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Abstract 

This paper shows the merits of the so-called max-plus algebra as a 
mathematical modelling framework for Discrete Event Dynamic 
Systems (DEDS) in the transportation field. An overview is given of the 
modelling and analysis concepts of the max-plus algebra approach in the 
setting of a railway system. The analysis of the dynamic behaviour of 
transportation systems include aspects such as periodicity, stability and 
robustness. Also essential dynamic characteristics can be quantified 
such as minimum cycle time and critical circuits. As an example of the 
potential of this approach an analysis is given of the dynamic properties 
of the Netherlands intercity railway system. 
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INTRODUCTION 

Many transportation phenomena can be described as so-called discrete event dynamic systems (DEDS). A 
DEDS is a dynamic asynchronous system where the state transitions are initiated by events that occur at 
discrete instants of time. An event corresponds to the start or the end of an activity. Examples are 
scheduled transportation services on networks (Braker, 1993), or the timing of a system of coordinated 
traffic signals along an urban arterial or in an urban road network (Egmond et al., 1999). A common 
property of such examples is that the start of an activity (train departure, start of green time phase at the 
entry of a crossing) depends on the termination of several other activities (train arrivals, platoon arrivals at 
a crossing). Such systems cannot conveniently be described by differential or difference equations, and 
naturally exhibit a periodic behaviour. 

Typical questions to be answered in DEDS are whether or not the system is stable, the choice of 
optimal periods (scheduling), the determination of minimum (buffer) times between events, the 
determination of critical links or critical circuits in a network, and the quantification of sensitivity 
to perturbations. 

Many frameworks exist to study DEDS. Examples are queueing theory, Petri nets, computer 
simulation, and max-plus algebra. Up to now the most widely used technique to analyse DEDS is 
computer simulation. An important drawback of computer simulation is that it often does not give a 
real understanding of the impacts of parameter changes on important system properties such as 
robustness, stability and optimality of system performance. Analytical techniques can provide a 
much better insight in such properties. Therefore, mathematical models are to be preferred as tools 
for modelling, analysis and control of DEDS. Cassandras et al. (1995) give an introduction to 
DEDS including the max-plus algebra approach. 

The max-plus algebra is comparable to linear algebra. In max-plus algebra the addition (+) and 
multiplication ( X ) operators from linear algebra are replaced by the maximization (max) and 
addition (+) operators respectively. Using these operators a linear description (in the max-plus 
algebra) of a nonlinear system (in the conventional algebra) is achieved and consequently a lot of 
concepts and properties of the classical linear system theory (eigenvectors, eigenvalues, stability, 
etc.) can fruitfully be exploited to study particular phenomena of DEDS. Baccelli et al. (1992) is 
the standard reference to the max-plus algebra theory. 

This paper shows the merits of max-plus algebra as a mathematical modelling framework for 
DEDS in the transportation field. An overview is given of the modelling and analysis concepts of 
the max-plus algebra approach in the setting of a railway system, see also Goverde (1996). It is 
shown how essential dynamic characteristics of transportation systems can be found such as 
minimum cycle times, critical circuits, and stability (these concepts are defined later). As an 
example of the potential of this approach an analysis is given of the dynamic properties of the 
Netherlands intercity railway system due to Braker (1993). It is shown that the system is stable and 
the degree of stability is quantified. Moreover, critical lines are indicated explicitly which are 
crucial in the propagation of delays and the design of faster timetables. 
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MODELLING OF A RAILWAY SYSTEM 

Example Railway System without Timetable 

Consider a metropolitan area with two railway stations, SI and S2, which are interconnected by a 
railway system as indicated in Figure 1. This railway system consists of inner circle lines and two 
outer circle lines. The trains on the outer circle lines deliver and pick up passengers in the suburbs. 
The stations in the suburbs have not been drawn since they do not play any role in the model to be 
formulated. 

Assume there are four trains (two at each station) which leave the stations at time 0, one along each 
track. They reach the other (or the saine) station after a certain time, the running time, which is 
indicated in Figure 1. A holding policy is applied, i.e., the arriving trains at a station have to wait 
for each other to allow passengers to change trains. The transfer time has been incorporated in the 
ruining time. After the transfer the trains leave immediately, i.e., there is no timetable. If this 
process of departing and arriving trains is continued, the departure time x,(k+ 1) for the k+l-st 
departure at station Si satisfies 

x, (k + 1) = maa(x, (k) + 2, x2 (k) + 5), 
x2 (k c+1) = mal(x, (k) + 3, x2 (k) + 3), 

(1) 

for k = 0,1,.... The counter k is the period indicator, i.e., from all stations the k-th train of any line 
leaves in period k. 

