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Abstract 

In this paper, the Box-Jenkins approach is adopted to produce forecasting 
models for the Baltic Freight Index (BFI). Accurate short-term forecasts 
facilitates the development of a model for use as a tool for either 
speculation or aggressive hedging strategies in the futures market, the 
Baltic International Freight Futures Exchange (BIFFEX). Changes in the 
structure of the BFI enabled the re-appraisal of an earlier forecasting 
model, and an assessment of whether the fundamental characteristics of 
the BFI had changed. An AR(2) model was derived that performed well 
in the short term (two to ten days). 
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INTRODUCTION 

The Baltic Freight Index (BFI) was initiated on 11 June 1984 at a base value of 1000 index points. It 
was designed to represent the freight rates (prices) charged by shipowners for the chartering (hire) 
of their ships. As freight rates are related to the income accruing to the shipping industry, 
fluctuations in the financial health of that industry can (at least, to some extent) be assessed from 
movements in the BFI time-series. 

The value of the BFI at any given point in time is determined by the freight rates charged on eleven 
key trade-routes. Each morning, the panel members of the Baltic Exchange in London submit their 
assessment of freight rates on each of these trade-routes. Where available, these assessments are 
based on actual freight rates or, alternatively, where there are no actual fixtures (specific contracts of 
carriage known as charterparties), then they are based on informed estimates of what the freight 
rates might be. As a precautionary measure the highest and lowest assessments for each trade-route 
are excluded from the calculation and an average is taken of those that remain. These average freight 
rate values are then weighted in accordance with a prescribed system reflecting the relative 
importance of each trade route to the dry bulk shipping sector and then added together to form the 
BFI, which is published at one o'clock (London time) each working day. 

The trade-routes and their respective weightings are under constant review to ensure that the index 
remains representative. In addition to many comparatively minor alterations to the composition of 
the BFI that have been implemented in the past, on 3 November 1993 all trade-routes plied by ships 
in the size range 25-50,000 Deadweight Tonnes (Dwt) (i.e. all handysize routes) were eliminated 
from the index and the number of component routes in the BFI's composition reduced from thirteen 
to eleven. The new index then comprised a weighted average of seven panamax routes (50-75,000 
Dwt) and four capesize routes (over 75,000 Dwt), Cochran (1993). 

This change in the composition of the BFI was implemented mainly in response to pressure from 
traders on the Baltic International Freight Futures Exchange (BIFFEX) which not only relies on the 
BFI to underpin and define its standard traded commodity, but was also the original motivation for 
the initial development of the BFI. In practice, the vast majority of hedgers on this futures market 
were seeking to hedge positions on panamax and capesize routes. Throughout 1993, however, whilst 
the capesize and panamax market segments remained depressed, the relative strength of the 
handysize sector had inflated the BFI. As a result, futures market hedges against adverse freight rates 
in the panamax and capesize dry bulk sectors were not working adequately as there was only a very 
low correlation between prices in the physical and futures markets. The hope and expectation of 
implementing this amendment to the composition of the BFI is that a better service will be provided 
for traders that hedge on BIFFEX and that, in consequence, the ambition exists that this will attract a 
greater number of hedgers onto the market. This is of particular importance since a lack of liquidity 
during 1993 threatened the existence of BIFFEX (Moloney, 1993). 

OBJECTIVES 

Because of shipping's narrow profit margins, even the slightest fluctuation in freight rates can have 
major implications for profits. An ability to accurately predict the market has the obvious potential 
advantage of allowing shipowners to maximise profits and/or minimise losses incurred in the 
shipping market. Inherent difficulties in obtaining accurate long-term forecasts undermine the 
usefulness of predictive methods in the physical market. This is because investments in physical 
shipping market assets are so long-term that forecasts are only useful with extremely long-term time 
horizons. Accurate short-term forecasts, however, have the capability of being harnessed in the 
futures market. Such short-term predictions can then be used as part of either a hedging or a 
speculative strategy. 
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This analysis will attempt to construct a model for predicting movements in the BFI which is based 
on data collected since the omission of handysize routes. The underlying assumption is that 
movements in the BFI are not purely random, but can be predicted and that all relevant information 
concerning the market's future performance is embodied within historical patterns in the BFI data. 
Such an approach conforms very closely to that proposed by the advocates of the technical analysis 
of stock and derivative prices who believe in the Efficient Markets Hypothesis that both the 
expectations of the market and its perception of market fundamentals have already been discounted 
and incorporated into current values and prices. Since there is a reasonably high correlation between 
the BFI and the value of the nearest spot contract traded on BIFFEX (Chang and Chang (1996) 
suggest that it is as high as 0.89 for one month ahead), forecasts of the BFI can be employed to 
develop a strategy for speculation. 

