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Abstract:  This paper discusses the random utility discrete choice models being developed in Boeing Commercial Airplane Marketing for use in the analysis of customer airlines fleet and equipment requirements, as well in the strategic analysis supporting Boeing’s new product development.  The discussion begins with a description of the models currently in use and the methods by which they are estimated and calibrated.  Then five major applications of discrete choice models are described in some detail.  These are the Global Market Allocation System, the Universal Market Simulator, the Network Value Index, a new approach to Time of Day Demand estimation, and Willingness-to-Pay-to-Fly (stimulated demand) models.  In each application the current status and future research are laid out.  We close with a brief summary and relevant references. 

1 Introduction
Trade-Off Analysis

Our subject is the application of methods of economic trade-off analysis to the choice behavior of airline passengers, as part of the arsenal of tools that can be used by the Business Strategy and Marketing unit of Boeing Commercial Airplanes (BCA).   The approach uses random utility theory to apply discrete choice models to such activities as the choice to fly or not fly for a particular trip, the selection of flight itinerary for a particular airplane trip, and the choice of destination for a given travel purpose.  
The value of these methods is significantly enhanced because they allow the explicit representation of trade-offs.  How much will a passenger pay to avoid a stop on his itinerary is an example of a trade-off of money for convenience.  Similarly, departing at a more appropriate time may be worth more than the value of an avoided stop, so a passenger may choose to take a longer flight to get a better time of departure.  Understanding such trade-offs are essential in determining how an airline earns revenue.  Those who fail in this understanding court virtually certain financial doom in the face of competition which does.  To the extent that Boeing’s products affect the choices and trade-offs of airline passengers, then our understanding of these factors contributes directly to the quantitative value proposition created by our products for our airline customers.
Random Utility Applications in the Airline Industry
These methods are not new.  Initially developed in the decade from the mid-1970’s to the mid ‘80’s, they are widely used in ground transportation planning (highways, public transit systems, etc.) and have, in the last 15 years or so, spread throughout the market research world.  Meanwhile, discrete choice methods have been circulating at a low level in the air travel industry for about twenty years, but the infusion of the methodology into the airline industry has come more slowly than in other fields. Comparatively speaking, the literature is rather sparse.  Most of the early work concerned the choice of airports, undoubtedly because of the ground transportation engineering implications of such choices and the relative maturity of random utility theory in the ground transport disciplines.   A reasonable sampling include Skinner (1976), Harvey (1987), Ashford and Benchemam (1987), Windle and Dresner (1995) and Basar and Bhat (2004).  More recently, itinerary choice, the modeling of selection among the available flight, routings, cabins and fare classes a given passenger selects for a trip, has been explored and developed.  This extension of the method includes works by Proussaloglou and Koppelman (1999), Alger and Besar, (2001), Coldren et al. (2003), Coldren and Koppelman (2005), Adler et al. (2005), and Bhat, Warburg and Adler (2005).  
Organization of this Discussion
The material is organized into eight Sections in addition to this Introduction.  Sections 2 and 3 are the heart of the presentation. A summary of random utility discrete choice models, how choice data is collected, and how the models are estimated and calibrated – is the subject of Section 2.  In Section 3 we describe the major discrete choice models that are now in use in the analytic tools in Boeing Marketing.  

The remaining Sections review current and emerging applications of the random utility technique.  Section 4 concentrates on the Global Market Allocation System (GMAS), a computer simulation of the passenger traffic on all the world’s airline network legs that is used extensively for fleet analysis supporting customer sales campaigns.  Section 5 presents a summary of the Universal Market Simulator (UMS), which is an agent-based simulation model of the key players in the industry (passengers, airlines, etc.) that forms a laboratory for research into understanding airline competitive behavior in response to the potential introduction of existing or new Boeing products.  The Network Value Index (NVI) is a specific application that emerges from the theory of random utility, and allows us to determine the economic value to an airline of any type of network change.  This is described in Section 6.  
In Sections 7 and 8 we look at two applications of passenger choice models that are currently being developed for implementation in our fleet analysis tools.  The first is an advanced form of time-of-day demand analysis, approaching the problem from a new perspective.  Section 8 we see how choice models can be used to frame the problem of stimulated demand in the market.   The final Section summarizes the presentation.
2 An Overview of Random Utility Models, Preference Data and Model Estimation
Random Utility Models for Itinerary Choice
Suppose the passenger is faced with an arbitrary (but finite) number of itinerary choices contained in the choice set J.  That number is denoted #(J).  We assume that the choices and the decision-makers (passengers) are characterized by a vector of variables zij for passenger i and choice j.  Each passenger has an associated real-valued function 
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 that assigns a real valued utility for each choice.  The alternative with the highest value of Ui is the choice made, that is, the value j* for which 
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U is assumed to be made up of two parts – a known, observable part and an unknown, stochastic part – but that the probability distribution of the stochastic utility component is known.   That is, 
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Then the probability that a particular alternative j* will be chosen by i is 
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where  is the vector of the #(J) – 1 stochastic terms (i1,  i2, … [ij*], … i#(J)), F is the joint probability distribution function of the stochastic terms,  and the notation [image: image5.wmf][]

×

indicates that the enclosed term is omitted.

The structure of F() is the subject of much research.  In practice, because of the considerable computational difficulty, only one approach has yet yielded significant results.  Define the extreme value type one (EV1) distribution by means of
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with location parameter  and scale parameter .  This probability distribution is also referred to as the Gumbel or doubly exponential (Johnson et al., 1995, pp 1-112).  Its mode is , the mean is , where  is Euler’s constant, and the variance is .  

Now, assume that for all [image: image7.wmf]iA
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 the ij are independent and identically EV1 distributed with common location parameter  (which, without loss of generality, can be set to zero) and common scale parameter . Then it can be shown (Ben-Akiva and Lerman, 1985, p 106) that
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This is the multinomial logit model (MNL).

As is often the case, we will also assume that 
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  Then Pi(j*) is 
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The Nature of Choice Models and Choice Data

Discrete choice models are created, like all such empirical constructs, from a combination of wisdom and experience coupled with data collection, data cleaning and the statistical processes of estimation and validation.  By definition, the utility function is made up of an observable part and an unobservable part, with the latter assumed to have a known probability distribution.  Choice data gives us the material to build and validate the observable part of these models.

This means that choice data consists of a description of the choice (the attributes described by a vector yj), the characteristics of the chooser, (a vector wi, which when concatenated with the vector yj gives the vector zij), and whether or not the alternative in question was selected by the chooser, an indicator variable that is valued at 1 if the alternative is chosen and 0 if not.   This is usually laid out as a single data vector denoted by (yj, wi, cij) where cij is the choice variable.  The total data set on which the analysis is based can then be easily represented by a matrix of size 
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, for n choice observations of passengers (one in each row), each with Ky characteristics and selecting among choices with Kw attributes.   


Almost universally, choice models are estimated with a very general statistical procedure called maximum likelihood, wherein we find the value of the set of parameters which has the highest probability of being true, given the probability distribution of the data available for the estimation.  So, suppose the multivariate probability distribution of the data, the vectors x = (yj, wi, cij), and the distribution of the set of parameters of the model, , is represented by F(x, ).  The maximum likelihood method says to determine the values of the elements of * such that
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On the right side of this equation, f(xi, ) is the distribution function of the i-th  independent observation, and we’ve used the fact that the joint distribution function of n independent random variables is the product of the individual distribution functions of the random variables.  

In the logit case with linear in the parameters models, we can structure the maximum likelihood problem as follows.  Write the probability that respondent i will choose choice j as Pi(j), and let I(i,j) be the indicator function which is 1 if i chooses j and 0 otherwise.   Then 
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so, assuming that each decision-maker’s choice is independent of the others, then we have 
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L() is called the likelihood function.  Since ln is a one-to-one transformation, it turns out to be more convenient if we take the natural log of the likelihood function, which is
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L() is called the log-likelihood.    