Assume that xi (0) = 0, x2 (0) = 0 are the initial conditions (initial departure times). Then the 
subsequent departure times from the two stations turn out to be 

	

I(P 	(
5~ 

x(0) = 	—> x(1) _ 	—> x(2) _ 

	

0( 	3~ 

i8\ 

\8i 

~13~ 	~16~ —>x(3) _ \ l l~ 
—>x(4) _ 

16~ 

Note that the departure times follow the same pattern after each 2 periods, that is, the 
interdeparture times from the stations are alternately 3 and 5 time units. The average interdeparture 
time is 4 time units. From a timetable point of view (timetables must be as regular as possible), 
more convenient initial departures are x, (0) = 1, x2 (0) = 0, since then the evolution becomes 

(1N 	(5■ 	(9\ 	/13~ 	~17~ 
x(0) = —> x(1) = —>x(2) = —> x(3) = -->x(4) = 

0 	4 	8 	,12) 	~16 

where the interdeparture time is now exactly 4 at each station and the departure times are thus very 

Figure 1 - Example railway network 
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regular (they follow the same pattern after each period). By trial and error it turns out that, 
whatever the initial condition, after possibly a short transient period of time, a periodic behaviour 
of either 1 or 2 periods is obtained with (average) interdeparture times 4. A solution with an 
(average) departure time smaller than 4 is not possible, since the train circulation time of the inner 
circle is 3+5=8 time units. There are two trains on the inner circle and therefore the (average) 
interdeparture time is limited from below by 8/2=4 time units. 

An alternative way of writing (1) is 

x(k +1) = A® x(k) , 	 (2) 

where the state vector x consists of the two components xi and x2, and x(k) thus consists of the k-th 
departure times from all stations i, and where the running times are assembled in a matrix A given 
as 

A = 
2 5` 

0 3, (3)  

The purpose of this way of writing is that now (1) looks like a linear difference equation. The only 
difference of (I) with a conventional linear difference equation is that the conventional addition has 
been replaced by maximization and the conventional multiplication has been replaced by addition. 

The vector x(0) _ (1 0)' can be interpreted as an eigenvector of A, since x; (1) = x1 (0) + 4, (i=1,2), 
which in the ` 0 ' notation would read x(1) = ) O x(0) = A O x(0) , where , can be interpreted 
as an eigenvalue, with value 4, 

	

/4 ~1` 	1` 
x(1)= _ + = AO =A Ox(0). 

	

,4, ~4 ,Di 	Oi 

This is explained in more detail in the analysis section. 

Formalization 

In order to facilitate the quantitative analysis of arbitrary transport service networks this section 
generalizes and formalizes the above example. The basic foam of the systems under consideration is 

x (k +1) = max(a,, + x, (k), arz +xz (k) 	 a;„ +x„ (k)) 
= Jmax (a~ +x~ (k)) i = 1,.. ,n, (4)  

where au corresponds to the running time from node j to i. Addition + will be written as OO and 
max will be written as O+ . This change of notation visualizes the resemblance with conventional 
linear difference systems: 

x 	= ~ ( (k +1) 

	

	i = 1, ...,n, 
,i=i 
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which in vector notation will be written as (2), where now x E 1R" and A is an n x n matrix of 
miming times between transfer stations. One speaks of a linear (difference) equation in the max-
plus algebra, this in clear analogy with linear difference equations in the conventional, `plus-times' 
algebra. If it is clear from the context that the underlying algebra is the max-plus algebra then (2) is 
even written as x(k + 1) = Ax(k) . 

If the initial condition for (2) is x(0) = xo then x(1) = A ® xo , and 

x(2)=AO x(1)=A0(A0xo )= (AO A)Oxo =A2 O x0 . 

