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Abstract 

This paper presents a bi-level optimization model of car ownership 
problem. An optimal car ownership is determined under conditions of 
road capacity constraints. The lower-level problem is a combined trip 
distribution/assignment (CDA) model, while the upper-level problem is 
to maximize the sum of the number of cars by traffic zone. A sensitivity 
analysis based algorithm is developed and illustrated with a numerical 
example. 
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INTRODUCTION 

Car ownership growth has been the dominant structural feature of the development of the transport 
sector for the past three decades. Household car ownership and utilization patterns play an 
important role in traffic management and transport planning. A car availability model exists as part 
of the Hong Kong transport model which takes as input income distribution, public transport 
accessibility, residential parking supply, and car ownership and usage costs. The discrepancy 
between estimated car ownership and actual car ownership is partly a result of not considering the 
effects of constraints of the road capacities. Therefore, the response of car owners and/or road users 
to these constraints should be investigated. There is a need to review the current approach for 
prediction of the car ownership in the light of both supply and demand sides. 

The traditional methods for estimating car ownership are mainly concerned from the view of the 
users' desire. Car ownership is usually modelled as a function of household characteristics, socio-
economic variables and/or public transport services (Ben-Akiva et al., 1981; Jansson, 1989; 
Pendyala et al., 1995). The joint models of car ownership and use (Train, 1986; Train and Lohrer, 
1982), and simultaneous equations systems of car ownership, mechanized trip generation and modal 
split (Kitamura, 1987, 1988, 1989) are developed and applied to simulate future car ownership and 
mode use. However, the effect of road traffic condition (e.g. the constraint of road capacity) is not to 
be considered for the forecast of car ownership. This would lead to the problem of traffic congestion 
as the network constraints would affect the car usage and in turn the desire of car ownership. 

In this paper, an optimal car ownership under conditions of road capacity constraints is estimated by 
a bi-level optimization model (Suh et al. 1990; Yang and Lam 1996). In other words, the reserve 
capacity for accommodation of the additional number of cars in the traffic zones can be determined 
by the model. The model is formulated as a bi-level programming problem including car ownership 
estimation, trip distribution and traffic assignment. The lower-level problem is an combined 
equilibrium trip distribution/assignment (CDA) model (Evans, 1976; Lam and Huang, 1992), while 
the upper-level problem is to maximize the sum of the number of cars by traffic zone. 

The CDA model is adopted to incorporate a destination attractiveness measure reflecting the activity 
opportunities available there, and determine the destination and route choices of travellers 
simultaneously for any given number of trips originating from each origin by solving an equivalent 
convex programming problem. In the proposed model, the number of trips generating from the 
origin zone is expressed as a function of the number of cars owned by residents in that zone. The 
optimal car ownership is estimated by considering the route and destination choice behaviour of 
travellers and satisfying road capacity constraints. A heuristic sensitivity analysis based algorithm is 
described in the paper. A numerical example is presented to illustrate the bi-level model and the 
sensitivity analysis method. 

NOTATION 

Sets 
A: 	the set of links in the road network 
W: 	the set of Origin-Destination (O-D) pairs 
R: 	the set of paths in the road network 
R,,.: 	the set of paths between O-D pair w e W 
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1: 	the set of origin nodes (trip-producing zones) 
J: 	the set of destination nodes (trip-attracting zones) 

Vectors/ Matrices 
v: 	a vector of link flows (lower-level decision variables) 
f: 	a vector of path flows 
c(v): 	a vector of link travel time functions 
c+(f): 	a vector of path travel time functions 
T: 	a vector of O-D demand by car 
O:. 	a vector of trip productions 
D: 	a vector of trip attractions 
u: 	a vector of the number of cars (upper-level decision variables) 
A: 	O-D/path incidence matrix where entries Sw,. are 1 if path r E R,,,, and 0 otherwise 
A: 	link/path incidence matrix where entries Sa„ are 1 if path r E R, and 0 otherwise 

