity is random. Formally: the rule at the j-th level of the hierarchy determines for the k-th 
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scheduling step the subset RSk.i  Ç RSk0 _t  , if RS A., _ I  contains two or more elements. The selected set 
is initialised at each scheduling step with the activities not yet scheduled, RSk,o  = Rk. 

The present algorithm focuses on generating an initial schedule, which can be revised in later stages. 
Furthermore, we stress that the objective of the algorithm is merely to put a given set of activities 
into a sequence. We assume that decisions regarding the selection of activities (which?) and task-
allocation (who?) have been made in earlier stages. 

Constraint rules 

At the highest level, the system uses rules representing constraints that determine the feasibility of a 
schedule. These include temporal and sequence constraints. Temporal constraints follow from given 
time-windows for each activity as well as the schedule as a whole. At present, we assume that the 
duration of each activity is given. This simplifying assumption will be relaxed in later versions of the 
system. Time-windows are defined in terms of the following variables: 

taeS 	earliest start time of activity a 
latest start time 

taco 	earliest end time 
tale 	latest end time 

The time-windows may reflect institutional constraints (e.g., opening hours of facilities), logical 
constraints (e.g., not having breakfast late in the evening), household constraints (bringing children 
to school at given times), social or coupling constraints (e.g., commitments with others to conduct 
activities jointly) etc.. As opening hours of facilities may vary across locations, the timing constraints 
of those activities that can be conducted at different locations are unknown in the sequencing stage. 
In such cases, the system derives a time-window based on a given location choice-set as the 
minimum and maximum end time across the optional locations. 

Logical consistency requires that the following relationships hold: 

ls > es 
ta 	ta  

le> ee 
ta 	ta  

le 
< 

Is 	d ta 	ta  + ta  
ee 	es 	d ta 	ta  + ta  

where tad  is the duration of activity a. The 24-hour constraint is specified in terms of a time-window 
for the schedule as a whole. The start time of the schedule is denoted by t` and the end time is given 
by te. Then, the 24-hour constraint requires: 

te  = t' + 24 	 (6) 

assuming that time is measured in hours. The overall time-window does not only constrain the total 
duration of the schedule, but also the earliest begin and latest end times of each activity, i.e.: 

ta es i ts 

tale  < te  

(7)  

(8)  

(2)  

(3)  

(4)  
(5)  
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The proposed rule at the first level deals with these temporal constraints and simulates adding each 
candidate activity in the current position. The rule rejects the activity if the earliest end time of the 
resultant chain exceeds the latest begin time of any other activity not yet scheduled or if the earliest 
end time of the chain plus the total duration of remaining activities is smaller than or equal to the 
schedule end time. To determine the earliest end time of a given chain this rule accounts for the time 
window and duration of each activity as well as the minimally required travel time between 
activities. However, the rule does not account for travel times and time windows of remaining 
activities, as these depend on how these activities are put into a sequence, which depends on later 
scheduling decisions. This means that the heuristic tends to overestimate feasibility of candidates. 

The second rule in the hierarchy eliminates activities which do not meet certain sequence constraints. 
Sequence constraints are defined in terms of a set of Boolean variables, Su s, denoting whether an 
activity of type a can be performed before an activity of type a'. Generic rules for defining sequence 
constraints do not exist, as these constraints depend on the chosen typology of activities. In 
discussing the empirical study, we will describe how these constraints were specified in that 
particular application. 

Preference rules 

The rules at the subsequent levels of the hierarchy are different in the sense that they represent 
preferences which may vary between individuals. The specification and place in the hierarchy of 
these rules are not a-priori known, but rather are to be derived or `estimated' from schedule data. As 
will be explained in the section, the estimation procedure relies on a system for exhaustively 
generating candidate rules. This section discusses the proposed rule formats and a method of 
deriving candidate rules. We use a classification of preferences on three major dimensions. 

Time-of-day preferences 
First, individuals may display time-of-day preferences for certain activities. For example, individuals 
may try to perform a necessary shopping activity at off-peak hours, to avoid congestion on the road 
or inside centres or stores. Preferences of this type can be readily represented in general form as: 

Assign a negative/positive value to candidate activity a for the current position, if a meets 
property P and the begin time falls in time range T. 