Calculus will tell us that the maximum of any (continuous) function is a point where the derivative is zero, so we can take the derivative of L(), set it to zero, and solve for the required values of *.  Most discrete choice texts describe the process in more detail (e. g. Ben Akiva and Lerman, 1985).  
Preference Experiments

Within the airline industry, revealed preference is far and away the most used data source to estimate passenger choice behavior models.  Every airline has within its records a substantial basis for the conduct of such studies – the booking and ticketing histories of   literally thousands of flights – which makes such data so inexpensive and exhaustive that to ignore it would be foolish.  
A revealed preference experiment is simply the recording of actual choices made by decision-makers, such as passengers when selecting flights as evidenced by the booking and ticket purchase behavior.  These observations include, of course, the choice made, attributes of the flight (fare, departure time, arrival time, intermediate stops, booking class, cabin, airplane equipment, days in advance of departure date) and, if tied somehow to other data bases such as frequent flyer records, some socio-demographic information on the traveler.  Clearly, the booking and ticketing data within a typical airline provides a substantial source of revealed preference information.  

There are some difficulties with revealed preference data, however.  For one, we often do not know the choice sets from which the revealed preference is selected.  We often must make assumptions about the level of knowledge the decision-maker has about the available options, assumptions which need to be validated.
  Another deficiency of revealed preference experiments is that alternatives that don’t exist cannot be tested.  For example, if we are interested in the value an airline passenger might put on a faster airplane, we cannot used revealed preference to estimate our models because there are no faster passenger aircraft available (at least in the context of commercial air travel).   This deficiency can be remedied by using stated preference experiments. 

The other method of choice data collection is called stated preference, since the respondent makes choices in a hypothetical choice environment, rather being observed making actual choices.  In other words, he is asked which choice he would make from a list of options, if those were the only options available.   Often these hypothetical choices are offered in the form of a survey, which can, for example, be conducted on the internet at very low comparative cost.  
In 2004, Boeing conducted a stated preference experiment selecting respondents from individuals using a particular flight display engine called SideStep.  SideStep is a product which allows the user to see flight options from a number of airlines as provided by the airline’s own web sites, as opposed to choices offered through online travel agencies such as Expedia.  While a person is using SideStep to shop for a flight, it is possible to interview her via the internet, offering another choice that might not exist – for example a non-stop where none is now available – thus providing an excellent stated preference environment.  
The survey was conducted on the internet by intercepting a customer after they had indicated the origin and destination of the trip they were interested in.  This origin and destination was then incorporated into the survey form.  The screen image shown in Figure 1 gives one of the choice pages of that survey.  There were a number of choice combinations available, and respondents only saw three out of the 256 that were being studied.  But because there were more than 2,500 respondents, all choice combinations were available to a significant number of surveyed individuals, thus providing sufficient sample size for statistical validity.
(Figure 1 goes about here)

The basic choice experiment being carried out in this survey is the selection of itinerary based on seven attributes, called “features” on the survey screen.   These include departure time, arrival time, total time in the air, total trip time, leg room (defined further in a popup window the user could select), airline and airplane routing, and fare.  These seven attributes each were defined with two or more “levels” or values.  For example, there were four different fares that could be assigned to each alternative.  The set of all combinations of levels of all attributes creates the choice set, and each respondent were given three of the possible combinations from which to select.  Under the assumption of the independence of the decision-makers, the results from many interviews can be combined to estimate the parameters of the model. 
If you examine the text of the survey in further detail, you can see that actually three choice experiments are being conducted at the same time.  One asks the respondent to choose from one of the three options.  However, Questions 3 and 4 determine whether, if these were the only options available, would they make the trip at all by air, and if not, how they would make the trip.  This gives us some insight into the willingness to travel by air for different itinerary attribute configurations, and is thus a way of measuring willingness-to-pay-to-fly, essential to understanding stimulated demand.  The SideStep survey also asked a variety of socio-demographic questions, such a as age, marital status, income and education, and so forth, thus allowing us to relate these characteristics of the decision-maker to the attributes of the choices made.  

Of course, like revealed preference experiments, stated preference surveys have their drawbacks.  Indeed, the most obvious is the reliability of a choice made in an artificial environment versus the same choice made in the real world.  There is a long and involved debate with associated literature on this issue.  Suffice it to say that both methods are widely used, and, if done properly, there is no sound reason not to utilize stated preference methods.  Louviere et al (2000) gives a thorough discussion. 

3 The Passenger Choice Models Currently in Use by Boeing
As of this writing, there are two passenger choice models being used within BCA Marketing to support customer fleet analysis.  These are the “high resolution” model used in the Universal Market Simulator (UMS) and the “low resolution” model used in the Global Market Allocation System (GMAS).  These two models are discussed in this section.  Both models are itinerary choice models – used to estimate the probability that a passenger selects a given itinerary from a set of possible itineraries.  Each of the basic models has two forms – one for business travel and one for leisure travel.  The two differ only with respect to the values of the coefficients.  The variables and structure are otherwise identical. 
At the end of this Section we sketch out the vision of the ‘ultimate’ form of the passenger choice model that we are aiming to develop.   Some of the difficulties associated with achieving that vision are also described, especially the question of how two choice models can be combined into a larger, but consistent, model.
The High Resolution Passenger Choice Model

The high-resolution passenger choice model was derived from a stated preference study done in 1995-6.  The study, titled the High Speed Civil Transport (HSCT) study, was a joint effort by Boeing, Japan Air Lines, British Airways, and the Hague Consultancy, a research and development institute in Belgium.   The study aimed at determining the value of speed to the passenger, and consisted of in-person interviews at the airports of 15 major origin-destination pairs.  In 2001-2, the data were re-analyzed using more sophisticated techniques to derive the current model.  If J is the set of all itineraries in a specific market, the probability of choice for an itinerary
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The model is termed “high-resolution” because it explicitly contains terms which differentiate by demographic, economic and social characteristics of the passenger.  Therefore it is capable of accommodating different behavior across different kinds of passengers, and in that sense, has higher resolving power.  The  coefficients are estimated from the research data. The variables are defined as follows:
Attributes of the flight/fare class choice:
· fj = the fare for the itinerary fare class j, 

· dj = the duration of the flight on which  j is available,

· db = the base duration of the market, which is defined to be the shortest travel time using existing equipment and route configurations,
· Sj = number of stops in the flight on which j is available,  

· Xmdi,j = 1 if the flight is an inbound morning departure (between 6 AM and noon), 0 otherwise,

· Xmai,j = 1 if an inbound morning arrival, 0 otherwise,

· Xmdo,j = 1 if an outbound morning departure, 0 otherwise,

· Xmao,j = 1 if an outbound morning arrival, 0 otherwise,

· Xedi,j = 1 if an inbound evening departure (from 6PM to midnight), 0 otherwise,

· Xeai,j = 1 if an inbound evening arrival, 0 otherwise,

· Xedo,j = 1 if an outbound evening departure, 0 otherwise,

· Xeao,j = 1 if an outbound evening arrival, 0 otherwise,

· X1st,j = 1 if the fare class is in a first class cabin, 0 otherwise,

· Xec,j = 1 if the fare class in is an economy cabin, 0 otherwise.

Attributes of the passenger making the choice:
· X25,i = 1 if income is less than $25k/year (2000 dollars) for passenger i, 0 otherwise, 

· X100,i = 1 if the income is more than 100k/year for passenger i,

· XSt,i = 1 if passenger i is a student, 0 otherwise, 


· Xeu,i = 1 if passenger i is of European background, 0 otherwise, 


· Xfe,i = 1 if passenger i is of Far Eastern background,

· Xoz,i = 1 if passenger i is of Australian background,
· XJ,i = 1 if passenger i is of Japanese background,  
· X1-6,i = 1 if total journey is from 1 to 6 days in duration,

· X7-10,i = 1 if total journey is from 7 to10 days in duration.  

· XG,i = 1 if passenger i is of female.
The variables represented by the X’s are indicator variables, and have values of 0 or 1.  They represent the presence or absence of the specified property.  When multiple variables are used in this way, the case where all related indicators are 0 is the base case, and there is no specific term in the model for the base case, since it is the model result when all the indicator variables are set to zero.  In the example of the arrival times, zeros for both indicators means the arrival time is in the base case, which is afternoon (between noon and 6PM).  For a more detailed discussion of the use of indicator variables in this context, see Neter et al, (1989, pp 349-351).  