Constants 
Sa: 	capacity (pcu/hr) of link a E A 
Co: 	free-flow travel time (hrs) of link a E A 
r;: 	trip generation rate of each car (car trips/hr/pcu) in node i 
a: 	a dispersion parameter for a gravity-type trip distribution model 
iy : 	lower limit of the number of cars in node i 

: 	upper limit of the number of cars in node i 

Variables 
va: 	flow (pcu/hr) on link a E A 
f,: 	flow (pcu/hr) on path r E R 
c,(v,): 	travel time (hrs) on link a E A 

travel demand between O-D pair (i, j) 
O,: 	trip production by car (car trips/hr) at origin node i 
DJ : 	trip attraction by car (car trips/hr) at destination node j 
u;: 	the number of cars in node i 

MODEL FORMULATION 

The problem to maximize the sum of car ownership by traffic zone under the condition of road 
capacity constraints, can be formulated as the following bi-level optimization model: 

itlavimize Z u; 	 (1) 
u 	, 

subject to 
V Q (U) <_Sa , aEA 	 (2) 

E O; (u; ) = z DI 	 (3) 
!E/ 	J EJ 
Zli < 2li < Z[i , 1 E 1 	 (4) 

where the equilibrium flow va(u), a E A is obtained by solving the following network equilibrium 
trip distribution and assignment (CDA) problem: 
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Minimizejoy' ca(x)cLi+ 1 Zt1j (111t1j —1) 
v 	a 	 a 1 

subject to 

	

~.fi• = t t E i,/ E 	 (6) 
7'ER„, 

	

= O1(111), i E I 	 (7) 
JEJ 

Etÿ=Dj,jE ✓ 	 (8) 
IEf 

Va = 	 f.cSa,., Q E A 	 (9) 
rER 

(10) 
t~?O,iE I,jEJ 	 (11) 

The maximum number of cars owned by residents in each zone is referred as the zonal car ownership 
growth potential. i.e. the upper bound of zonal car ownership can be accommodated subject to the 
traffic flow without exceeding the capacity of any link. 

The lower-level problem (5)-(11) is a standard combined trip distribution and assignment problem 
that can be solved by a convex-combination method for given car ownership u. The traffic flow va 
so obtained represents the equilibrium flow on link a E A when the number of cars in the origin zone 
i is u,. These results are then fed into the upper-level problem (1)-(4) to solve for the maximum total 
car ownership that constrained by the link capacities and met the total travel demands in the road 
network. In general, the number of cars in each zone should be bounded by the lower and upper 
limits. The lower bound for car ownership is set to retain certain mobility in that zone. The upper 
bound for car ownership is due to the land use of that zone. 

A new set of car ownership u, will be obtained from solving the upper-level problem. This set of car 
ownership will then be applied to the constraint (7) of the lower-level problem to provide the new 
values of trip production, while the trip attraction is assumed to be constant. The function of trip 
productions is simply defined as the multiplication of trip generation rate per car and the number of 
cars in each zone; i.e. O,(u1 ) = i1u, . This process will be repeated until a desirable convergence is 
achieved. 

SENSITIVITY ANALYSIS 

Firstly, a general situation that perturbation parameters exist in the link travel time function, O-D 
demands, trip productions and trip attractions is considered. For convenience of exposition, the 
equations are used with vector and matrix notation. The perturbed problem can be written as 

Minimize EJo°ca (x,$)cts+
a a 	 7 

>t j(s)(In tu (s)-1) 
.1 

(12)  

subject to 
Af =T (13)  

(I),T = O(E) (14)  
OJT = D(s) (15)  

v = Af (16)  
f? 0 (17)  

to(E) >_ 0 (18)  

(5) 
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where E is a vector of perturbation parameters, 1, and E13, can be defined as follows for a one-way 
road network, while m is the number of origin nodes and n is the number of destination nodes. 