A negative value represents a preference for delaying the activity, and a positive value indicates a 
preference for selecting the activity. P and T are parameters of the rules which are systematically 
varied to generate instances of the rule. In this rule and the rules below, we suggest that P is 
systematically varied based on classifications of activities. Activity dimensions such as location (e.g., 
in-home/out-home), activity type (e.g., leisure, mandatory), transport mode (e.g., car, bike), 
accompanying person (e.g., with others, alone), duration (e.g., long or small) and timing constraints 
(flexible or strict) provide a suitable basis for this. 

Combination preferences 
Second, positive or negative interactions between activities, such as carrying-over effects, may create 
negative or positive preferences for certain combinations. For example, individuals may wish to 
avoid a social visit directly after a sports activity to allow for a refreshment or redressing activity. 
Tendencies to cluster (positive interactions) or space (negative interactions) certain activities can be 
represented by a general rule of the form: 

Assign a negative/positive value to candidate activity a for the current position, if a meets 
property P and the last scheduled activity meets property Q 
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P and Q are parameters which are systematically varied to create possible instances of this rule. A 
positive value indicates a wish to cluster activities, whereas a negative value represents a desire to 
separate the activities. Dependent on parameter settings, this rule could for instance lead to clustering 
out-home activities. A more generalised version of this rule type is: 

Assign a negative/positive value to candidate activity a for the current position, if a meets 
property P and the current activity chain meets property Q 

Substituting `last scheduled activity' by `current activity chain' in this rule reflects the idea that 
properties of entire chains can create negative or positive conditions for a next activity. For example, 
the current length of a trip chain can give rise to a preference for an in-home activity as the next 
activity (i.e., limiting the number of stops in a trip chain). As another example, the total time of 
engagement in mandatory activity can create a desire to schedule a leisure activity next (e.g., having 
a break after a work block of two hours). 

Sequence Preferences 
Rules of this type represent preferences for certain sequences per se, independent of time-of-day and 
combination preferences. Rules of this kind do not consider the current position of the schedule, but 
they determine the priority of candidate activities using the following general format: 

assign priority value z1 if candidate activity a is an instance of class c1  
assign priority value z2 if candidate activity a is an instance of class c2  

assign priority value z„ if candidate activity a is an instance of class c„ 

where z1..z„ are preference values and c 1 ..c„ denote mutually exclusive classes (on some dimension). 
The classification scheme c i ..c„ is considered the parameter to be varied here. For example, assigning 
higher priority to in-home activities would reflect a preference for completing in-home activities 
before engaging in out-home activities. Or as another example, assigning higher priority to non-
leisure activities would lead to a tendency to delay leisure activities until all non-leisure activities in 
the activity program have been scheduled. 

Complex scheduling behaviour 

Although these rule-formats are simple, when arranged in a rule-hierarchy they are capable of 
complex behaviour. At each step of the scheduling process, the highest level rules eliminate activities 
that do not fit in the current position given timing and sequence constraints. The preference rules, 
then, successively narrow down the set of remaining activities. For example, the system may display 
a preference for completing non-leisure activities such as for example shopping or household tasks 
before leisure activities such as for example watching tv or reading. At the same time, a more 
specific rule, at a higher level, may overrule this general preference and select a leisure activity after 
a block of non-leisure activities, and so on. 

Probably, constraint rules apply in every case, as these rules represent basic scheduling logic. On the 
other hand, preference rules are possibly conditional upon characteristics of households, individuals, 
the environment in which the activities are conducted as well as the day of the week and contents of 
the activity program. For example, a preference to cluster out-home activities, e.g. scheduling 
shopping directly after work, may be selected only on days when the time pressure on the schedule is 
high, in the sense that the available time for leisure activities is limited. To model conditional 
application of preferences, we use the decision table. The advantage of this technique is that it allows 
one to verify and validate the completeness and consistency of the model (see Vanthienen et 
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C 1 household type II 
C2 time pressure on schedule Low High Low High 
Al in-home activities first X - - - 
A2 cluster out-home activities - X - - 
A3 mandatory activities first - - - X 
A4 non-mandatory activities first - - X - 

Figure 2. Arbitrary example of a decision table 

al., 1994; Lucardie 1994). Figure 2 gives an example, whereby a preference rule is selected 
dependent on household type and time pressure. In general, the table structure allows one to define 
for which cases which preference rule applies. 