Although a predictive model of the BFI based on a time series analysis of data covering the period 
between 1985 and 1988 was conducted by Cullinane (1992), it is hypothesised that the subsequent 
expulsion of handysize routes from the index has fundamentally altered the underlying nature of the 
data-set. The fundamental restructuring of the index in 1993 with the exclusion of the handysize 
trades, may mean that this model is no longer valid and that a new specification or estimation of the 
model may be required. By analysing the index using data which covers the period 3rd November 
1993 to 29th March 1996, a model which is representative of the new time-series can be derived. 
One of the objectives of this paper is to reconstruct such a model using the same methodology as 
Cullinane (1992) not only to derive new predictions of the BFI, but also to assess and compare the 
revised specification of the model against the original, particularly the predictions it produces. The 
paper shows clearly how the methodology is applied to derive a Box-Jenkins model of the BFI 
which is then validated by comparing generated ex-ante forecast values against actual BFI data 
generously supplied by the London Commodity Exchange. 

SELECTION OF METHODOLOGY 

Because movements in the demand for the BFI's main constituent cargo trades (coal, iron ore and 
grain) are well documented, a multivariate approach to modelling the BFI is possible. Such an 
analysis would certainly deepen our understanding of the fundamental mechanism by which 
movements in the value of the BFI are produced. Given the number of variables considered and 
consequent parameters included in the resulting model, however, its complexity and size will be 
such that it would be both difficult and costly to specify and estimate. In addition, since the 
derivation of forecast values for the input variables of a multivariate model is a problem as 
intractable as the original, it is difficult even to apply it. In any case, the predictive qualities of 
multivariate models are rarely found to be better in practice than those of univariate models 
(Makridakis and Wheelwright, 1978). According to Harvey (1981), in univariable (or univariate) 
analysis, movements in the variable of interest, and for which a model is desired, are explained 
solely in terms of its own past and its position with respect to time. This minimises data 
requirements and greatly simplifies the practical application of the model. 

There are any number of univariate methods of analysis but Box-Jenkins is one of the major forms. 
Applying this same methodology to a more recent data-set than that of Cullinane (1992) facilitates 
an assessment of the robustness of that model even in the face of a fundamental alteration in the 
underlying data-set. The Box-Jenkins approach deals primarily with discrete time-series within the 
time-domain, and is based upon the development of ARMA (Autoregressive Moving Average) 
models, the foundations of which can be attributed to the work of Yule (1927) and Wold (1938). 
The general form of an ARIvIA model is given by the formula: 

X =Ea -; ,.X, +~~..Z i+Z 	 (1) 

= t 	i=t 
Where: 

Xt 	= 	Value of an observation at time t 
Xt-i 	= 	Value of an observation at time t-I 
Zt 	 Error at time t 
Zt -j 	= 	Error at time t-j 
ai 	= 	Constant at time t-I 
ßj 	= 	Constant at time t-j 
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P 
q 

The order of the autoregressive element 
The order of the moving average element 

The ARMA model is composed of two separate and distinct elements; the AR(p) and the MA(q) 
submodels. The formula for each of these submodels is shown in equations 2 and 3 respectively. 
The autoregressive model - AR(p) - is given by: 

X, _1a 1 .X,_1 +Z, 
= t 	 (2) 

and the moving average model - MA(q) - by: 
Y 

1,=EQZ +Z, 	 (3) 
i=t 

When the parameter q is equal to zero in equation 1, the ARMA model is reduced to the AR(p) 
model shown in equation 2 and, likewise, when p is equal to zero in equation I, it reduces to an 
MA(q) model as specified in equation 3. 