1•••1 	0 	••• 
n 

0...0 	1...1 	0 	.•• 	••• 	0 
n 

= 0 	.. 	••• 0 	
11 	

0 	••• 0 (19)  
n 

••• ••• 	0 	 0...0 

0 	••• 0 	1•••1 
n 	- ,n X»7,7 

10...0 10...0 	 10...0 

010•••0 O10 ••• 0 	 0 1 0 ••• 0 
17 

,'. 	
n 

(I) 
0•••010•••0 0...010...0 	••• 	••• 	0•••010•••0 (20)  

17 11 	 17 

0•••O1 0 ••• 01 0•••O 1 

and 

il ,7 	 ,i llXnl,l 

Oi(E) D, (E) 

o= Of  (c) D= D;  (E) (21)  

On7 (E) D,7 (a) 

It is assumed that ca(v,,,E), ty(c), O;(c) and NE) are once continuously differentiable in E. The 
solution of the perturbed problem for E{  = 0 is assumed to be v*(0) and f`(0) and that ca(v,„E) is 
strongly monotone in v„ so that the solution is unique. 

It is noted that the direct application of the standard sensitivity analysis (Fiacco, 1976) to the 
perturbed combined trip distribution and traffic assignment problem of eqns (12)-(18) is not feasible. 
It is because the path flow solution does not satisfy the uniqueness condition even if the link flow 
solution is unique. In order to overcome the non-uniqueness difficulty, the restricted network 
equilibrium approach proposed by Tobin and Friesz (1988) is adopted to derive the derivative 
expressions. 

This approach is to select a nondegenerate extreme point in the feasible region of equilibrium path 
flows. An extreme point can be obtained easily if the convex combination method (Frank-Wolfe 
method) suggested by LeBlanc et al. (1975) is used to solve the equilibrium assignment problem. 
The Frank-Wolfe algorithm generates a unique set of minimum time paths by O-D pairs at each 
iteration. If the paths generated are saved from iteration to iteration, upon termination the Frank-
Wolfe algorithm provides an equilibrium path flow pattern and a link/path incidence matrix for the 
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paths used. An extreme point in the feasible region can then be identified from this set of 
equilibrium path flows (Yang and Yagar, 1994; Yang et al., 1994). 

Let f` > 0 be a nondegenerate extreme point in the region of equilibrium path flows. It is easily 
observed that the necessary conditions for the perturbed equilibrium assignment problem of eqns 
(12)-(18) at e = 0 lead to a solution for the following system equations: 

c+(f*,O) + 1 AT ln(Af') — (Q);A)TX — (<13jA)Ty - = 0 (22)  

rrTf' = 0 (23)  
cD,Ar — on= 0 (24)  
(DiAf' — D(0) = 0 (25)  

TC >_ 0, f} >_ 0 (26)  

where X, y and 7T are the Lagrange multipliers of the eqns (14), (15) and (17) respectively. 

It can be shown that under the assumption of strictly positive link flows and strictly complementary 
slackness, eqns (23) and (26) can be eliminated without changing the solution near e = O. Therefore, 
only the nondegenerate extreme points of the positive path flow solutions are considered. The 
system of eqns (22)-(26) can then be reduced to 

c+(f°',O) + 1 A°T ln(A°t°') — (01);A°)Ta, — (0jA°)Ty = 0 	(27) 
a 

(1);A° f°' — 0(0) = 0 	 (28) 
cl);A°f°' — D(0) = 0 	 (29) 

where ° represents the corresponding reduced vectors and matrices. 

Let 	c+(f ~,O) + 1 A°T In(A°f ') = c'(f°',0) , 
a 	

11 	[01
h h = [Al , s(s) [D

(
E)] , NI 

L
~Î n0 

J 
. 

Then the system of eqns (27)-(29) can be written as 

c'(f ,O) — MTh = 0 
— s(0) = 0 

(30)  

(31)  

(32)  
(33)  

The Jacobian matrix of the system of eqns (32) and (33) with respect to (f°, X, y) and evaluated at = 
O is 

Suppose that 

— I 
f ~r  

~Jf   

Dfc 

I _ 
~ 

(f 

0* 

O) 	— MT J 

Bll 	B121 

B21 	B22 

0 
(34)  

(35)  
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The following can be obtained 