THE ESTIMATION METHOD 

The data used for estimation consists of the activity programs and related schedules of a group of 
individuals. Let APf and Si°  be the observed activity program and schedule of the j-th individual, Sig 
be the generated schedule and z(Sf, S;° ) is a measure of dissimilarity (distance) between two 
sequences. Then, the objective of estimation is to find the subset of preference rules that minimises: 

Z =E z(SS S ,x) 	 (9) 

The proposed estimation method assumes that it is possible to define an exhaustive set of possible 
preference rules (as well as the conditions under which they apply). In this section, we briefly discuss 
the principles of the proposed algorithm and similarity measure. 

Estimation algorithm 

As we have shown in an earlier study, an inductive learning algorithm could be used to identify the 
rules that best reproduces observed schedules (Arentze, Hoffman and Timmermans, 1997). Inductive 
learning involves incrementally adjusting weights of rules using the observed schedules as training 
examples. Each time when supplied with an activity program, the system selects a rule for each 
position in the rule hierarchy based on an error value associated with each rule. A probabilistic 
selection function is used such that rules with a lower error value have a higher chance of being 
selected. Each time a rule is used its error value is updated dependent on the degree of dissimilarity 
between the observed and generated schedule. The weight of earlier cases is a parameter of the error 
value update function. As learning proceeds, the error value of each rule will reflect a weighted 
average error score across all the cases in which the rule was applied. On a simulated data set it was 
shown that, when the rule selection and error update function was properly specified, the system was 
able to identify the rules that were used to generate the data. For more details we refer to the 
mentioned study. 

The similarity measure 

To measure the degree of similarity, z, between generated and observed activity sequences, we use a 
string alignment technique. The used method, referred to as String Alignment Method or SAM, was 
first introduced in biology for comparing DNA strings. Wilson (1996) proposed the use of SAM for 
comparing activity patterns. Recently, Joh et al. (1997) proposed an extension of SAM to deal with 
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multi-dimensional activity patterns. However, for the present purpose we use the original uni-
dimensional SAM as our problem at this stage is only one-dimensional. 

SAM determines the degree of similarity between two strings of symbols in terms of the amount of 
effort required to make the two strings identical using insertion, deletion and substitution operations. 
SAM allows one to assign different weights to these operations. The weighted sum of operations 
required for alignment is known as Lehvenstein distance. Then, the measure is defined more 
specifically as the minimum Lehvenstein distance across optional paths to the solution. 

Traditional Euclidean measures use a position-based comparison of elements and are, therefore, 
highly sensitive to mismatches caused by one arbitrary element. For example, inserting one element 
somewhere in a string may have a big impact in terms of Euclidean distance (as all positions after the 
insertion point are shifted to the right). In contrast, as the SAM is sensitive to sequential information 
only, the impact of an arbitrary element on Lehvenstein distance is never bigger than the effort 
associated with a single deletion operation. Furthermore, SAM can handle strings with different 
lengths using the same distance criterion. 

The weights associated with insertion, deletion and substitution operations can be set dependent on 
the application. For the present application, there is no reason to use different weights. Therefore, 
we use a weight of one unit for both insertion and deletion and a weight of two units for substitution 
(being a combination of a deletion and insertion). Given these settings, the measure has a clear 
interpretation. For example, a distance value of 10 units means that alignment requires 10 times the 
equivalent of an insertion/deletion operation or 5 times the equivalent of a substitution. 

EMPIRICAL APPLICATION 

As a first step, only a limited set of initial rules was tested. In this stage, we did not test the inductive 
learning algorithm. In stead, we focused on a more fundamental question, namely whether the system 
is sensitive enough to identify rules for reproducing real schedules. 