Here AO A is simply written as A2. In general 

x(k)=(A0AO••.0 AK) xo =Ak Ox a . 
k times 

The matrices A 2 , A3 , ... can be calculated directly. As an example, consider the A-matrix of (3). 
Then 

(mâx(2 +2,5+3) max(2+5,5+3) (8 8~ 

max(3+2,3+3) max(3 + 5,3 + 3)) ,6 8) 

In general 

(A 2 ) ; = O au 0 a~ = max (a,.~ + a~. ). ' 	~ 	i=~.....,, 	' (5) 

In terms of the railway example, the quantity (A2)0 can be interpreted as the maximum of all 
running times from station Si via one station S, to station Si. One speaks of paths of length two 
between the stations Si and Si. In graph-theory terminology, the stations are called nodes and the 
tracks between stations are called arcs. More generally, (A4)0 denotes the maximum naming time 
of all paths of length k, starting at node j and ending at node i. 

In many networks such as a railway net there will not be an arc from each node to each other node. 
If there is no arc from node Si to node Si then the departure times from node Si are not directly 
influenced by those from node Si. In such a situation it is useful to consider the element au to be 
equal to —co . In the maximization of (4) a term —Co +x~ (k) does not influence ,r, (k+l) as long as 
, (k) is finite. Minus infinity will occur frequently in the sequel and it will be indicated as 
s:=--CO. 

In practice the situation may occur that the departure time of a train from a certain station depends 
on a train from another station of more than one period before. Therefore, a generalization of (2) 
seems 

x(k +1) = A, x(k ) O+ ••• O+ A1 ,, x(k —1), 	 ( 6) 

A 2 = 
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which is a so-called 1+1-order system (note that the original system (2) equals (6) with 1=0, the 
corresponding system is a 1st order system). However, (6) can be rewritten as a set of first order 
difference equations by augmenting the state space. This is a standard trick in system theory. 

Railway System with Timetable 

hi practice a railway system operates on the basis of a timetable. A timetable contains all scheduled 
train departure times from all stations. This implies that a train may not leave a station before its 
scheduled departure time, even if all feeder trains have arrived. A generalization of the dynamic 
equation (2) is easily obtained to incorporate a timetable. 

Let d(k) be the vector of the scheduled k-th departure times of all n train services. Then (4) is 
extended to 

x (k+1) = maya+x,(k),au + x2 (k),...,a,,+x„(k),d1  (k+1)) 	i=1,...,n . (7) 

The k+l -th departure time of train i is thus the scheduled departure time unless a feeder train is 
delayed, in which case the train waits for the delayed train. In vector notation (7) is written as 

x(k +1) = Ax(k) O+ d (k +1) , 	 (8) 

which is a generalization of (2). 

In the case of a cyclic timetable with cycle time T, i.e., all trains are scheduled modulo T, the 
scheduled departure times are given by 

d(k)=d (0)OTk , 

where T` corresponds to kT in the conventional algebra. Of course, the timetable has to be realistic, 
i.e., if there are no delays then the trains should be able to operate according this timetable. A 
timetable is called realistic if for all k ? 0 

A0d(k)<_d(k +1). 

The corresponding system is called a realistic system. 

GRAPH THEORY 

This section recapitulates the required graph theory concepts that facilitate (insight into) the 
algebraic definitions and theorems of the next section. 

It is here assumed that A is a square matrix of which the entries may have the `value' s . 

Definition 1 [Precedence graph] The precedence graph G(A) of an n x n matrix A is a weighted 
digraph with n nodes and an arc (j,i) if and only if au  # s . The weight corresponding to an arc 

(j,i) is ay. 
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As an example, Figure 1 is the associated precedence graph of the A matrix of (3) corresponding to 
the (first order) max-plus algebra model (2). 

Clearly, any weighted digraph G = (V,E), where V is the set of nodes and E the set of arcs, is the 
precedence graph of an appropriately defined square matrix. The weight au of the arc from node j to 
node i is defined as the ij-th entry of a matrix A. If an arc does not exist then the corresponding 
entry of A becomes e . The matrix A thus defined has G as its precedence graph. 

The fact that au corresponds to an arc (l,i) (instead to an arc (i,j)) is motivated by the interpretation 
of the matrix entries as running times. If x(k) denotes the vector of departure times then the next 
departure times are given by x(k+1). From (4) it follows that the departure time x,(k+1) from node i 
depends on the departure time A:A) from any node j and the running time au from node j to node i. 
Viewed this way, both the interpretation of the system evolution and the direction of the arcs are 
natural. 