EMPIRICAL ANALYSIS 

Although ARMA modelling lies at the heart of the Box-Jenkins procedure, its usefulness as a 
modelling technique in its own right is limited. This is because it relies upon solely stationary data. 
This stationarity condition (at least in its weak form) amounts, in practice, to a description of a time-
series exhibiting neither trend nor any sort of cyclical or seasonal variation. Very few time-series 
meet these strict constraints, so that the number of instances when strict ARMA modelling could be 
applied is severely limited. The Box-Jenkins approach surmounts this problem by utilising 
differentiation as a means of converting non-stationary data into a stationary data-set. This is 
achieved by simply differentiating the original base data so that a new and stationary time-series is 
produced. In fact, if X0, X1, X2, 	, Xn represent observations from the original time-series, at 
times t = 0, I, 2, 	, n, then the new time-series, after differentiation, is denoted by: 

Yt=Xt-Xt-1, 	t 1, 	 n 	 (4) 

The differentiation process may have to be implemented more than once, but it is reasonably certain 
to produce a stationary set of data. The transformation of a time-series through differentiation, 
permits the application of modelling in this general form on a much wider variety of data (Cullinane, 
1992). Differentiation does, however, introduce another parameter. The result is the evolution of the 
ARIMA (p,d,q) technique, or Autoregressive Integrated Moving Average, where the term 
"integrated" refers to the degree of differentiation (the value of d) required to transform the data into 
a stationary time-series. 

Testing Stationarity 

The first step in any Box-Jenkins analysis, therefore, is to assess the stationarity of the data. This 
assessment can sometimes be achieved by plotting the time-series and, through simple visual 
recognition, determining whether any trends and/or seasonal variation exists. Plotting time-series 
also facilitates the identification of outliers (observations which are inconsistent with the rest of the 
data) and possible turning points (Chatfield, 1984). In essence, this graphical analysis of market 
indices is akin to basic chartism, a technique explained more fully by, for example, Mills (1992) and 
Stewart (1986) and may provide a range of useful information. At the most basic level, if a given 
time-series contains either trends or seasonal variation, it is not stationary (for a comprehensive 
explanation of stationarity see Jenkins and Watts, 1968). A plot of the BFI data considered in this 
study is shown in Figure 1. 
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Figure 1: The Baltic Freighht Index (3/11/93 - 29/3/96)  

The graph shows the existence of two distinct market trends. The first (a bull trend) lasted for 
approximately fourteen months following January 1994, during which time the value of the index 
doubled. In contrast, as characterised by the distinctive "head & shoulders" pattern in the data (see 
Stewart, 1986), a turning point can be seen at the beginning of May 1995 as the market enters a 
distinct bearish trend which reverses 75% of the rise in the index value realised under the previous 
bullish period. Using merely this most basic form of analysis, the market can be shown to be subject 
to trends and the underlying data can, therefore, be deemed non-stationary. 

In many cases, the stationarity of a data-set cannot be ascertained from a simple visual inspection of 
a plot of the data and further tests are required. One approach is to conduct a simple linear regression 
of the data against time. If a time-series is stationary, then in the absence of any seasonality, the 
average trend, as represented by the coefficient of the slope (3 will be zero or insignificantly different 
from zero. Running such a regression analysis on the data yields a ß coefficient of 0.9785 with an 
associated t-ratio of 14.023. The coefficient is, therefore, strongly significant, suggesting that a trend 
in the data is present. Although this is a crude method and cannot be considered definitive proof 
either way, it does provide some evidence that the data is non-stationary. 

A second method of testing for stationarity is through the application of an AR(1) model to the time 
series whereby: 

X, = a.X,_, +Z, 	 (5) 

If the constant dal is estimated as being significantly different from unity, the time-series can be 
regarded as stationary. Applying this model to the data, an absolute value of 0.99945 is derived 
which is well within an arbitrarily assumed cut-off point of 0.9 as the limit of confidence of equality 
with unity. The fact that lad is not significantly different from unity again adds weight to the 
supposition of non-stationarity. 

The strongest test of stationarity is based on the autocorrelation function (ACF) of the time-series 
which at each lag (denoted by the parameter k) is compared to the significance statistic of 21,/n 
(equating to a 95% confidence interval where n is the number of observations). The sample ACF is 
denoted by rk where: 

n-k 

z(a, -4a,.A -a) 	 (6) 
k = 1, 2,.... 
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A plot of this function for the original BFI time-series under consideration is shown in Figure 2. 

Figure 2: Autocorrelation Function of the BFI Time Series (3/11/93 - 29/3/96) 

The graph clearly shows the failure of the ACF at any lag k to fall below the established significance 
level. Therefore, the data is highly autocorrelated irrespective of the lag analysed. This is final and 
overwhelming evidence that the time-series is non-stationary and, in accordance with the Box-
Jenkins methodology, suggests that the data contained in the original time-series requires 
differentiation as defined by equation (4). Figure 3 shows a plot of the first differential of the time-
series. At first inspection, the trend which was perceived to exist in the original data would seem to 
have been eliminated. To be certain that this new time-series is stationary, however, the preceding 
tests for stationarity are repeated. 