Data collection 

The activity diary data used were collected through a paper-and-pencil survey among a sample of 
1223 households in the Netherlands. Of each household, one or more individuals older than 18 years 
was asked to fill out a diary for two days. An open format was used, whereby individuals could 
specify activities in terms of activity type, start and end time, travel time, location, transport mode 
used to travel to the location and accompanying persons. The start time of each schedule was set to 3 
AM and the end time to 3 AM the next day. This time frame was chosen to make sure that in almost 
all cases the first and last activity concerned a sleep-episode. Individuals could specify activity type 
in terms of a pre-defined list of 49 activity categories. Travel was not considered a separate activity, 
but rather a characteristic of an activity, namely the means to reach the activity location. 
Inconsistencies, errors and missing values were as much as possible corrected by using a set of 
deterministic rules. The rules were designed to improve the quality of the data with respect to time 
notation (24 or 12 hour basis), activity start time (including / excluding travel), reporting the return 
trip, overlapping time intervals due to simultaneous performance of different activities (e.g., eat and 
watch tv) etc.. 

The cleaned data-set was further prepared for analysis by (i) classifying activities into a smaller set of 
activity categories and (ii) specifying time constraints in terms of a time-window for each activity 
(Table 1). In-home activities were generally considered to be unconstrained. The only exceptions are 
eating and childcare for which limited flexibility around observed times was assumed. There were no 
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individual-specific data available on social commitments prior to scheduling. Therefore, no 
constraints were specified for social visits nor for the presence of accompanying persons in other 
activities. Constraints of facility-based activities such as shopping, personal business and recreational 
out-home activities were set based on region-specific opening hours by facility type and by day of 
the week. As individual-specific data on constraints of out-home work activities were not available, 
the time-window of these activities were set to a small range centred around the observed start and 
end time (assuming some flexibility in timing). Other activities including medical visits, bring/get 
persons and the morning and evening sleep episodes were completely fixed on observed start and 
end times (assuming no flexibility). 

Table 1 - Used activity classification 

Fully constrained partly constrained Unconstrained  
- work /study in-home 
- household tasks 
- leisure in-home 
- social visits 
- tour (walk, bike, car) 

 

- work out-home 
- primary work / school 
- voluntary work etc. 
- union-based activities 

- bring / get persons 
- primary sleep 

- grocery / service 
- grocery shopping 
- postal, financial service 
- other personal business 

- non-grocery shopping 
- sports and fitness 
- other recreational activities 
- secondary sleep 
- eat (breakfast, lunch, diner) 

 

Activity durations were set to observed values. However, leisure in-home (e.g., watching tv, reading) 
and household tasks were treated different in this respect. Long duration episodes of these activities 
were split up into smaller units of maximally 30 minutes. This reflects the notion that these activities 
can often be interrupted by other activities, so that larger blocks reflect an explicit scheduling 
decision to cluster smaller units. 

Results 

The data set contained 2919 schedules and was subdivided into two sets of approximately equal size. 
One subset was used for estimation and the other one for validation. Thus, the estimation results 
discussed in this section are based on one halve of the data set only. For each observation, the 
activities in the schedule were put in a random order and rule-based models were tested on their 
ability to reproduce the sequence of the activities. 

A relatively simple rule hierarchy was tested. The used hierarchy consisted of the following levels: 

1. Rules evaluating temporal constraints; 
2. Rules for determining the timing of eat episodes; 
3. Rules representing sequence preferences based on activity type; 
4. Rules representing sequence preferences based on activity duration. 

The second level consists of a rule for timing of eat-episodes. These rules attempt to realise a 
preferred timing of breakfast, lunch, diner or in-between tea/coffee breaks (if any). Specifically, the 
rules assign a low priority to (i) an eat activity when the current time slot is too early and (ii) a non-
eating activity when adopting that activity would imply a too long delay of eating. The third and 
fourth level consists of rules representing sequence preferences. Third level rules determined priority 
based on activity type. The fourth level was added to solve remaining ties, if any. The rule that was 
tested assigns a higher priority to longer duration activities. 
With respect to timing, different rules were tested. Preferred eat times were defined either relative to 
waking up time (e.g., having lunch 4 hours after waking up) or in terms of absolute times (e.g., 
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having lunch at 12 o' clock irrespective waking up time). Furthermore, different assumptions 
regarding the length of the acceptable range around an ideal time were tested. As it turned out, rules 
based on absolute timing and a 30 minute time interval gave the best goodness-of-fit. Significant 
differences between groups could not be identified. Sequence preference rules at the third level 
deserves more attention, as these rules determine the overall preference structure of schedules. 