Let G = (I ;E) be a weighted digraph with n nodes. The weights form the corresponding n x n 

matrix A. As discussed before, the element (i,j) of Ak = A® • • ® A , considered in the max-plus 

algebra, denotes the maximum weight with respect to all paths of length k from node j to node i. If 

no such path exists then (Ak ) = e . The weight I p I, of a path p is the (conventional) addition of 

the weights of all arcs constituting the path, and the length I p I I of a path is the number of its arcs. 

Definition 2 The mean weight of a path is defined as the sum of the weights of the individual arcs 
of this path, divided by the length of this path. If the path is denoted by p then the mean weight 

equals plw p . If the path is a circuit then this ratio is called the mean weight of the circuit, 

or simply the cycle mean. 

As an example, assume that a circuit 4" is given as the sequence of nodes 

it 	i2 	7~_ -* it = i, then its cycle mean is 

4 \4  
I4-II 	1— 1 

Of interest is the maximum of these cycle means, where the maximum is taken over all circuits in 
the graph. This number will be called the maximum cycle mean. If the cycle mean of a circuit 
equals the maximum cycle mean then the circuit is called critical. The graph consisting of the 
critical circuit(s) is called the critical graph and denoted by G'. The following definition uses the 
notion strongly connected (di-) graph. A graph is called strongly connected if there exists a path 
from any node to any other node. The matrix corresponding to a strongly connected graph is called 
irreducible. 

Definition 3 [Cyclicity of a graph] The cyclicity of a strongly connected graph equals the greatest 
common divisor of the lengths of all its circuits. The cyclicity of an arbitrary graph equals the 
least common multiple of the cyclicities of all its maximal strongly connected subgraphs. 

The next section considers the correspondence of the cyclicity of a graph with the concept of 
cyclicity of a matrix. 
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ANALYSIS 

This section considers the powerful analysis concepts which are the main advantage of the max-
plus algebra approach. Important concepts are the periodicity or cyclicity of a scheduled transport 
service system, the minimum cycle time, the critical circuit, stability, and sensitivity to 
perturbations (delays). To improve the insight in the algebraic properties, the correspondence to 
their graph-theoretic counterparts is considered where possible. 

Periodicity 

A transportation system naturally has a periodic behaviour in the sense that a pattern of departure 
times of all train services repeats itself after a particular number of periods, the cyclicity. This 
periodicity or cyclicity is the basis of a cyclic timetable. 

Definition 4 [Cyclicity of a matrix] A matrix A is said to be cyclic if there exist scalars ivI, 2 and 

d such that Vm >_ old, Am.4 = Ad A"' The least such d is called the cyclicity of A. The quantity 2 
equals the maximum cycle mean ofA. 

The expression A'"'= 2.d A m in the definition above must be interpreted in the max-plus algebra 
sense. Hence 2.d in the max-plus. algebra means d2, in the conventional algebra and 2.d A m refers 
to the addition of 2.d to each element of A'", 

In terms of the railway example a cyclicity d implies that irrespective of the initial departure times 
xo a periodic behaviour of (at least) d periods is obtained with average interdeparture time A 
(possibly after a short transient period of time). If a matrix has cyclicity d then A is also called 
order-d periodic. 

The following theorem gives a method to find the cyclicity of a matrix by using the graph-theoretic 
counterpart (Baccelli et al., 1992). 

Theorem 1 Any irreducible matrix is cyclic. The cyclicity of the irreducible matrix A equals the 
cyclicity of G`(A), the critical graph corresponding to matrix A . 

Example Consider matrix A of (3). The corresponding precedence graph (see Figure 1) has three 
circuits, viz. from node 1 to node I with cycle mean 2/1=2; from node 1 via 2 to 1 with cycle mean 
(5+3)/2=8/2=4; from node 2 to 2 with cycle mean 3/1=3. (It is tacitly assumed here that node i 
corresponds to xi.) The maximum cycle mean hence equals 4, and the corresponding (unique) 
critical circuit is the inner circle. The critical graph consists of the unique critical circuit only. The 
cyclicity of the critical graph equals 2, since the critical circuit consists of 2 arcs. The quantities of 
Definition 4 are Az/ = 2, 2 = 4 and d = 2, 

A4 = (16 16~ 
=42 ®A 2 =80 

'8 8" 