B11 = Ofc'(f°*,0)-1[E MT[MOrc'(f *,0)-1MT]-1MOr c'(f *,0)-1] 	 (36) 
B12  = 0rc'(f ",0)•1MT[MOrc'(d°*,0)-'MT]-1 	 (37) 
B21 = — [MOrc'(f #,0)-1MT]-1MOrc'(f #,0)-1 	 (38) 
B22 = [MOrc'(f ',0)-1MT]-1 	 (39) 

where E is an identity matrix of appropriate dimension, and 

Vr c'(f°*,0) = Vr c+(Ia *,0) + I n°T(AOtO  )_1n°  

= 40r0. 
c(vk 0) 40 +  I nor (n0f0.)_1n0 

a 
(40) 

The Jacobian matrix of the system of eqns (32) and (33) with respect to E and evaluated at E = 0 is 

Je  = 
DEC(f

°« 
0) 	 (41) 

—DEs(0) 

It can be shown that the Jacobian matrix J f o r is non-singular and the partial derivatives of 

[f°*,X*,y*] with respect to E are given by 

[B11 B12 

B21 B22] 

— Osc'(f °*,0) 
oes(0) - 

(42) 

Therefore, the derivatives of path flows and Lagrange multipliers with respect to E at E = 0 are 

VE  f = —Bl  IDe C (f°*,0) + B12 DE s(0) 
and 

DE h = —B210E e(f )*,0) + B22 DE s(0) 

Since 
DEv = 4°DEf° 

the derivatives of link flows with respect to at E = 0 are obtained as 

DE v=-4°B1 I V, c'(f°  ,0)+4°B12 V, s(0) 

where B11, B12, B21, B22 are given in eqns (36)-(39). 

Eqns (46) and (44) are the general expressions of the derivatives of the decision variables (link 
flows) and constraint multipliers with respect to a variety of perturbation parameters in the network 
equilibrium problem. 

The explicit expressions for link flows with respect to the number of cars by zone can be derived in 
the following. Since the link travel time functions and entropy term are fixed in the problem, 

V, c'(f°*,0) = 0 	 (47) 

From eqn (47), eqn (46) can be simplified into 

(43)  

(44)  

(45)  

(46)  
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Vol = A°B120es(0) 	 (48) 

Let e = 6u, which represents a small variation in the number of cars, then the derivatives of link 
flows with respect to the number of cars by zone can be obtained. 

From eqn (48), 

0„v = DEv = A
r
°B120es(

1
0) 

= AoB12 l ~eD~~~
J 

from eqn (31) 
E 

= A°BI2LVUO I DU D 

= A°Of c'(f°*,0) 1M B22[ 	, from eqns (37) and (39) 
u 

-1 
=AorAoTO`c(v* 0)A° + 

a A
oT

(A°f°*) IA°J MTB22 DUD  , from eqn (40) 	(49) LL 	 u 

where B22 are given by eqn (39). 

In our problem, O; (u,) = r;u; and D1 is a constant for i a I,j E J. Therefore, 

0 r2 0 ••• 0 
and DU D = 0,,,<„, . 	 (50) 

0 ... ... 0 rs ntxnt 

SOLUTION ALGORITHM 

The derivatives of link flows with respect to the number of cars by zone are obtained from the theory 
of sensitivity analysis for a given solution of the network equilibrium problem. This derivative 
information is essential in the development of the solution algorithm for the proposed bi-level car 
ownership problem. It is because the capacity constraints (2) in the upper-level problem involve the 
nonlinear and implicit functions of control variable u. Therefore, local linear approximations of 
capacity constraints based on the derivatives of v(u) with respect to u is used to solve the bi-level 
problem. The resulting linear programming problem can then be solved using the well-known 
simplex method. 

The linear approximation of capacity constraints (2) can be derived as follows: 

VQ (U) ~ VQ (u*)+DU vp (u*)(u; —u; *), a E A 	 (51) 

where 0„v„ is given by eqn (49) and is the derivative of link flow v„, a E A with respect to the 
number of cars by zone u;, i E I. u* is the initial solution and v„(u*) is the corresponding 
equilibrium link flow pattern. From eqn (51), the capacity constraints (2) thus become 

DUO = 
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Du a(u*)ui < Sa —va (u*)+Duva(u*)ttt*, a E A 	 (52) 

which is a set of simple linear constraints. 