Activities were classified on two dimensions: mandatory versus leisure and out-home versus in-
home. This resulted in four classes: 

1. Mandatory out-home (MO: grocery/service, non-grocery shopping and sports); 
2. Mandatory in home (MI: household tasks, touring); 
3. Leisure out-home (LO: social visits and recreational activities); 
4. Leisure in-home activities (LI). 

Conceptually, sports activities belong to the group of leisure activities. However, a first analysis 
suggested that, in terms of priority ranking, sports activities are stronger associated with the 
mandatory out-home group. For the same reason, touring was considered a household task, because 
in many cases it seemed to involve letting out the dog(s) of the household (which may have an 
obligatory character). In total 8 rules were formulated. The rules differ in the choice of priorities on 
these dimension as well as the dimension having the highest weight. For example, the rule denoted 
as `MI, MO, LI, LO' assigns higher priority to both mandatory and in-home activities and gives 
higher weight to the M/L dimension. 

Table 2 - Performance of base-models by group: Average Lehvenstein distance across 
schedules 

FW, FW, FW, MW AW NW, NW, NW, WE, WE, WE, 
NC C<12 C>12 NC C<12 C>12 NC C<12 C>12 

1. MI, MO, LI, LO 3.454 3.185 3.543 5.905 7.487 6.557 9.155 7.116 5.868 7.155 6.182 

2. MO, MI, LO, LI 3.258 3.052 3.333 5.333 6.974 6.244 8.969 7.163 5.576 6.602 5.849 

3. LI, LO, MI, MO 4.722 4.385 5.162 8.000 9.180 9.954 12.957 12.674 7.840 9.512 8.515 

4. LO, LI, MO, MI 4.650 4.282 5.029 7.619 9.333 9.718 12.671 12.558 7.500 9.236 8.273 

5. MO, LO, MI, LI 3.268 2.993 3.219 5.357 7.231 6.466 9.081 7.372 5.821 6.634 5.879 

6. LO, MO, LI, MI 4.175 4.119 4.667 6.905 9.026 9.099 12.422 11.814 7.208 8.764 7.970 

7. MI, LI, MO, LO 3.650 3.304 3.829 6.286 8.000 6.985 9.615 7.837 6.132 7.545 6.606 

8. LI, MI, LO, MO 4.639 4.489 5.143 8.024 9.128 9.916 12.857 12.535 7.689 9.480 8.303 

LI: 	Leisure in-home activities; 	NC: 	no children; 
LO: 	Leisure out-home activities; 	C < 12: 	youngest child is younger than 12 years; 
MI: 	Mandatory in-home activities; 	C > 12: 	youngest child is 12 years or older; 
MO: 	Mandatory out-home activities. 	FW: 	Full time Work: more than 6 hours this day; 

MW: 	Morning Work: 3-6 hours dominantly in the morning; 
AW: 	Afternoon Work: 3-6 hours dominantly in the afternoon; 
NW: 	No Work: less than 3 hours; 
WE: 	Weekend. 

Schedules were grouped into 11 categories based on (i) household composition; (ii) total time 
engaged in out-home work, and (iii) weekdays/weekend. Goodness-of-fit of the rules were 
determined for each of the groups, to find out whether group differences exist. The results are shown 
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in Table 2. The figures represent the average difference between observed and generated schedule 
across cases, given optimal specifications of the constraint and eat-timing rules. 