\14 16j 	 6 8 

Note that a scalar multiplication of a matrix in the max-plus algebra equals the addition of the 
scalar to each matrix entry in the conventional algebra. It was already noted that for the initial 
departure times x,(0)=0, (i=1,2), an order-2 periodic pattern resulted with an average interdeparture 
time of 4 (the maximum cycle mean). 
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Minimum cycle time 

Let A be a matrix in the max-plus algebra. Consider the problem of finding an eigenvalue A and 
eigenvector v # e such that 

Av=Av. (9) 

This equation has to be interpreted in the max-plus algebra sense: the expression Ay means that 
one adds A to each component of y. If the eigenvector v corresponds to an initial state then this 
results in a solution with an order-1 periodic pattern and .1, is the interdeparture time. 

The following theorem gives the correspondence between the eigenvalue of a (square) matrix and 
the maximum cycle mean of its precedence graph (Baccelli et al., 1992). 

Theorem 2 Let A be a square matrix. If G(A) is strongly connected then there exists a unique 
eigenvalue and at least one eigenvector. The eigenvalue is equal to the maximum cycle mean of the 
graph,  

=  max  14-1`"  
4- 	1 4-1, 

where 4-  ranges over the set of circuits of G(A). 

The eigenvalue, or equivalently the maximum cycle mean, is the minimum cycle time for which a 
realistic timetable exists. From a graph-theoretic view the eigenvalue is the average interdeparture 
time of a train on the critical circuit. Viewed this way, the critical circuit is the `slowest' circuit in 
the network. The mean cycle time of this circuit determines the minimum cycle time for the entire 
system. 

Arh eigenvector y determined by (9) consists of the departure times of all trains such that the 
departure times in the next period, determined by Av, are as early as possible (irrespective of a 
timetable). The corresponding minimum interdeparture time is given by the eigenvalue, as follows 
from the right-hand side of (9). If the initial departure times are determined by the eigenvector, 
x(0)=v, then all subsequent departure times (in the absence of delays) are given as 

x(k) = 	, 

which is the most regular possible behaviour for the system. In practice however, it is not advisable 
to operate according a timetable with minimum cycle time. A timetable should be able to 
compensate for slight irregularities (delays) in rimming times. Therefore, margins and buffer times 
have to be incorporated in the timetable, which increases the timetable cycle time (Goverde, 
1998a). This is the subject of the stability section. 

There are efficient algorithms to compute the eigenvalue, eigenvector and the critical circuit. 
Braker and Olsder give a power algorithm (Braker and Olsder, 1993; Braker, 1993) for computing 
the eigenvalue and eigenvector. The computational complexity depends on the transient behaviour 
of the system. Karp gives a polynomial algorithm to compute the eigenvalue and critical circuit 
(Karp, 1978). Howard's algorithm is a fast algorithm for computing the eigenvalue and eigenvector 
that has an average linear computation time (Cochet-Terrasson et al., 1998). 
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Stability 

An important issue in transportation systems is the sensitivity to delays that occur during operation. 
The transportation system should be able to cope with a certain amount of irregularity (delays) 
without severe consequences. This leads to the subject of stability and robustness. 

A scheduled transport service system is stable if any initial delay disappears after a finite number 
of periods (subsequent departures). The following theorem gives an elegant method to test stability 
(Braker, 1993). 

Theorem 3 [Stability] The system with timetable (8) is stable if and only if 

.î <T , 

where T is the (timetable) cycle time and 2 is the eigenvalue (or maximum cycle mean). 

From Theorem 3 it follows that the cycle time T of the timetable must be larger than the eigenvalue 
to obtain a stable system, which corresponds to the interpretation of the eigenvalue as minimum 
cycle time. 

Stability of a scheduled transport service system only implies that ally delay will eventually 
disappear. However, it is also worthwhile to know how long this might take. In practice, scheduled 
transfer times between two connected trains at a transfer station include buffer times, i.e., a transfer 
time consists of a minimum transfer time in which transferring passengers are able to get to the 
connecting train (with high probability) and a transfer buffer time. The transfer buffer time is due 
to network constraints in the timetable design process, and/or deliberately incorporated to 
compensate for arrival delays and thereby increasing the transfer reliability. 