The mechanism of the solution algorithm is an iterative process between the upper-level and lower-
level problems. The proposed sensitivity analysis based (SAB) algorithm can be described as 
follows: 

Step O. Determine an initial car ownership values u(k). Set k= O. 
Step I. 

	

	Solve the lower-level combined trip distribution and assignment problem (5)- 
(11) for given u(k) and hence get v(k). 

Step 2. 	Calculate the derivatives V v(k) using sensitivity analysis method. 
Step 3. Formulate local linear approximations of the upper-level capacity constraint (2) 

using the derivative information, and solve the resulting linear programming 
problem to obtain an auxiliary solution y. 

Step 4. Compute a new number of cars u(k+t) by the method of successive average 
(MSA). 

u (k+1) = u(k) +  (Y u(k)) 	 (53) 
k+l 

Step 5. If 	— t ,(k) I < co for all I E I or k = MK then stop, where w is a 
predetermined error tolerance and MK is the maximum number of iterations. 
Otherwise let k := k+1 and return to Step 1. 

It should be noted that the number of cars resulted in the MSA may not be an integer number, but 
the passenger car units (pcu) are used in this paper for the unit of car ownership (including 
motorcycles, small vans and light goods vehicles). 

NUMERICAL EXAMPLE 

A numerical example is presented to illustrate how to use the proposed method to obtain the optimal 
number of cars under conditions of road capacity constraints. The example road network shown in 
Figure 1, consists of 7 links, 6 nodes and 2 O-D pairs (of which 1 and 2 are origin nodes and 5 and 6 
are destination nodes). The BPR (Bureau of Public Roads, 1964) link travel time function is used 
with associated input data given in Table 1. 

ca (va )=Ca{1.0 +0.15(~a ) t̀ } 
Sa 

(54) 

The trip generation rate in origin node I is assumed to be 2 car trips/hr/pcu and in origin node 2 is 3 
car trips/hr/pcu. The trip attractions are given as D = [120, 90], which is the total number of parking 
spaces in each destination node. The lower and upper bounds of car ownership are assumed to be 
[10, 100] in origin node 1 and [10, 80] in origin node 2. The lower bound is set to retain at least 10 
pcu mobility on private vehicles for travelling and goods transportation, rather than only depends on 
public transport. The upper bound is set for considering the amount of vacant land that is suitable 
and available for residential use. The value of dispersion parameter a is assumed to be 0.1 for the 
gravity-type trip distribution model in this example. 
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Figure 1 - Example Road Network 

Table 1 - Link Travel Time Data for the Network 

Link Number 
a 

Free-flow Travel Time 
C (minutes) 

Capacity 
S (pcu/hr) 

1 4 60 
2 10 80 
3 4 70 
4 10 80 
5 5 110 
6 4 70 
7 4 60 

The initial number of cars is set to be ut°)  = [30, 50] and the resultant link flows are ve0)  = [25.71, 
34.29, 85.71, 64.29, 111.43, 85.71, 25.71]. It can be seen that the traffic flows on links 3, 5 and 6 
are greater than their road capacities, while the remaining link flows are satisfied the road capacity 
constraints. Therefore, it is a potential to accommodate future growth on car ownership and in turn 
an increase in traffic flows. However, the number of cars at origin zone(s) should be suppressed to a 
certain level due to the violation of the road capacity constraints (Links 3, 5 and 6). Hence, the 
proposed model can be applied to obtain the balance on both sides. 