As is often found in linear regression, several expressions in the model are what are called interaction terms, where two (or more) variables are mathematically connected in a special way, reflecting the interaction between the two (or more) variables.   With a little reflection, we can see that demographic terms can only be in a linear in the parameters utility function as interaction terms.  (If they were by themselves in the expression for V(j), they would be exactly the same for each choice for the same passenger i, and would cancel out of the logit formula.)  Also, it should be noted that the “stops” term in the model does not account for the time added to a flight because of the stop.  This is incorporated into the trip duration terms of the model. 
Note that the model has a fare term which is not fare directly, but log fare.  This describes the fact that for a low fare, a fixed increase has more impact on choice than the same increase for a high fare.  That is, if the fare is $200, and the increase in fare is $300, that has a much more perceptual impact on the passenger than if the original fare was $3000.  The same reasoning explains why the base fare (shortest fare in the market) is also in log form. 

Table 1 below shows the values of the ’s for the high resolution model that is currently in use.  Note that there are two models being estimated – on for the business traveler and one for the leisure traveler.  

(Table 1 goes about here)
The Low Resolution Model

The high resolution model is called that because of the level of detail about the socioeconomic characteristics of the passenger carried in it.  In practice, data to support that degree of detail is often not available, so a simplified model, the low resolution model, is used.  The low resolution model is simply
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Structurally, the low resolution model has all the terms of the high resolution model less all the terms which contain demographic or socioeconomic variables and employing a simplified set of coefficients for time of day, which ignore inbound and outbound distinctions.  Specifically, these are the new variables:
· Xmd,j = 1 if the flight is an morning departure (between 6 AM and noon), 0 otherwise,

· Xma,j = 1 if a morning arrival, 0 otherwise,

· Xed,j = 1 if an evening departure, 0 otherwise,

· Xea,j = 1 if an evening arrival, 0 otherwise,

We use 
[image: image20.wmf]φ

 to designate the parameter set in this model because they are generally different then the corresponding parameters in the high resolution case, insofar as some of the variation explained by the inclusion of the demographic variables is lost in the low resolution model, but is “absorbed” into the coefficient estimates for the remaining attribute variables.   Table 2 shows the current values of the coefficients of the low resolution model.  
(Table 2 goes about here)
The Vision of the ‘Ultimate’ Passenger Choice Model

Behind the research that has led to the derivation of the high and low resolution models is a vision of the structure of the complete passenger choice model.  This vision guides us in the definition and execution of the specific choice research we undertake.   Of course, as work progresses, the vision is modified to account for new insights that come from the research discoveries.  

The current vision of the passenger choice model is illustrated in Figure 2.  At the top are the two decision structures that precede the itinerary choice – the go/no go decision for the trip, and the mode choice (to fly or not).  The attributes of the flight and the characteristics of the passenger and trip are shown in the main body of the diagram, with attributes in the upper right triangle and the characteristics in the lower left.  
(Figure 2 goes about here)

Some idea of where we are in our research program can be garnered by looking at the font of the particular attribute or characteristic.  If it is in normal font, then we have managed to explore that feature to some depth, and include it in one or more of our choice models.  If the feature is in italic, then we have only begun to develop models which include these attributes and characteristics.  Note in particular that we have not completed work on the go/no go decision structure or on the mode choice (fly/no fly) decision structures.  This work is underway as of this writing, and progress to date will be reviewed later in our discussion.  

Also notice relatively little progress in some of the areas of most direct interest to Boeing:  attributes of the airplane itself, including interior cabin appointments and features.  This work is also underway, but progress is dependant on successfully addressing a major technical issue surrounding discrete choice random utility models.  We shall now examine this problem in some depth.

The Scale Problem in Discrete Choice Models

The variance of an EV1 distribution is a function of a scale parameter we have denoted as .  In general, this parameter can not be identified (that is, estimated) from data collected in a choice experiment, since it does not affect the utility ordering of the choices.  This problem of the unidentifiable variance term raises serious questions when we try to combine the results of two different choice experiments.  Suppose, for example, we did one choice survey exploring the effects of fare, departure and arrival times, stops, and duration on itinerary choice, and another choice experiment studying the itinerary trade-offs associated with airplane type, cabin seat width, leg room, overhead bin size, and other attributes of the airplane itself and its interior cabin.  It would be very useful if the models resulting from the two experiments could be combined.  Then the trade-off value of, say, a wider seat could be stated in terms of fare or duration.  

Suppose further that each experiment was used to estimate a linear-in-the-parameters utility model.  Taken separately, we make the assumption that the unidentified  in each model is set to one.   However, the variances of the EV1 distributions are a function, in part, of the structure and execution characteristics of the experiments themselves.  That is, some of the variance is caused by the nature of the survey instrument, the individuals who were interviewed, and so on.   So, while it is sound to assume the variance in each model when considered by itself is equal to one, it is not sound to assert that they are equal across the two models.   Because of this, and because the coefficients of each model implicitly contain the variance term , it is not possible to equate the scale of the coefficients in the two models without knowing at least one of the variance terms.   This effectively prevents us from combining the two models into one, comprehensive model.  
There are a few known ways to tackle this problem.  One, the most obvious, is to conduct one large experiment where all the features – fare, duration, leg room, etc. – are combined into research instrument.  We did this to a limited extent with the SideStep choice survey.  But this can be extremely difficult with some of the more physical (and important) attributes such as cabin pressure altitude and humidity, because such characteristics must be experienced, rather than asked about.  
Another method, propounded by Louviere et al (2000), is to conduct the experiments in such a way as a large number of characteristics and attributes are measured in both experiments to allow a comparison of the values of the coefficients of the shared variables.  If they only differ because of the scale term, then the ratios of the coefficients of the common terms in each model should be constant.  Then one of the model’s scale can be set to one, as normal, and the coefficients of all the terms in the second model, including those not in common, can be adjusted by the ration to give a joint model with appropriate coefficients.  

Specifically, suppose we have data from two experiments estimating two different linear in the parameters utility functions with unknown scale terms (1) and (2):
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.   Thus if the data shows a constant variance ratio as required by this for all the common term in B, then that ratio can be applied to the other, non-common terms to create a single model from the two experiments.  

There is also some indication of progress using utility function forms which try and estimate directly the scale term (Louviere and Wang, 2003).   But we expect only limited success with this method.  Finally, we are developing the ability to conduct significantly more sophisticated experiments using a travel panel we are piloting.  Members of the panel can be given a survey via mobile phone immediately after they take a flight, which can combine the details of the flight and cabin with other flight attributes such as departure time and fare.  With careful survey design, a choice experiment can be executed which addresses a full set of important factors for the same respondent.  This is essentially creating the very large experimental structure mentioned above.   
4 The Global Market Allocation System (GMAS)

The computing technology known as the Global Market Allocation System, GMAS, is one of the more important applications of random utility passenger choice models currently used in Boeing.   With this tool, all the traffic between all the origins and destinations in the world can be simultaneously allocated to all the available flight legs in the world.  From this, passenger revenue can be estimated, competitive effects studied, new service evaluated and the value of network changes quantitatively measured.
The Airline Network Demand Allocation Problem
One of the ways in which Boeing Marketing tries to persuade our airline customers to purchase our products is by demonstrating their value as part of the customer’s service network.  In essence, an airline is offering to passengers opportunities to safely move from an origin to (one or more) destinations by means of a seat on an airplane, in a reasonably well appointed cabin, departing and arriving at reasonable times, hopefully with as few stops and plane changes as possible.  That the passenger desires these features (and to what extent) is empirically established through our passenger choice models.  Since we are a principal enabler of our customer’s network products, our value to the customer is substantially determined by the extent to which our products give his network a competitive advantage.  
The airline network analysis problem is to determine the best airplanes, the best departure and arrival times, the best connection structures, and the best choice of origins and destinations to be served by the airline to maximize revenue in the face of the same kinds of decisions being made at the same time by its competitors.  One aspect of “best” here is least cost and greatest efficiency.  Another, the one of most importance to us, is maximum revenue.  If we take the viewpoint of the airline, we want to know how much more the passenger will pay to fly on our itineraries than on those of our competition.  This is the other side of the balance sheet from costs.  An optimally cost efficient operation is useless if no one will pay to fly on it. 
Thus the market allocation problem is figuring out how many passengers will take each available itinerary between each OD pair.  We will do this using a passenger choice model –  the low resolution passenger choice model discussed above.
Path Generation