Although scores vary considerably within groups dependent on length of schedules and time-
windows of the activities, the relative performance of rules is remarkably stable across groups. For 
all groups, rules 3, 4 and 8 belong to the three worst performing rules, rules 1, 2 and 5 belong to the 
three best-performing rules and rules 6 and 7 take in a middle position. The rank seems to correlate 
strongly with the priority assigned to in-home leisure activities. Rules assuming a high priority 
perform poorly and rules assigning a low priority perform well. In-home leisure activities constitute 
the most frequently reported group and tend to be postponed until other activities have been 
completed. Rule 2 is the best fitting rule for nearly all groups and second-best otherwise (NW-NC, 
NW-C>12). In these latter groups, the difference with the best-fitting rule is not significant. This 
finding suggests that the same rule is suitable for reproducing the main structure of schedules, 
irrespective household composition, work characteristics and day of the week. This rule prioritises 
activities in the order of `MO, MI, LO, LI'. This suggests that individuals generally try to complete 
mandatory activities before leisure activities and, at a second level, out-home activities before in-
home activities. 

This rule was taken as a starting point for further refinement. More specific rules were tested 
describing different ways of ranking activities within the MO and LO categories. The variant 
maximising overall fit prioritises MO activities in the order 1. grocery/service, 2. non-grocery 
shopping and 3. sports and LO activities in the order 1. social visits and 2. recreational activities. 
Taking all groups together (N = 1467), the fit of this model in terms of aggregate distance across 
generated and observed schedules equals 8160 (average ni = 5.576 and standard deviation s = 4.061). 

Table 3 - Model fit on the estimation set (N= 1467, m = 14.77, s = 5.60) 

Model 
Z 

(total dist.) 
m; 

(average) 
s; 

(st.dev.) 
mrmw, 

(reduction) 
mi =100 

(% reduction) 
trvalue 

Random sequence 17608 12.0027 5.283 
Constraints 12216 8.3272 4.922 3.676 69.4 19.496 
Timing eat 11382 7.7587 4.844 0.568 64.6 3.153 
Type sequence 8160 5.5624 4.0261 2.196 46.3 13.355 
Duration sequence 8006 5.4574 3.9651 0.105 45.5 0.712 

System performance and validation 

There are several ways to analyse and evaluate the performance of the optimised rule-set. As an 
indicator of relative performance, Table 3 shows reductions in aggregate and average distance value, 
when layers of rules are sequentially added to the system. The zero case is defined by using no rules, 
i.e. schedules are generated by arranging activities in a random order. In this case, the aggregate 
distance equals 17608 units (ni = 12.003). Adding constraint rules leads to a reduction to 69.4 % of 
this base level (ni = 8.327). The t-value of difference of difference in means indicate that the 
improvement in fit attributable to constraint rules is highly statistically significant (t1  = 19.496 
against t. _0.95 = 1.645). It should be noted that this improvement is not achieved independent of 
observation. Specifically, the time-constraints of medical visits, work out, bring/get activities were 
set dependent on observed start and end times. Although it cannot be fully interpreted in terms of 
performance, this figure does indicate, however, that under present specifications there is still much 
freedom of choice left for preference rules at lower levels. 
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Adding rules for timing eat-episodes from this point results in a further reduction to 64 % of the base 
level (13  = 3.153). Next, adding the optimal sequence preference rule at the third level further reduces 
the distance value to 46.3 % (13  = 13.355). Finally, the complete system, which results when ties are 
solved by ranking activities according to decreasing duration, achieves a reduction to 45.5 % (14  = 
0.712). 

Table 4 shows the results when the same set of rules is applied to the validation set. As these figures 
show, the distance reductions related to each layer are of the same magnitude as for the estimation 
set. This suggests that the rules are transferable to a different set of observations. 

Finally, to give a visual impression of the system's ability to predict schedules, Table 5 shows 
observed and generated schedules for a representative case. 

Table 4 - Model fit on the validation set (N = 1452, ni = 15.18, s = 5.66) 

model 
Z 

(total dist.) 
m; 

(average) 
s; 

(st.dev.) 
mrm»i 

(reduction) 
m1=100 

(% reduction) 
t,-value 

random sequence 17934 12.3512 5.327 
constraints 12758 8.7865 5.112 3.565 71.1 18.399 
timing eat 11566 7.9656 4.842 0.821 64.5 4.443 
type sequence 8546 5.8857 4.242 2.080 47.7 12.312 
duration sequence 8342 5.7452 4.169 0.141 46.5 0.900 

Discussion of results 

The results suggest that compared to a null-model a strong reduction in aggregate error can be 
achieved even by a limited set of rules. In this case, a large part of the reduction is attributable to 
preference rules. Furthermore, the same set of rules seems to apply to all groups. This is not to say 
that there are no differences between the activity patterns, but that such differences are given by the 
activity programs rather than sequencing rules. 