Using the max-plus algebra model, the propagation of any initial delays is easily computed. Define 
the initial state as the vector of which each component is the sum of the scheduled departure time 
and the initial delay. The evolution of the system can then be computed by the dynamic equation 
(8). As soon as all computed departure times equal the scheduled departure times the delays have 
disappeared. The corresponding period is called the settling time corresponding to the particular 
initial delay. Note that the effect of the delay to subsequent departure times of all trains is 
computed explicitly. It is here tacitly assumed that all trains wait for delayed feeder trains. An 
extension is that planned transfers may be cancelled when feeder trains are behind schedule. This 
control of connections can also be incorporated in the max-plus algebra model (Braker, 1993). This 
delay propagation model efficiently computes secondary waiting times in a network which can be 
used in the derivation of optimal train waiting times at transfer stations to secure connections 
(Goverde, 1998b). 

The following definition gives an analytical tool to test the sensitivity (or robustness) of the system 
with respect to the transfer times. 

Definition 5 [Stability margin] The stability margin A of a stable system (8) is the minimum 
amount of additional transfer time for which it is impossible to find a timetable, with the same 
cycle time T, under which the system is stable. 

A lower bound for A is given by T — 2 . The fact that 2 < T thus shows that the system is stable, 
but the value T —.i gives information on how stable. Clearly, the gap between the minimum cycle 
time 2 and the timetable cycle time T is a measure for the sensitivity of the system. Increasing the 
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transfer times at all nodes in the critical circuit by T — results in a circuit with maximum cycle 
mean that equals or is lower than T. The timetable is therefore still stable. 

However, the stability margin might be larger than this lower bound. If the 1st order system (8) has 
been obtained from the original description (6) by augmenting the state space, i.e., by introducing 
auxiliary nodes, a different situation occurs. The auxiliary variables can be viewed as dummy nodes 
which naturally have no transfer times. If the critical circuit contains dununy nodes then more 
transfer time can be added to the `real' nodes before the cycle mean of this circuit equals T. 
Moreover, another circuit may become critical by increasing the transfer times. This may occur 
when this other circuit has fewer dummy nodes. 

An upper bound for the stability margin is given by 

nt 
A_<< ~T —~.~ 	_ 

n! — /71 
(10) 

where nt is the number of nodes in the critical circuit and îîi is the number of auxiliary nodes in 
the critical circuit (Braker, 1993). Braker (1993) gives an algorithm to compute the exact value of 
the stability margin. 

THE NETHERLANDS INTERCITY RAILWAY EXAMPLE 

This section applies the introduced max-plus algebra notions to the analysis of the intercity train 
service network in the Netherlands. It also considers questions related to the timetable design 
corresponding to the underlying network. The intercity network is assumed to be a closed railway 
network. The results are due to Braker (1993) and correspond to the railway timetable of 
1989/1990. 

The Netherlands intercity network consists of 11 lines (routes along which trains run in both 
directions), see Figure 2. As an example, line 10 starts (respectively terminates) at Amsterdam and 
terminates (respectively starts) at Vlissingen. Trains arriving at both end points turn around and 
continue in opposite direction. Each line is thus a circuit. A fixed number of trains runs on each 
line. The train running times between stations are given and assumed to be deterministic. 
International connections are not considered: the model assumes that trains arriving at the border 
turn around and continue in opposite direction (which actually happens with some trains at some 
border stations). Hence the name `closed' network. The timetable has a cycle time of 30 min. 

Assume there is no timetable. In addition to the line structures and running times between stations 
also realistic connection constraints are taken into account to allow passengers to transfer. These 
connection constraints give for each station the set of trains that have to wait for each other to 
guarantee a transfer. In total, there are 53 trains that have scheduled transfers where different lines 
meet. As an example, the train of line 10 that has a scheduled departure time at Leiden at time 
instant 00 in the direction Den Haag has two connection constraints. It has to wait on the train from 
Amsterdam of line 10 with scheduled departure time 26 and running ning time 34 min, and on the train 
from Haarlem of line 41 with scheduled departure time 10 and running time 18 min. The transfer 
time is here incorporated in the running times. Note that the train at Leiden is in fact physically the 
saine train as the one arriving from Amsterdam. The connection is here a stop connection. Finally, 
also setup times at end points are taken into account. 
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Figure 2 - Dutch intercity network 

The resulting max-plus model has the form (6), where x is a 53-dimensional vector, corresponding 
to the 53 trains with connection constraints. After rewriting (6) as a 1st-order model (2), a model 
with state vector of dimension 79 results. The running time matrix A is not given here: it is made 
up of the various train running times as given in the published timetable, and standard transfer 
times as defined by the railway company. The model can now be used to analyse the propagation of 
delays on the intercity network and to compute the corresponding settling time. Moreover, the max-
plus model offers interesting analysis tools such as the eigenvalue, critical circuit and stability 
margin which is the major advantage of the max-plus modelling. 