Figure 3: The First Differential of the BFI Time Series (3/11/93 - 29/3/96) 

The gradient 3 which is derived from a simple linear regression of the differentiated data against 
time is found to be -0.009326 with an associated t-ratio of -3.96. While this test reveals that a 
considerable amount of linear trend has been removed, the coefficient remains significantly different 
from zero at the 5% level, thus suggesting that the time-series is still non-stationary. Although the 
value of the 13 coefficient for the differentiated data-set is very small, its respective t-ratio does not 
reflect a statistical proximity to zero. In fact, this is a statistical incongruity due to the fact that linear 
regression assumes that individual data values are independent of one another. It can be shown that 
the differentiated BFI data are not independent of one another by considering the Durbin-Watson 
statistic (Anderson, Sweeney and Williams, 1993). 
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When applied to the simple linear regression model of the differentiated data, a Durbin-Watson 
statistic of 0.29 is found, indicating a strong degree of positive serial correlation within the data. 
This means that although the estimators are unbiased they are not efficient and that estimates of their 
variance and standard errors will be biased downwards. The ultimate effect of this is that t-ratios will 
be biased upwards and that the least-squares estimators will appear more significant than they 
actually are (Haines, 1979). Given this qualification to the results of the simple linear regression test 
of stationarity, the gradient of the differentiated data can be regarded as not significantly different 
from zero, thereby providing some support, even though not exactly persuasive, for the hypothesis 
that the data transformation has led to a stationary time-series. 

Figure 4: Autocorrelation Function of the First Differential of the BFI Time Series (3111/93 - 29/3/96) 

When an AR(1) model is applied to the differentiated data-set, a value for the constant lai of 0.8355 
is derived. Again using a cut-off of 0.9 for being significantly different from unity, this finding lends 
further weight to the argument that stationarity in the data has been achieved. 

The definitive test of stationarity is provided by the ACF of the differentiated data which is shown in 
Figure 4. As can clearly be seen, the value of the autocorrelation coefficient dies away fairly quickly 
as the lag k increases to a point where it falls below the significance statistic of 2 /V n . Although it 
has been borne out, to a greater or lesser extent, by the previous tests, this result provides the most 
persuasive evidence that a stationarity data-set has been attained. This transformed data can now be 
used to take the Box-Jenkins methodology to its natural conclusion. 

Model Selection 

Having obtained a stationary set of data, the next step in the Box-Jenkins methodology is to 
calculate and analyse the sample ACF as previously defined in equation (6) and sample partial 
autocorrelation function (PACF) denoted as rkk and given by: 

k-i 

1"k - E4-l' j rk-! 
>~.A. _ 	k-, 	, 	k = 2,3,... 

1—~~R-i,i 
j=1 

where; 
rk j 	= 	rkk rk-I,k j 	j=1 	 k-I 
rkk=rl 	 k= 1 

(7) 
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p(k) = ahl 

p(k) = 0 

p 	n 

X , = 	 a .X  +ßr .Z,-i +Z, 

AR(1) 

MA(1) 

AR(p) 

MA(q) 

ARMA(1,1) 

ARMA(p,q) 

X, = a. X r _ 1 +Z, 

X , = /j. Z + Z, 

X,=Za; .X,_; +Z, 
;=1 

X, — IQiZ, r + Z, ;=1 

X = a.X i _1 + ß.Z,_ 1 + Z, 

Indeterminate 	 Indeterminate 

q—I 

ß1 +L)80ß;+1 	p(k)= 0 t1lkl> q 
AO= 
	

-1
=1 

1+ 
,

~ßZ 
j=1 ' 

p(1) _ 
(1Id-  ß~) 

2 a ~ ) p(k) = a.p.(k —1) 

Indeterminate 	 Indeterminate 

By comparing the actual properties of the ACF and PACF of the differentiated time-series with the 
theoretical properties of these functions that are associated with particular generic ARMA model 
forms and which are shown in Tables 1 and 2, then it is possible to identify a model which fits the 
characteristics of the time-series. 

These theoretical properties of the ACF and PACF provide the basis not upon which a particular 
model is selected, but rather by which alternative models are rejected. Once all the models which fail 
to meet the criteria are rejected, the selection of a specific model from a range of surviving feasible 
options is made on the basis of the principle of parsimony. Cost and complexity increase with the 
number of parameters required by a model. Hence, the simpler the model the cheaper and easier is its 
application. 