Table 5 - Typical example of a generated and observed schedules (n = 13, distance = 4) 

begin time 
constraints 

end time 
constraints 

begin 
time 

end time duration 
(minutes) 

1. sleep 3.00- 3.00 7.00- 7.00 3.00 7.00 240 
2. eat or drink 6.00- 8.00 6.30- 8.30 7.00 7.30 30 
3. work, out 3.00-26.00 4.00-27.00 8.00 9.00 60 
4. work, out 3.00-26.00 4.00-27.00 9.00 10.00 60 
5. social visit, out 3.00-24.30 5.30-27.00 10.30 13.00 150 
6. work, out 12.45-13.45 16.30-17.30 13.15 17.00 225 
7. household tasks 3.00-26.00 4.00-27.00 18.30 19.30 60 
8. leisure, in 3.00-26.30 3.30-27.00 20.00 20.30 30 
9. leisure, in 3.00-26.30 3.30-27.00 20.30 21.00 30 
10. leisure, in 3.00-26.30 3.30-27.00 21.00 21.30 30 
11. leisure, in 3.00-26.30 3.30-27.00 21.30 22.00 30 
12. leisure, in 3.00-26.30 3.30-27.00 22.00 22.30 30 
13. sleep 22.30-22.30 27.00-27.00 22.30 27.00 270 

Observed string: 
SLE-EAT-WORKO-W ORKO-S VIS-WORKO-HHT-LEII-LEII-LEII-LEII-LEII-SLE 
Predicted string: 
SLE-EAT-WORKO-WORKO-HHT-W ORKO-S V IS-LEII-LEII-LEII-LEII-LEII-SLE 
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The present four-level system provides a basis for elaboration through adding levels to the hierarchy. 
A follow-up study will be concerned with elaborating the system by adding interactions and time-of-
day-preference rules to the system. 

CONCLUSIONS AND DISCUSSION 

This paper described a rule-based model for predicting activity sequences given an activity program 
for a particular day. In contrast to existing activity-based models, the proposed system assumes a 
sequential decision making process and uses rules for representing scheduling constraints as well 
préferences. Where constraint rules are a-priori specified, preference rules are derived from 
observations. An empirical case-study suggests that optimising only a limited set of preference rules 
already leads to a considerable reduction in aggregate error compared to a null model. This result 
could be repeated on a subset of observations that was not used for estimation. 

We feel that the proposed approach is potentially useful, but that further research is required to 
improve its value for prediction and analysis purposes. First fundamental research is required to 
develop ways to improve system's sensitiveness for identifying rules. The current string alignment 
method (SAM) is sensitive for differences in sequential information. Through combinations of 
deletion, insertion and substitution operations the source string is made identical to the target string 
and the total amount of effort is taken as a measure of similarity. When applied to the same element, 
a combination of a deletion and insertion can be interpreted as replacing that element to another 
location in the string. The SAM treats deletions and insertions separately and does not take the 
distance between existing and target location into account. In biological applications, this is 
reasonable because differences between DNA strings are considered to be the result of independent 
mutations. In the context of activity patterns, however, one may argue that keeping everything else 
constant dissimilarity between activity patterns increases with the distance over which elements have 
to be replaced. An extension of the similarity measure that takes such distance information as well as 
sequence information into account would provide more informative feed back to the scheduling 
system. Then, a model would perform better the closer it locates activities to target positions. We 
expect that such a refinement would significantly improve the ability of the system to identify 
patterns in data. 

Second, the classification of activities deserves attention. The classification used in the present study 
was based on commonly used definitions in the literature. Yet, some of the activity categories may 
comprise activities which are treated quite different by individuals. For example, the sports category 
included activities such as fitness and team sports, while individuals may display different time-of-
day or clustering preferences in scheduling these activities. Future research should focus on using 
statistical techniques to find homogeneous groups of activities from a scheduling point of view. 
Furthermore, future research will be concerned with developing and testing additional levels of the 
rule-hierarchy. 
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