The calculated critical circuit (which is not to be confused with a line of the network) tuns out to 
go from Venlo via Eindhoven, Utrecht and Amsterdam to Zandvoort and back. The circuit consists 
of 12 nodes of which 6 are auxiliary nodes, and the circulation time of the circuit is 325 minutes. 
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This circuit is the bottleneck for a faster timetable. Hence, if a faster or more robust timetable is 
desired trains on this circuit have to `speed up'. This can be accomplished by, for instance, adding 
extra trains to a line (or lines) which forms part of this critical circuit (i.e., the lines numbered 20 
and 50), by infrastructural investments to shorten relevant track section running times, or by 
redesigning the line structure. 

The weight of the critical circuit is 325 minutes, and the length is 12. The maximum cycle mean 
corresponding to the critical circuit, or equivalently the eigenvalue, is thus A = 325/12 = 27 112  . As 
the actual timetable cycle time is T= 30 minutes, by Theorem 3 follows that the railway system is 
stâble. The difference between the actual 30 min and the theoretical A is the flexibility in the 
system which causes propagation of possible delays to disappear in finite time. 

The lower bound for the stability margin A is given by T — A. = 30 — 27 112  = 2 1/2 . The upper 
bound can be calculated by (10). Here, the number of nodes in the critical circuit is nr = 12 and the 
number of auxiliary nodes is n1 = 6 . It follows that 

A (30- 27'12) 	i2  <_ 	 =56 12-6 

The actual stability margin turns out to be A = 5 23  . If this number is added to all transfer times, to 
he incorporated into the model by adjusting the A matrix, then the eigenvalue is A= 30 minutes. 
The corresponding system will then have maximum transfer times based on a timetable with a cycle 
time T= 30 min. The critical circuit, with cycle mean A= 30 , is now the circuit from Venlo via 
Eindhoven, Utrecht, Amsterdam, Haarlem, Den Haag HS, Breda and Eindhoven back to Venlo. 

For larger delays a strategy might be not to wait for delayed feeder trains. A train thus only stops so 
that passengers are able to alight and board, and if the train is already behind schedule it no longer 
waits for feeder trains but leaves immediately. For this controlled model a faster timetable exists 
with A= 26 211 . The critical circuit is now the circuit from Venlo via Eindhoven and Breda to Den 
Haag CS and back. 

CONCLUSIONS 

Transportation systems can be modelled rather naturally as a DEDS using the max-plus algebra. 
The nonlinear behaviour of the synchronization processes can be written as a linear system (in the 
max-plus algebra). A straight correspondence with graph-theoretic concepts with algebraic ones 
results in a clear visualization of the max-plus algebra model and insight into the model properties. 
Moreover, the parallels between max-plus algebra system theory and conventional linear system 
theory offer elegant analysis concepts, such as the eigenvalue and the eigenvector. 

A case study of the analysis of the Netherlands intercity railway system has illustrated the potential 
of the max-plus algebra approach to relevant and large-scale problems. Subiono (1997) has 
extended the results to the entire Dutch railway network including intercity (IC) trains, 
interregional (IR) trains and agglo-regional (AR) trains. 

The max-plus algebra model as considered in this paper does not take into account stochastic train 
running times and infrastructure limitations (minimum headways). Incorporating these concepts in 
the model to obtain a more realistic model is the subject of current research. However, a model is 
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always a simplification of reality, and although a more realistic model might be necessary for, for 
instance, a reliable simulation model, the considered model is sufficient for detecting bottlenecks 
and for stability analysis with respect to (intercity) train connections. 

This paper showed the applicability of the max-plus algebra modelling to railway service networks. 
Egmond et al. (1999) applies the max-plus algebra approach to the synchronization of traffic signals 
in an urban (road) network. Other potential application fields include air traffic planning, freight 
transport planning, and planning of unimodal and intennodal connections in multimodal systems. 
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