The first problem we will consider is that of itinerary or path generation.   This is the process by which the paths that are be available to the passenger – the itinerary choice set, if you will – are determined.  The issue of path generation arises because schedule sources such as the OAG (Official Airline Guide) do not describe all the possible ways of getting from an origin to a destination.  In particular, interline connections – those requiring a change of carriers – aren’t generally recorded by schedule services because of the alliance relationships between carriers which, in turn, dictate preferred connections that may not meet optimal passenger requirements.  The generation of connections, however, is routinely carried out by the reservation services and, often as not, by the passenger himself.  Thus, in order to understand the options open to passengers for booking, and subsequently to accurately portray the loads on alternative paths between an origin and destination, there must be a means for taking a reported schedule and turn it into a full set of possible paths between any two cities in the network of interest.  
A little reflection will reveal that very quickly the number of possible paths between an origin-destination pair will explode.  How many ways are there in the US airline network to get from Seattle to New York?   There are easily thousands.  But many of them are ridiculous.  You usually don’t go to New York by way of Warsaw, but you can create an itinerary that takes you from Seattle to London, on to Warsaw, back to Chicago, then on to New York.  

It is clear that there must be some reasonable criteria for eliminating such a silly connection from consideration.  Such a criterion is called in this discussion a stopping rule.  The generation process can actually be broken down into two phases – the creation of a potential connection, and its evaluation for “reasonableness” encompassed in the stopping rule.  By way of example, consider the network topology described by Figure 3 and Figure 4. In this case, there are eight ways of getting from the origin to the destination.  Path 3 is a direct non-stop path, whereas path 7 makes five stops on a quite circuitous route.  One way of generating paths is the so called “depth-first” search (Berge, 1996).  In this approach, each possible path is described as the branch of an inverted tree, and is generated as follows:  a) from the origin, put all the possible non-stop destinations in some order; b) go to the first non-stop destination, and if it’s the final destination, then you have a path, record it, and go to the next, c) if not, repeat steps a and b for each destination reachable with a non stop from the current destination.  You continue in this way until all branches of the tree are explored, recording all the itineraries that connect the origin and destination and ignoring all the rest. 

(Figure 3 goes about here)

(Figure 4 goes about here)


A pseudocode description of the generation algorithm is as follows:
Load all destinations available from origin

   For each destination {
      Order all flights out of origin by passenger utility

      Is final destination among destinations?

         Yes:  Record path; next destination

         Hit stopping rule?

            Yes:  Next destination

            No: { 

               Load all 2nd order destinations from this destination

               For each 2nd order destination {
                  Order 2nd order flights by passenger utility

                  If final destination among 2nd order destinations?

                     Yes:  Record path; next destination

                     Hit stopping rule?

                        Yes:  Next 2nd order destination

                        No: {

Repeat for 3rd, 4th etc. order destinations until there are no more}
                     Next 2nd order destination



}
   
Next destination
   }
This algorithm will always generate paths that will meet any stopping rule criterion.  However, if the stopping rule is very generous, allowing most paths, and the network is large, then the computing execution time starts to rival the expected life of the universe.  
There are many possible stopping rules.  Most use some duration argument, such as some multiplier of the non-stop flight time.  We purpose a stopping rule, however, that makes use of passenger utility.  Essentially, we will stop when the utility of the path being generated becomes so low as to be of no value to the passenger, so few if anyone can be expected to select that itinerary.

The low resolution utility function described above will be used.  Consider the case where an arbitrary path, say path j, is compared to a “perfect” path, denoted , which is a non-stop leaving and arriving at times which yield the highest utility as defined by V().  Then we have, by the definition, 
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where Pr[j,] is the probability of choosing flight j over the perfect non-stop .  

A reasonable stopping rule is to eliminate any path for which the probability of a passenger choosing it is too low.  Specifically, any path for which the expected passenger demand is less than one.  Thus, if N is the number of passengers who want to go from the origin to the destination – the expected demand – then the rule is “Eliminate any path j such that Pr[j,] is less than 1/N.” Thus we have 
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(The symbol 
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 is read “implies.”)  Define the function Q(j) as the difference between the utility of  and the utility of j:
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Then a path is eliminated if  
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While using a stopping probability of 1/N is intellectually attractive, it may still be too generous for even small networks.  We can make this stopping rule more stringent by choosing an arbitrary probability P* as our stopping criterion, in which case the ln(N-1) term in the above equation becomes ln(1/P*).  


However, there is a way of cutting the number of paths down even further, one which is also more satisfying than the choice of an arbitrary P*.  The number of connections generated with even a relatively high value of P* can far exceed the demand for travel in an origin-destination pair.   On long distance markets the number of reasonable paths, according to the utility stopping rule, can exceed the market demand by a factor of 25 or more.  Since the number of connections has a dramatic effect on the execution time of the demand allocation algorithm, further pruning of the useful paths can yield substantial computational performance benefits.


We propose a “most useful path” approach that can dramatically reduce the number of paths to be considered for demand allocation.  Let  be the set of paths for an origin-destination allowed by the stopping rule.  Calculate the probability of each path in  considering all the other connecting paths in .  That is, rather than compare path j to a (perhaps) theoretical perfect non-stop , compute the probability of an arbitrary path 
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 compared to all the other connections in  using the general passenger choice probability of
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Now order the paths in  from high to low according to p.  Without loss of generality we can denote the highest probability by p1, then next by p2, etc., so the ordering is such that 
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The expected number of passengers that would fly on path  is simply Np.  So for what value of p does Np first fall below 1?   Every path after that one will also have an expected demand of less than 1.  Is it sensible to include such paths in the generated set, since the likely demand is very small?  If not, then they could be eliminated from .  But removing a path from  changes the probability p, for every  remaining in .  (In fact, recalling the IIA discussion, the probabilities of the remaining paths are increased slightly.)  The objective then is to find the set of itineraries which has the fewest number of paths with expected demand less than 1.

This line of argument leads to the following algorithm:

1. Order the paths in  as described above.

2. Consider the first two paths p1 and p2, define  = {1, 2}, containing exactly these two paths, and compute the probability of each, as 
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where V(k) is the utility of path k.

3. If Np2 < 1 then stop, otherwise continue.

4. Add the next path in order to the set, and re-compute the probabilities of each path in the new set.  That is, add path k to , so  = {1, 2, …k}, and calculate 
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5. If Npk < 1, then stop.  Otherwise repeat.
Market Allocation

Market allocation refers to the process of allocating the demand in an origin-destination pair (a market) to the alternative routes that serve that pair.  There are two related kinds of market allocation—unconstrained and constrained.  Unconstrained allocation refers to allocating passengers to flights without regard to the capacity of the equipment flying those routes.  Constrained allocation takes those capacities into account.

Unconstrained allocation is very simple.  The passenger choice model yields, as its primary product, the probability that a passenger in a given market will buy a ticket on a selected itinerary serving that market, as a function of travel time, fare, departure and arrival times, number of stops, and so forth.  The allocation of the number of passengers that would fly on a chosen route, then, is just the product of that probability times the total demand for travel in that market.  The unconstrained demand for a leg is then just the sum of the demands for that leg across each path that uses the leg.

Constrained allocation is more complex.  The problem is that a particular leg connecting two airports may be a part of a number of itineraries connecting an array of markets.  The total demand on that leg is the sum of the individual demand from each market using that leg, and when that demand exceeds the capacity of the equipment, the allocated demand destined for that leg must be reapportioned to other flights.  This reallocation is done by reducing the demand in the system to the point where the total allocated demand just fits the capacity.  The filled leg is then removed from the network, along with all paths that use it, and the remaining, unfulfilled demand is allocated to the reduced network.  This process is repeated until there is no more demand to be allocated or until all eligible paths are used.  