As can be seen from the plot of the sample ACF shown in Figure 4, the autocorrelation coefficients 
are significantly different from zero up until lag 11. At this point it falls below the 95% confidence 
limit where it is no longer regarded as significantly different from zero. The gradual fall of the ACF 
as lag k increases is compared to the theoretical ACF characteristics presented in Table 1. From this 
comparison, the MA(1) and MA(q) models can be immediately rejected since both models are 
characterised by a sudden drop in the value of their respective ACFs. The pattern in the ACF also 
casts doubt on the appropriateness of the AR(1) and ARMA(1,1) models, though they cannot be 
categorically eliminated. Therefore, four generic model specifications remain under consideration: 
ARMA(1,1), ARMA(p,q), AR(l) and AR(p). 

Table 1: Characteristics of the ACF of Alternative Model Specifications 
Model 	 Model Form 	 Lag k=1 
Name 

 

All other Lags (k>ltl) 

1 If rc>0, then the ACF dies away exponentially. If u<0 the ACF dies away exponentially in magnitude, oscillates in sign. 
ii The ACF dies off after lag 1. 
iii The ACF is a mixture of damped exponentials and sinusoids which does not cut off, rather dies away slowly. 
iv The ACF dies off after lag q and p(1) has a maximum value of q/(q+1). 
v Each lagged correlation after lag 1 is reduced as k increases, by a constant factor u. 
vi The ACF function does not cut off, but dies away slowly. 
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Table 2: Characteristics of the PACF of Alternative Model Specifications 
Model Name 	 Model Form 	 Lag 8=1 

	
All other Lags (k>I11) 

MA(9r 

ARMA(1,1)" 

ARMA(p, q)" 

;=1 

X, —~QZr 	+Z, 
i=t 

X, =a.X,_, +ß.Z,_, +Z, 

J> 	 Y 

X, =Ea,.X,_, +Eß/ .Z,_i +Z, 

Indeterminate 

Indeterminate 

Indeterminate 

Indeterminate 

Indeterminate 

Indeterminate 

i The partial autocorrelation function cuts off after lag 1. 
ii The PACF of this model dies out slowly in the same way as the ACF of an AR(1) model with a>0. 
iii The PACF of an AR(p) model will cut off after lag p in the same way as the ACF of an MA(q) model. 
iv The PACF dies away slowly, and possibly sinusoidally. 
v and vi Difficult to define but does not cut off, rather it dies away slowly and possibly sinusoidally. 

The next characteristics to be examined are those of the PACF which can be seen in Figure 5 and 
which are to be compared to the theoretical properties presented in Table 2. The observed partial 
autocorrelation coefficients are such that values drop off suddenly rather than dying away gradually 
as the lag k increases. Since an inherent theoretical property of the PACF of ARMA (p,q) models in 
general and the ARMA(1,1) model specifically is that they decline gradually as the lag k is 
increased, the sharp cut-off exhibited by the observed PACF of the sample data provides strong 
support for dismissing all ARMA(p,q) models (including the ARMA(1,1) model) from 
consideration. Although there is a sharp fall in the partial autocorrelation coefficient at lag 1, the 
AR(1) model can also be rejected because the cut-off to a value below the assumed significance 
level does not occur immediately after lag 1. 

Figure 5: Partial Autocorrelation Function of the First Differential of the BEI Time Series (2/11/93 - 29/3/96) 
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This leaves only the generic AR(p) model open for consideration. With the PACF cutting-off to 
below the point of significance at lag 3 and on the basis that a theoretical property of an AR(p) 
model is that its cut-off point occurs at lag p+1, it would appear that the most appropriate specific 
option is the AR(2) model defined as: 

Y, = a,.17,_1 +a2 .Y1 _2  + Z 	 (8) 

Parameter Estimation 

Having selected a model, the next task is to calculate the values of its parameters (a 1 and a2) using 
the ARMA (p,q) modelling element of SPSS. With input values of p=2 and q=0, the programme 
produces values for the coefficients a I and a2 shown in the estimated version of the model given 
by: 

Yt = 0.721.Yt-1 + 0.141.Yt-2 + Zt 

Model Evaluation 

An assessment of the model is conducted through an examination of the residuals (or errors) 
produced by the model; residuals being the differences between the forecast and actual values of the 
time-series. Box and Jenkins (1976) emphasise how the visual inspection of a plot of the residuals is 
an indispensable first step in the checking process. By plotting the residuals in histogram form, the 
examination of their distribution is facilitated. For the model to be deemed acceptable, particularly in 
terms of its specification, the residuals produced by the model need to be independent and normally 
distributed about a mean of zero. This histogram of residuals for the model revealed that, by visual 
inspection, the residuals seem to conform to this desired pattern. 