The numerical results of the proposed model with different error tolerances are summarized in Table 
2. The convergence is achieved in 230 iterations at the error tolerance co = 1.0x10-4. Figure 2 shows 
the changes of optimal car ownership versus the number of iterations. The optimal number of cars is 
found in each origin node. The maximum number of cars in the study area is 93.33 pcu which is 
greater than the initial figure 80 pcu. The number of cars owned by residents in zone 1 is increased 
from 30 pcu to 69.98 pcu, while that in zone 2 is reduced from 50 pcu to 23.35 pcu. Hence, the 
traffic congestion made by the initial case was due to the exceeding number of cars owned by 
residents in zone 2. The corresponding link flows and O-D demand matrix are given in Tables 3 and 
4. As shown in Table 3, links 1, 2 and 7 are identified to become saturated when car ownership 
equals to the estimated maximum value in each of the two origin zones. Thus capacity improvement 
is required in these links if more cars are to be owned by residents in the origin traffic zones. 
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95 

Table 2 - Numerical Results obtained by the SAS Algorithm 

Error Tolerance o Number of Iterations Final Solution ul Final Solution uz 
1.0x10-1  8 69.40 23.73 
1.0x10-2  23 69.78 23.48 

1.0x10-3  72 69.93 23.38 

1.0x10-4  230 69.98 23.35 

0 	5  
1 	1 	1 	I 

10 	15 	20 
	

25 	30 

Number of Iterations 

80 

Figure 2 - Convergence of Optimal Car Ownership at the Error Tolerance o = 1.0x10-4  

Table 3 - The Corresponding Equilibrium Link Flow Pattern 

Link Number 
a 

Equilibrium Link Flow 
v (pcu/hr) 

Flow/Capacity Ratio 
v /Sa 

1 59.98 1.00 
2 79.97 1.00 
3 40.03 0.57 
4 30.02 0.38 
5 100.01 0.91 
6 40.03 0.57 
7 59.98 1.00 

Table 4 - Estimated Origin-Destination (O-D) Matrix 

Destination nodes 
5 	 6 O; 

1 79.97 	 59.98 139.95 
2 40.03 	 30.02 70.05 
Di  120.00 	 90.00 210.00 

Origin 
Nodes 
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The predicted maximum number of cars indicates to what extent zonal car ownership growth could 
be accommodated or suppressed by the existing transportation facilities. When compared with the 
existing number of cars, the additional amount is referred as the reserve capacity for accommodation 
of the number of cars in a traffic zone. In the above example, positive car ownership growth 
potential of 69.98 peu exists in zone 1; while negative potential of 23.35 pcu occurs in zone 2. The 
reserve capacity of car ownership at traffic zone 1 is 39.98 pcu, while 26.65 pcu should be reduced 
in traffic zone 2. In terms of percentage, 133.27% of existing cars (in peu) can be accommodated by 
the reserve capacity in zone 1. However, 53.30% of the existing amount (in pcu) should be 
suppressed in zone 2. Totally 13.33 peu can gain in the two origin zones. Figure 3 shows the 
existing number of cars and the maximum number of cars in the two origin zones estimated by the 
model. The predicted maximum number of cars by zones would provide important information for 
planning of future transport infrastructure development and policies. 

80 
70 

v 60 a 
2 50 
m 

w 40 
o 
Q 30 
~ 20 
Z 

10 
0 

                 

           

D Existing Number of Cars 
❑ Maximum Number of Cars 

  

     

69,98 

       

                

                 

                 

           

50 

     

                

                 

                 

                 

   

30 

             

                

            

23,35 

   

                 

                 

                 

1 
	 2 

Zone Number 

Figure 3 - Existing and Maximum Number of Cars in Origin Zones 

CONCLUSIONS 

This paper proposes a bi-level optimization model to maximize the number of cars in each of the 
traffic zones, subject to the network capacity constraints. It can examine whether existing transport 
network is capable of accommodating future car ownership growth and hence establishing efficient 
policies for controlling car ownership and improving road networks. The proposed model takes into 
account the route and destination choices of travellers, and the effects of car ownership by traffic 
zone on the trip generation. A sensitivity analysis based algorithm has also been developed for 
determining the maximum number of cars in the study area. The numerical example is presented to 
illustrate the application of the proposed model. Further work will continue to formulate the trip 
production and attraction as a function of car ownership by traffic zone and average journey time in 
the road network. Parking space and charges, and socio-economic factors that affect car ownership 
will also be incorporated in the model. 
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