Formally, consider the allocation of demand D in the origin-destination market in question.   Let  be the set of paths which have been discovered (using the path generation algorithm) connecting the origin to the destination.  Then passenger choice model yields the probability that a particular itinerary 
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The unconstrained demand for itinerary j, denoted by D(j) is simply the expected demand on the itinerary; that is D times the probability of j, or
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Clearly, the total demand across all itineraries serving the OD pair is D. 

The demand for a particular leg in the network is the sum of the demands allocated to itineraries that use that leg.  Let  be the set of all paths that connect any market in the network that use leg , and let M  be the set of markets which use any of those paths.  For a given path 
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, write D for demand in that market and p() for the passenger choice probability of itinerary  in market .  Then the total demand for the leg , written as D()is 
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Demand on a leg is constrained by the capacity of that leg.  If  is set of legs in a network, and C  is the capacity of leg , then if D() > C  for at least one , constrained demand will not match unconstrained demand.  The allocation of constrained demand causes the network to change during the allocation process.  The entire network is not available to all passengers, since some will find paths full when they come to book seats, and these must select from a reduced set of choices.  This is constrained demand allocation.
Under the assumption that booking rates are constant for all paths in all markets, then capacity is reached when, for some number less than D(), say D*(), it is true that D*() = C .  It is then the case that there must be values 
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This is true if 
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This implies a proportional reduction in the demand on each market, and is the basis for the computation of constrained demand.  The formal, pseudocode specification of the algorithm is as follows:

For the number of legs in the network {
Find the leg in the network the most over capacity in absolute numbers

If no leg is over capacity then end

For each market in the network {
Calculate demand adjustment factors 

Set demand in that market to adjusted value

Re-compute allocations to all itineraries in that market

}
Calculate allocations to all legs in network

Remove all itineraries which use legs that are at capacity 

If no itineraries left in network then end

Set demand in all markets to original demand less adjusted demand

}
The procedure of the algorithm above is also market-order independent.
The Network Separability Problem
Very often in the analysis of an airline network, we begin with a base case representing the current situation, and make changes to that base case as we try new equipment or schedules.  Such changes have effects throughout the network, and those effects must be understood to fully appreciate the impact of a proposed change.  

The network separability problem is how do we determine what parts of a network must be re-analyzed if some other part changes.  Alternatively, what parts of the world’s airline network can we ignore if changes occur in any given sub-network.  Specifically, suppose we decide to introduce a long-distance non-stop flight in the Perth-London market (for which no such service now exists).  It is clear that the addition of this service will change the available itineraries for almost every market in Australia, since we should expect demand shift from Sydney and all the markets that use Sydney in one or more of its most useful paths to itineraries through Perth.  Thus we should reallocate the demand in these markets to determine the effects of the changes on demand allocation.  We could also expect changes in paths through London from Australia.  But it is not at all clear that we would see any changes in some other parts of the world, such as Arusha, Tanzania to Johannesburg, South Africa.   

Since execution time of a GMAS analysis is directly proportional to the number of markets being analyzed, eliminating from the analysis markets that will not be affected by a given change could save significant time, and since there are over 350,000 markets in the current world network, that savings could be considerable.  The passenger utility stopping rule yields a useful specification of the additional markets that need to be considered if changes are made in a given market.  Recall that the general process for generating paths moves down a tree-structure looking for destinations from each node in the tree.  At each node, the algorithm examines if the destination can be reached directly from that node, and if so, and if the utility stopping rule is not violated, that path is added to the itinerary list.  
If we add one step to the generation process, we then have the necessary datum for separating a particular market from the rest of the network.  Suppose as we search from a specific node we are not able to reach the final destination.  In this case, let’s introduce an artificial, perfect path from that node to the destination.  That is, we create a hypothetical path from this node to the destination which has the least disutility possible (assuming fare does not change).  The addition of the hypothetical path to the search creates a potential itinerary for the market.  But if the total utility of the path with its hypothetical leg is not sufficient to get the path included in the most useful path list, then we need look no longer at nodes beyond this one.  We refer to such a node as a worthy airport.   It is called that because, when a change is made to a given market’s network, only airports included in existing paths or included among the worthy airports for that market need to be examined for changes – are worthy of consideration when network changes are made.      
While GMAS creates paths using its path generation algorithm, it builds a list of worthy airports for each market.  Then, if for any specified set of markets in which changes are made to anything in the network structure – schedule, equipment, fare – only those airports in the collective worthy airport list need to be analyzed for the effects of the changes.  Sometimes the worthy airport list is quite large (markets which include London, for example, have several thousand airports in the list), but in most cases it substantially trims the extent of a market allocation.

5 The Universal Market Simulator (UMS)

UMS, the Universal Market Simulator (so-named by its development team without a shred of modesty) is a large-scale, agent-based simulation of airline passenger choice behavior in the context of airline business tactical and strategic decisions (Parker et al, 2004).   The simulator is being developed as a tool to study the economic and business dynamics of the industry.  It is an essential experimental device for future market research.
Overview and Major Simulation Components
The passenger choice portion of UMS uses the high resolution discrete choice model as part of the process of simulating the booking behavior of a “synthetic passenger.”   By booking behavior we mean the determination of how many tickets are to be purchased, when they will be booked, whether or not they are cancelled before use, under what affordability constraints, and on what particular itinerary of those available.   The response of the simulated airlines to the booking behavior exhibited by the passengers comes into play by simulating the airline revenue management system (which determines the availability and price of seats on itineraries of interest) and the airline competitive decision processes of route selection and timing, fare setting, and marketing.
The simulation consists of four major components.  These are illustrated in Figure 5.  The four major components are the Cities and Markets, the Global Distribution System, the Airlines, and the Passengers.   The Cities and Markets represent the basic stage on which the Passengers play.  The Passengers want to move from city to city, giving rise to Origin-Destination (OD) Demand.  That demand is based on, in a general sense, the market demographics of the OD market under consideration.  They attempt to move from origin to destination by booking seats provided by the Airlines.  The Airlines have Flight Schedules, listing available routings, departure/arrival times, and equipment capacity and configuration, and manage pricing and availability using Revenue Management Systems, which adjust seat availability by forecasting demand at departure.  Finally, the transactions between Passengers and Airlines are managed by the Global Distribution System, which manages the simulation.
(Figure 5 goes about here)

Agent-Based Models and Simulations

UMS is a so-called “agent-based simulation.”  Agent simulation uses cheap computing power to represent the interactions of a large number of relatively simple entities called agents.  Agents are computer programs which are designed to duplicate the important and salient behavior of entities observed in the real world.  The literature uses a number of terms for the field, including agent-based models (e. g. Bonabeau, 2002 and others too numerous to mention), agent-driven models (Boeing 2005), agent-based simulation (Hales et al., 2003), and more recently generative science (Epstein, 2006).  

The passenger agents in UMS are imbedded in an environment that is also modeled, although not by passenger choice models.  These mathematical models govern the rate of booking, how many tickets are requested, the trip purpose, passenger cancellation, and other features outside of the direct itinerary choice question.  