A more mathematical examination of residual structure is provided by the application of the Box-
Pierce statistic. This is calculated as follows: 

Q(ni) = n(n+2)E(n—k) t [/k (E)]2  

k 	L  
where; 
rk(e) is the sample autocorrelation of the residuals at lag k 
in is an arbitrary value, usually 12, 24, 36, etc. 

(10) 

Although this test is more associated with graphical procedures, if the data-set is large enough, a 
modified Box-Pierce statistic (or Box-Ljung) statistic provides the basis of a valid test. The statistic 
constructed from the ARMA model may be considered appropriate if it is taken to have a Chi-square 
distribution (x22 _ ) under the null hypothesis. By taking the number of fitted parameters as the 
degrees of freedofii, limits of confidence can be taken from the statistic and the significance of the 
residuals assessed (Harvey, 1981). 

These tests are to ensure that the 'fitted' model is adequate. Should the chosen model fail in some 
way, the results of the test will indicate how the model should be modified, and the cycle of 
identification, estimation, and verification is started again (Anderson, 1976). Thus, it can be seen 
that Box-Jenkins analysis is not simply a modelling technique, but rather a modelling strategy. 

Table 3: Standard Deviation and Mean of the Residuals Produced from a Range of Models 
Model Standard Deviation (o) Mean 
AR(1)  5.59 0 
AR(2)  5.53 0 
AR(3)  5.52 0 
AR(4)  5.50 0 
AR(5)  5.50 0 

ARMA(1,1) 5.53 0 

At this stage, other AR(p) models were examined for comparison. As one would expect, forecasting 
ability improved with the number of parameters, although the scale of the improvement was 

(9) 
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minimal. The standard deviation and mean values of the various models are shown in Table 3. 
From an examination of these figures, the most accurate models are the AR(4) and AR(5). For a gain 
of only 0.03 in standard deviation over that produced by the AR(2) model, the cost is the time 
required to calculate twice as many parameters. These higher specification models are, therefore, 
rejected on the basis of parsimony. It is interesting to note that even though the ARMA(1,1) model 
was rejected on the basis of a comparison of theoretical and sample characteristics of the ACF and 
PACF, this model produces residuals with a similar distribution to the AR(2) model. Although it 
may be as accurate as the AR(2) model, its dismissal can still be justified on the grounds that despite 
possessing only two parameters, each relates to different formulaic elements within what is a more 
complex model form than the AR(2) model. The model itself being more complex, the two 
parameters are consequently more expensive to obtain. 

The Box-Ljung Statistics at lag 12 and lag 24 for the AR(2) model were found to be 18.5 (with 10 
degrees of freedom) and 36.5 (with 22 degrees of freedom) respectively. From an examination of 
Chi-square tables, these statistics were found to be marginally outside the 95% limit of confidence 
(Miller and Powell, 1979). The first model form that satisfies this test is the AR(4). In the case of 
the AR(2) model, it could be argued that the size of the data-set is too small for the test statistic. As 
has already been stated, the Box-Pierce statistic is more commonly associated with graphical 
procedures and this modified form requires a large data-set to provide a valid result. It is possible 
that the data-set which underpins this analysis is insufficient in size for this test to be used. The 
AR(4) may fit within Box-Pierce's limits of confidence, but as a more specified model it should only 
be substituted if it is thought absolutely necessary. 

Again, the final tests of the appropriateness of the derived model involves the application of the 
autocorrelation and partial autocorrelation functions. The functions are applied to the residuals from 
the AR(2) model. The plots of the two sample functions showed that less than 5% of the lagged 
auto- and partial auto-correlation coefficients are significant and, therefore, it can be assumed that 
there is no remaining structure in the residuals produced by the model. 