The UMS Message Architecture 

UMS coordinates and manages the actions of the agents by means of what we refer to as the messaging architecture.  Basically, all the agents in the simulation communicate with one another by means of passing messages through a message queue.  Messages addressed to other agents are posted there, and agents read messages from the queues when they have time available.  This allows agents to operate independently of one another while maintaining coordinated action.   This process of selection and booking is managed in UMS by employing the messaging features of Microsoft’s .NET development platform.  This service allows independent processing threads (possibly on different computers) to communicate with one another by passing messages through the queue maintained by a central server.  Using this facility, we can emulate the general process of a passenger selecting and booking one or more tickets on an available flight between one city and another.  This primary message flow is illustrated in Figure 6.   The main messages are: 
1. A passenger requests one or more seats on a flight from City A to City B from the GDS.  The passenger supplies how much he is willing to pay, his trip purpose, and has pre-defined socioeconomic characteristics that affect his preferences;   
2. The GDS takes the passenger’s request, identifies the airlines that fly in the market, and requests from those airlines seats in fare classes that have space and that the passenger can afford; 
3. The airlines check availability and return messages to the GDS indicating that is available, including departure and arrival times, fare, cabin, booking restrictions, and so on;  
4. The GDS assembles the responses from the airlines, and submits them as one packet to the passenger; The passenger uses the high resolution passenger choice model to select one of the available alternatives, and notifies the GDS of which option was chosen;  
5. The GDS notifies the airlines either what the choice was, so seats can be removed from inventory, or that their alternatives were not chosen, so the seats can be freed up for other passenger bookings.  The passenger uses the high resolution passenger choice model to select one of the available alternatives, and notifies the GDS of which option was chosen;
6. The GDS notifies the airlines either what the choice was, so seats can be removed from inventory, or that their alternatives were not chosen, so the seats can be freed up for other passenger bookings.
(Figure 6 goes about here)

How UMS utilizes the passenger choice model is typical of how probabilities enter into a discrete simulation.  Conceptually, you can think of constructing a “roulette wheel” with wedges that correspond in width to the probability of each available itinerary.  The wheel is spun, and the winning itinerary is the one that collects the white ball.  More prosaically, the options are put in some arbitrary order, and the probability distribution function of the available choices created.  Of course, this is a discrete probability distribution, so it consists of discrete jumps equal to the probability of each choice.  Then a random number generator creates a uniformly distributed random number between 0 and 1, and the choice corresponding to that number found by searching the discrete distribution function.  
Because of the independent and asynchronous nature of the messaging structure, the computing architecture of UMS allows implementation as a set of independent processes operating in different threads on one or more separate machines.  This makes the simulation scalable while maintaining reasonable operating characteristics, as illustrated in Figure 7.

The simulation is designed to run repeated 90-day booking periods among the airlines operating in a set of markets.  For each OD pair in the simulation, it is determined  if a booking is going to occur.  If it is, then the message sequence defined above is launched.  Each airline is interrogated for availability, and the passenger agent makes his choice using the passenger choice model.  The booking is then logged into the reservation system of the airline, and, if necessary, a revenue management cycle is initiated.  All the OD’s are managed asynchronously (through the messaging structure) so that, for example, seats available at the start of a booking interrogation by one passenger may not be available by the time the passenger makes his choice. 
(Figure 7 goes about here)

The process is repeated for each booking day up to the day of departure.  As the bookings proceed, the revenue management systems of the airlines are monitoring demand, adjusting prices, and closing down lower priced fare classes.  The pricing policies of the airlines determine the rate and extent of these changes.  Those passengers that book later in the booking sequence see a different set of choices than those that book early, and it is these changes that form the basic dynamics of the relationship between passengers and airlines. 

The simulation can run for multiple booking cycles.  Between each cycle, the airlines can change their offerings.  They can adjust prices or pricing policies, adjust schedules, and discontinue, add or re-route flights.  The game theoretic policy formalisms around the decisions to make such changes – a key characteristic of the airlines as agents – have yet to be worked out.  Also not yet developed is the appropriate role of airports in the simulation.  Clearly there are cost attributes of an airport that enter into the airline decision making, which leads to competitive airport strategies, which in turn are required for the introduction of airport agents into the simulation. 

Adaptive Discrete Choice Models
As UMS develops, the high resolution model will be modified into what we call an adaptive discrete choice model.  This is a choice model which changes as the simulated passenger continues to book flights, gaining experience and using that knowledge in future decisions.   One such extension might look like this.   Take the basic high resolution model and add some new terms, as:
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The new terms in the equation depend explicitly on which airline is flying choice option j, which is denoted aj, from the set of all airlines serving the market , the presence of which is marked by the indicator variable X(aj) being either  0 or 1.  
The four aspects of this airline associated with the choice are: the frequent flyer mileage passenger i has with airline aj, denoted as Fi(aj);  the number of  positive and negative experiences passenger i has had with airline aj, written respectively as 
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; and the effects of marketing programs from aj on passenger i times the probability that i would be affected by marketing activity, i, and the level of marketing activity represented by M(aj).  The term a(aj) is a constant associated with airline aj.  
Under this construction, the interaction between the airlines and the passengers now take on more depth than just the purchase of tickets.  Simulated airlines can direct resources into crew training, thus improving the quality of the travel experience.  Or they could devote more to marketing and thus affect the passenger decision.   How these features are to be modeled within the airline agent has yet to be determined.
6 The Network Value Index
The Network Value Index is an application of the itinerary choice model that allows us to calculate how valuable a network change is to an airline, or how much the introduction of new equipment might be worth to an airline customer’s fleet.  It uses the discrete choice models we have discussed before, but couples them with the notion of consumer surplus as it is represented in the random utility case.
The Simple Network Value Index

The basic idea of the Network Value Index is a number which summarizes the difference in the value to a passenger of one airline network compared to another.   An example would be the improvement (or deterioration) of service in a collection of markets by the introduction of non-stops.   Another would be the impact on the passenger of the addition of a low cost carrier into a market.  We can define an index of customer value based on the econometric principal of consumer surplus.  When passenger utility is expressed as a logit random utility model, this approach is extremely convenient and easy to implement.  
Consider the consumer surplus brought about by changes in the airline network.  In the case where passenger utility is defined in terms of a logit random utility model, the computation of the Hicksian consumer surplus is quite straightforward.  Many authors have treated the calculation of consumer surplus in the random utility case quite extensively. Train (2003), Ben-Akiva and Lerman (1985), and Anderson  et al (1992) are excellent references.

By definition, Hicksian consumer surplus is the change, in monetary terms, the individual expects to realize from changes in the available choices.  For a change from choice set J0 to choice set J1, this expectation is    
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where i is the marginal utility of money to passenger i, 
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 is the utility of alternative j in network X = 0 or 1, and E[.] is mathematical expectation.  

If utility is expressed with a logit model with a linear-in-the-parameters form of V, then it can be readily shown (e. g. Anderson et al, 1992, p 60) that 
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and then Ci(J1, J0) becomes simply
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Notice that the expression in the square brackets is exactly the denominator of the logit probability density function.  Some authors (e. g. Ben-Akiva and Lerman, p 282) refer to this as the inclusive value.  Others use the phrase log sum value.  

We will refer to the quantity in the curly brackets in the above equation, the difference in the log sums between the new network J1 and the old network J0 as the Network Value Index, or NVI.  It reflects the per passenger change in utility due to the change in the characteristics of the network.  We will use the notation Ni(J1, J0) to indicate the NVI for the pair of networks with respect to passenger n.  The incorporation of the 1/i term has the effect of converting that utility to money.  
Notice that the differences between the two networks being compared can relate to any attributes of the network that is captured by the utility function V.  In the case of the low-resolution choice model, these attributes include fare, departure and arrival times, duration, and number and types of stops.  Thus, for example, we can examine the NVI that is created when a non-stop is added to a market where none now exists.  As another example, we can assess the overall quality of a network when compared to an appropriate base network.   A third example would be the computation of the fare premium available as a result of a network configuration improvement. 

Aggregating the NVI across Passengers in a Market

The NVI is an index of the change in value of modifications to a market’s path set. Dividing by i converts the NVI to an expected dollar value of the changes to that passenger – his consumer surplus.  So, if Qm is the set of passengers in market m, the total expected generated consumers’ surplus Cm is  



[image: image53.wmf]01

10

(,)

(,)

m

i

m

iQ

i

JJ

CJJ

a

Î

=

å

N

.


With the low resolution passenger choice model, we assume that the Vi(i) terms of Ni contain no passenger characteristics, and so we can consider all the passengers the same.  This means that, for all i, Ni is identical to, say, N, and i is a constant, say .  Then, if Dm is the number of passengers in Qm, and we have
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This represents the total consumers’ surplus for travelers in the market m.

The Marginal Utility of Income

The coefficient  is the marginal utility of income.  By definition, this is the derivative of the utility function with respect to income.  Also, under reasonable conditions (the so-called parallel Engels condition),  is constant across all members of the passenger population (McFadden, 1999).  
Suppose that the random utility function is linear in the parameters and linear in the fare term, then, if Y is income and f(j) is fare, we can write, for alternative j,  
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and thus we have, taking the derivative with respect to Y, 
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This works because a change in fare is exactly the same as an equal but opposite change in income.  Thus the income term is precisely the fare coefficient.  

However, the low resolution model (and the high resolution model, for that matter) is not linear in the fare term.   The fare term is expressed as ln(fare).  This means the Engels condition is not met.  In this case, we have
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and the marginal utility of income is weighted by fare.  Over the range of fares in most markets, we can approximate the functional form of the fare term reasonably well with a line of appropriate slope, as we do in the example below.
Aggregating Across Markets

To move from a single market to a collection of markets, a weighted average is used.  The calculation is quite straightforward.  Suppose M is a set of markets, and let Dm be the number of passengers in market m.  Define
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Then write the aggregated NVI as 
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Notice that the aggregate consumer surplus for the collection of markets is simply
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or the weighted average of the NVI’s for the individual markets in M.

Everybody in the population is not the same, and socioeconomic characteristics of the passenger, such as age and income, are key elements of the utility function.  Suppose the vector of variables in the observable utility component V contains a sub-vector of population characteristics, y.  Then the aggregation of the NVI’s for a passenger population is of the form
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where  is the distribution of characteristics y in population .  This is simply the sum across all individuals in the population of their respective individual NVI’s.  This would be the case if we used the high resolution model. 
An Example:  Introducing a Non-Stop into a Market

Suppose the function V is defined as follows, (which is a simplification of the low resolution model described previously);
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where f is fare, d is duration, S is stops and X = 1 if a morning departure, 0 otherwise.  This is close to the low-resolution model, except that for convenience we have dropped some of the stop and departure time coefficients, and have replaced the ln(fare) term with a linear approximation.  

Assume a hypothetical market with three paths, two with one stop and one with two stops, with different resulting durations and fares, and with one departing in the morning. In Table 3 below we have specified the values for the four attributes of the choices, have calculated the resulting values of V and eV(j), and then computed the log sum as required by the NVI definition.

(Table 3 goes about here)
Now, in Table 4, let’s add a fourth, non-stop flight to the list, shown at the bottom of the table.  Here the non-stop also has shorter duration and departs in the morning.  The resulting log sum is seen to be greater than that for the original case.

(Table 4 goes about here)
The NVI is then calculated as:


N(J0, J1) = -4.95909415 + 6.75093216 = 1.79183741
Since  = 0.0027, then C(J0,J1) = $663.64, and if the number of passengers in the market is, say, 100, the total consumers’ surplus created by passengers in this market due to the addition of the nonstop is Cm( J0, J1) = $66,364.
7 Random Utility Time of Day Demand (ToDD) Models
One of the most common components of demand modeling in the airline industry is the representation of Time-of-Day Demand (ToDD). In the general transportation literature, ToDD is a serious consideration for scheduling issues for fixed-schedule urban transportation systems, such as light rail or metro bus systems.  In this context it is often called “schedule delay.”   In air transport, however, it is one thing to wait a half-hour for the next bus, but quite another to wait until the next day for the next flight out.

Common experience suggests that the departure (or arrival) times of alternative flights are an important determinant of the choice of flights.  In utility terms, we can assert that there is a value associated with the timing of an airline schedule, in the sense that some flights that depart at certain times may be more or less preferred than others. The Boeing Decision Window Model asserts, for example, that flights that depart within a given window of time are acceptable and have no disutility, while those that do not are unacceptable, that is, have infinite disutility. 
The Utility Structure of ToDD

A straightforward way of handling ToDD in the context of the discrete choice models is to delineate a finite (say hourly) set of time bands and, using dummy variables, estimate a preference weight parameter for each time band.  For example, this is done in the low resolution passenger choice model with utility Vi(j) given by
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.
In this expression, the bottom four Xyy,j’s represent six different combinations of departure and arrival times (recalling the value of 0 means afternoon).  One aspect of this formulation is that it glosses over known distinctions made by passengers in the utility of departure times.  In particular, in some cases a passenger may find that 8:00 AM is the ideal departure time for a certain trip, while in another instance she might think 5:00 PM is an ideal time.  This concept of “ideal time” is suggested by the intuition that when we actually depart on an air trip depends on the available schedule, but when we would like to depart can be something much different.  This suggests that the disutility associated with a particular flight might be a function of the difference between our ideal departure time and the actual flight departure time.  
(Figure 8 goes about here)

There is another objection to the dummy variable construct which is of theoretical concern.  Since our models are simple multinomial logits, the IIA (independence of irrelevant alternatives) assumption is presumed to hold.  This means that if, say, no morning departure were available, the probability of a morning departure would be spread among the remaining alternatives in proportion to their probabilities that would obtain if there were a morning departure.  But it may well be the case that if no morning schedule is available, the next best time would be in the evening, not in the afternoon, and so just spreading the morning utility among the others in proportion is does not represent realistically passenger behavior.
Consider Figure 8.  The horizontal axis is the time of day, and the vertical axis is disutility. Two flights are shown, one in the morning departing at time t1 and one in the evening departing at t2.  The ideal departure time for the passenger is towards noon, and indicated by .  The curve represents the disutility of departing at a time different than the ideal one, which gets larger as we move away from the ideal time, and is of the form G(ti) =  G(ti – ) for some appropriate function such that G = 0 at  and is negative on either side of .  A simple quadratic form for G = (ti – )2 is easy to imagine, and is used as the illustration in Figure 8.

This formulation accounts for the differing levels of disutility that arise from departure times that differ from a passenger’s ideal time.  Let’s reformulate the utility function using this expression. Specifically, let i be the ideal departure time for individual i, and tj the flight departure time for flight j, then write
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The vector product Tz is constant for this discussion, so to simplify the notation we may consider simply Vi(j) = tG(I - tj)  since it will factor out of each term in the logit expression.  The probability of path j from a set J with this utility function for passenger i is then, 
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So far there is little novel about this approach.  But let’s assume that i, the ideal departure time, is not a constant for passenger i, but rather a random variable for her.   In other words, assume that the probability of the choice depends not only on the probability distribution of the utility function (which is the #(J) – 1 dimensional function given by the logit expression), but is also a function of the passenger’s ideal time of day.  

First, there exists a joint probability distribution function for passenger i, which we will denote Fi(j,i), which is defined over the Cartesian product of the discrete domain of the alternatives and a (continuous) time domain.  Recalling the definitions of joint probability distributions and of conditional probability, we have, if fi(i) is the (marginal) distribution of i for passenger i:
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and we can then write the probability of choice j as, where the interval [0, r] is the time domain of interest,
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This is a mixed logit distribution since it consists of a logit model with a parameter   that is mixed with the density function fi.  If we cannot observe  directly for passenger i, but rather we observe the distribution function fi, then  is referred to as a latent variable.

The effect of this formulation is that we have split the problem into two parts – the first being to find an appropriate function f for the distribution of ideal time of day, and the second to find an appropriate function G for the disutility of the difference between the ideal time and the actual departure time. 
Parker and Walker (2006) have conducted a preliminary analysis showing that the disutility of leaving early (before the ideal time) is different than leaving late (after the ideal time).  This is of course different than the simple quadratic form we used in the example.  We are continuing to explore this aspect of the problem, looking for the best fitting and most generally applicable functional form for the disutility.  Work is also underway to analyze the double humped curve characteristic of the distribution of the desired time of day departure/arrival times.   Koppelmann, Caldron and Parker (2007) have made significant strides in decomposing the empirical curves into additive combinations of sine and cosine terms.  Walker (2006) is attempting to decompose the curve into a mixture of normal distributions.
8 Willingness-to-Pay-to-Fly Models
The term willingness-to-pay (WTP) is a synonym for the demand vs. price curve, often called simply the demand curve.   It is usually presented as a graph with cost on the vertical axis and the number of individuals in the marketplace willing to pay that cost on the horizontal axis.  WTP curves are important because, if known, they provide a mechanism for the computation of demand increase (or decrease) caused by a price decrease (increase) – so-called induced (in general economics) or stimulated (in the airline industry) demand.   This is, of course, critical to the understanding and estimation of the effects of network enhancements on the demand supported by that network.  In this Section we will sketch out how a random utility model can be applied to this problem.
While the simplest discussion of WTP only concerns changes due to price (and that case will be the basis for the intuitive discussion and example below), it is easy to extend the concept to include inducement effects caused by other network feature changes, such as frequency, distance, and so on.  This type of generalized price viewpoint is closely akin to the definition of consumer surplus discussed in the NVI. 