Since the derived AR(2) model is based on a differentiated data-set, before it can be used to forecast 
actual movements in the variable of primary interest (the BFI itself), it needs to be integrated so that 
forecasts relate to true values of the BFI rather than to daily changes in its value. This transformation 
is derived from the specification of an AR(2) model given in equation (8) and by the fact that the 
differentiated data-set was derived initially by applying the transformation defined in equation (4). 
The AR(2) model specification thereby inverts to give: 

X, — X,_, = a, .(X,_1 — X,_2)+a2.(X1_ 2 — X,_3)+Z, 
while the estimated version is given by: xt = I.721.xt-1- 0.581.xt-2 + 0.141.x1-3 + Zt 

Model Comparisons 

As shown in equation (12), the estimated model derived by Cullinane (1992) using the same 
methodology is in one sense markedly different from the model derived within this analysis. The 
model given in equation (12) is a customised AR(3) model, which includes the additional term Xt4 
in its specification. At the same time, however, the estimated values of the coefficients associated 
with the other three independent variables appear to be very close in value to those determined in 
this modelling exercise where an AR(2) model resulted. 

X, = 1.556X, — 0.556,I7_z +0.189(X,_3 —~I;~+Z 	 (12) 

The validity of both models can only really be assessed by comparing the ex-ante forecasts produced 
by each of the models with actual values of the BFI. There are then a number of methods which can 
be employed to measure the accuracy of the two models. Those used within this study include the 
Mean Sum of Squares of the residual (MSS), Mean Average Deviation (MAD), Maximum Average 
Deviation (MAXAD) and a modified Theil's inequality coefficient. The last measure provides the 
clearest indication as to whether any systematic error exists within the forecast values (Theil, 1966) 
and is given by: 
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where; 
Ai 	are the actual values of the series being modelled 
Pi 	are the predicted values of the series 
n 	 is the number of values over which actual and forecast values can be compared 

So that a full measure of each model's accuracy can be assessed, tests were carried out over a range 
of forecast lead-times. The forecast lead times chosen for testing were 1 day, 5 days, 10 days, 15 
days, and 20 days and the results of this part of the analysis are presented in Table 4. 

Table 4: Comparative Error Measurements for the Models 
Lead Time Model MSS MAD MAXAD Theil's Coefficient 

1 Day 1998 AR(2) Model 8.7 2.337 5.998 0.003 
1992 AR(3) Model 7.9 2.274 5.688 0.003 

5 Days 1998 AR(2) Model 233.7 13.727 24.399 0.080 
1992 AR(3) Model 210.2 11.816 29.946 0.072 

10 Days 1998 AR(2) Model 1410.4 30.827 66.914 0.482 
1992 AR(3) Model 562.8 18.214 68.805 0.194 

15 Days 1998 AR(2) Model 7992.4 72.138 163.891 2.772 
1992 AR(3) Model 6505.0 66.116 152.363 2.264 

20 Days 1998 AR(2) Model 19681 118.579 208.965 7.035 
1992 AR(3) Model 16251 108.695 179.251 5.796 

The results of the MSS and MAD measures are similar between the two models and, as fully 
expected, increase monotonically with lead-times as the confidence interval which encompass 
forecasts also increase. Over all five lead-times, the Cullinane (1992) model proves to be the more 
accurate. This is hardly surprising, however, given the higher specification of this model. 

Since it is closely associated with assessing maximum potential losses, the Maximum Average 
Deviation, MAXAD, is the most significant measure of error from the perspective of either hedging 
or risk averse speculation. Error must be expected when forecasting, but when making decisions on 
the basis of these forecasts, the absolute size of these errors is very significant, especially when 
considering the worst possible case. Examination of the MAXAD tells a slightly different story to 
the measures of error previously analysed. Over a lead-time of one day, the Cullinane (1992) model 
has the smallest MAXAD, but the spread between the MAXAD of both models is only marginal at 
0.3 BFI points. With lead-times of 5 and 10 days, however, the Cullinane (1992) model produces the 
greater MAXAD. As lead-times increase to 15 and 20 days, the greater specification of the 
Cullinane (1992) model begins to show through. This measure seems to suggest that over the short-
term, that is to say up to ten days, the AR(2) model developed in this analysis provides the most 
consistent forecasts with the lowest MAXAD. 

Theil's coefficient gives the clearest picture of the existence of systematic error within the forecasts. 
With a lead-time of one day, it suggests that the degree of systematic forecast error is absolutely 
negligible for both models. Again, as one would expect, as the lead-time is increased, the forecasts 
produced become less and less accurate. It is apparent, however, that the extent of systematic error 
present in the forecasts produced by the Cullinane (1992) model is much less than that present in the 
current lower specification AR(2) model, with the divergence between the two models on the basis 
of this measure increasing with lead times. 

CONCLUSIONS 

This work hypothesised that the underlying statistical characteristics of the BFI may have 
fundamentally changed since the removal of handysize routes from its composition on 3rd 
November 1993. If these characteristics had altered, then past models of the BFI (for instance, that 
by Cullinane, 1992) would have lost some of their validity. The objective of the paper was, 
therefore, to determine the veracity of this argument. 

u= 
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By reapplying the same methodology used by Cullinane (1992) but to a more recent data-set, a 
comparison of the developed univariate time-series models would reveal whether any major 
differences exist. The two statistical signatures most influential to the derivation of the ARIMA 
models to be compared in this way are the autocorrelation and partial autocorrelation functions. 
Through a comparison of these functions for data-sets pertaining to before and after 3rd November 
1993 (when a significant alteration to the composition of the BFI took place and when a 
fundamental change in the behaviour of the BFI is hypothesised), it is possible to demonstrate the 
extent to which the characteristics of the index have altered. Any changes in these characteristics 
will then manifest themselves in either the specification or estimation of the emergent ARIMA 
model. 

The analysis by Cullinane (1992) was based on five data-sets covering the period between 1985 and 
1988 (one for each of the four individual years and one for the whole period). With only the slight 
exception of 1986, when the market was turning and in a state of flux, the ACF and PACF for each 
of the five data-sets exhibit a great deal of consistency. The ACF for each data-set declines gradually 
towards the established 5% significance level while the PACF of each falls sharply below the 5% 
significance level immediately following lag 3. On the basis of the consistency of results achieved 
across all five data-sets, it could be assumed that these structural characteristics are inherent long-
term features of the index which only change with a somewhat drastic alteration to the fundamental 
nature of the index. 

The examination of the autocorrelation and partial autocorrelation functions undertaken within this 
updated analysis reveals only a very small deviation from these findings. The form of the ACF 
output is the same as that of Cullinane (1992), but the characteristics of the PACF differ slightly 
with it cutting-off to below the 5% significance level after lag 2 as opposed to lag 3. This can hardly 
be termed a revolutionary difference since it implies that the optimal Box-Jenkins model which 
balances predictive ability with parsimony is an AR(2) rather than a modified version of an AR(3) as 
found in Cullinane (1992). The mathematical content of both models is, in fact, remarkably similar, 
especially given the different time periods covered by the two analyses and the number of minor and 
major changes that have occurred to the composition of the BFI in the interim period. 

With the exception of the MAXAD beyond a five-day lead time, on the basis of most measures, the 
Cullinane (1992) model is consistently more accurate than the AR(2) model developed within this 
analysis which relies upon a database of later observations of the time series. Given the fundamental 
change in the composition of the BFI which has taken place through the expulsion of handysize 
routes, this is an interesting conclusion and may appear slightly incongruous given the optimal 
model derived herein. The analysis contained herein, however, merely demonstrates that the greater 
accuracy gained through the estimation of a more highly specified model does not compensate for 
the associated loss in parsimony. 

One can conclude, therefore, that even though the composition of the BFI is under continuous 
review, with neither the composite routes nor the weightings given to them remaining constant, these 
changes do not appear to significantly affect the fundamental characteristics of the index. 

As was already stated in the introduction, ARIMA models are put to best use when producing short-
term forecasts. Given this is the case, ARIMA models must be responsive to short-term market 
movements. As any highly specified model is handicapped by the number of its parameters and less 
specified models limited by lesser accuracy, there is an optimum level of specification. The Box-
Jenkins approach provides an effective method of estimating that level. It ensures that the selected 
ARIMA model is sufficiently specified that the forecasts it produces replicate reasonably well the 
characteristics of the market but, at the same time, is not over specified and, thus, hindered by the 
number of its parameters. 

The use of univariate time-series analysis provides a cost-effective and efficient technique for 
developing forecasts as the basis of a strategy for speculating on BIFFEX. A more comprehensive 
speculative strategy may be achieved by integrating this with other methods of technical analysis 
and further research needs to be conducted into this area. Individually, such techniques tell part of a 
story; combined they are likely to yield much more accurate short-term forecasts. Over longer-term 
forecast horizons, however, such as that necessary for hedging, the only truly effective predictive 
method is the application of fundamental analysis where the determination of market predictions is 
based on expected levels of future supply and demand in the market. The difficulty of undertaking 
such an analysis in an industry as volatile as shipping is well known but, if achievable, would not 
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only enable a greater understanding of causality rather than mere mathematical relationship, it would 
also provide a link between fundamental and technical analysis, which are too often regarded as 
competing, rather than complementary, methods of analysis. 
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