From a choice model perspective, and in most transportation planning fields, WTP can be determined by modeling two choice situations:  the choice of making the trip or not, and the choice of making the trip by air or not.   These are the trip generation and mode choice models, respectively (see Hensher and Brewer, 2001).   For the sake of simplicity and because of data availability, we will only consider the mode choice component in this discussion.  
The idea is very simple.  If we can define and estimate a logit choice model for the selection of an itinerary from among a set of itineraries, then why not define and  estimate a choice model for the choice of to fly or not fly?  The data we collected in the SideStep survey discussed in Section 0 provides us data to test our idea.  Recall that there was a question on the survey asking the respondent that if the given options were the only available, would they make the trip by air or not.   It is that data that forms the basis for the model we will now discuss.

A Fly or Not Fly Choice Model

Suppose that we have a binary choice random utility model where the two choices are:  1) to fly between the origin and destination in a particular market, or 2) not to fly (either not go or go by some other means).  Let AF indicate the fly choice and ~AF the not to fly choice.  As we have seen a number of time now, the basic random utility formulation for a binary choice case is as follows:  UF,i, the utility to passenger i of flying, and U~F,i  the utility of not flying are given by the stochastic equations 
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where the V’s are the observable portions of the utility functions and the ’s the stochastic terms.  We assume the VF(xF) is a function of a vector of attributes of flying and characteristics of the passenger denoted xF, and that V~F(x~F) is a function of another vector x~F of the attributes of not flying (along with the passenger characteristics), not necessarily the same as xF.  We will further assume that each  is independent and identically distributed across the two alternatives and across all passengers, and so we can assert a logit probability of 
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The probability of not flying is, of course, 1 - Pi[AF].   

We should note that there is no requirement in random utility theory, or its logit incarnation, that VF and V~F in any way be the same function, or even the same functional form.  This will become useful shortly.   It is common in random utility theory to view VF(xF) as a form of generalized price, and from that perspective the equation above represents the willingness-to-pay to fly for the passenger i.  Clearly, this is a different choice model than that which is estimated for the probability of choosing among several different alternative paths in a market.   In many cases in other transportation contexts, this model is quite close in form to other choice models, but it is a legitimate model that can be estimated and evaluated itself with no reference to any other choice circumstances in the passenger’s retinue of decisions. 

A Simple Example

As an example of the fly/no-fly choice model, consider the following.  We define three relevant attributes of the market:  a constant which we interpret to mean the (negative) utility of not making the trip by air, the minimum available fare to make the journey, and market distance (determined to be the great circle distance between the city pair that defines the market).  In this example we will ignore passenger characteristics.  Now, let xF = (minimum fare) and x~F = (constant (dis)utility, distance), and then define VF(xF) and V~F(x~F) with the following table:
(Table 5 goes about here)
We have, assuming a linear-in-the-parameters expression, 
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where f is minimum fare and d is market distance.  From this we have 
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Note that the subscript i has disappeared from P, since there is no distinction in this model between one passenger and another.  

Figure 9 is a graph of this probability as a function of fare for representative values of c=-2.62304, d=-0.00158, f =-0.00235 and d=240 minutes.  It behaves exactly as we would expect, dropping off rather steeply then leveling out, and having a small positive probability that some won’t fly at price zero.   
(Figure 9 goes about here)

If we have data which indicates current values of the attributes in a fly/no-fly model, and the current observed demand that exists with those attribute values, then computing the induced demand created by changing one of those attributes is clear.  Specifically, let P(AF) be the probability of flying under the initial attribute conditions xF, and P*(AF) the revised probability under the modified values of the attributes, xF*, and suppose D is the known demand at attribute level xF.   Then the demand under the new values, D* is given by
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For example, in the WTP curve shown in Figure 1 suppose that the demand at a fare of $1500 is 550.  The probability of flying at a $1500 fare is about 0.3724.  Now lower the fare to $1000, and the probability climbs to 0.6577.  The demand will increase to 550 x (0.6577/0.3724) = 971.  The induced demand is then 971 – 550 = 421.  

Another approach to the willingness-to-pay problem is through the use of nested logit models.  Nested logit capitalizes on the similarities between sets of alternatives to develop more parsimonious choice models which often better fit the data in hand.  They are beyond the scope of this discussion, but a thorough analysis is given in Garrow, Parker and Jones (2007).

9 Closing
In this discussion we have described how to quantitatively and empirically describe the value passengers place on various aspects and qualities of air travel.  We have offered equations that tell us the dollar value of the trade-off between stops, travel time, fare, and a number of related features.   We have demonstrated how these models are built, and discussed the data from which they are estimated.
We have used itinerary models to build applications that allow us to allocate the demand for air travel to the world’s airline network in a consistent and rigorous way – the Global Market Allocation System.  We are also using the technology to construct highly detailed analytical tools for in depth exploration of how our products benefit our customers, and how they affect the competition between one another so that we can use that information to our benefit against our competition – the Universal Market Simulator.

We have also described some of the advanced applications of passenger choice models.  The Network Value Index (NVI) gives us a measure of the quantitative value of a network improvement to our customers, in a form that can be included in the pricing of the our products.  Applying advanced methods of random utility gains us valuable insights into tough problems like Time-of-Day Demand (ToDD) and measuring stimulated demand.  

As we attend and contribute to industry conferences and symposia presenting the results of our work to date, we are seeing an increased interest on the part of our airline customers on how Boeing is approaching these problems.  It seems the approach is being increasingly explored and adopted by the industry, and Boeing can hopefully claim a contributing role in developing these methods.  
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Tables
Table 1:  Estimates of Coefficients for the High Resolution Passenger Choice Model
	Model Term
	Business Trip Purpose
	Leisure Trip

Purpose

	
	Estimated Value
	Standard

Error
	Estimated

Value
	Standard

Error

	f
	Log Fare
	-3.881
	0.170
	-4.298
	0.163

	d
	Duration
	-0.971
	0.078
	-0.568
	0.073

	db
	Duration x Log Base Duration
	0.265
	0.026
	0.117
	0.023

	S
	Stops
	-0.174
	0.049
	-0.112
	0.045

	mdi
	Morning Inbound Departure
	0.000*
	-
	0.189
	0.065

	mai
	Morning Inbound Arrival
	0.000*
	-
	0.000*
	-

	edi
	Evening Inbound Departure
	0.000*
	-
	0.000*
	-

	eai
	Evening Inbound Arrival
	0.000*
	-
	0.000*
	-

	mdo
	Morning Outbound Departure
	0.000*
	-
	-0.152
	0.057

	mao
	Morning Outbound Arrival
	0.186
	0.075
	-0.158
	0.088

	edo
	Evening Outbound Departure
	0.000*
	-
	0.000*
	-

	eao
	Evening Outbound Arrival
	0.000*
	-
	0.000*
	  -

	1st
	1st Class Cabin
	0.299
	0.048
	0.288
	0.044

	ec
	Economy Cabin
	-0.557
	0.053
	-0..429
	0.051

	25
	Income < $25,000/yr
	-1.292
	0.286
	-1.032
	0.184

	100
	Income > $100,000/yr
	0.403
	0.134
	0.936
	0.156

	St
	Student x Log Fare
	-2.766
	0.563
	-0.814
	0.267

	Eu
	European x Log Fare
	0.559
	0.169
	0.941
	0.154

	Fe
	Far Eastern x Log Fare
	-0.681
	0.219
	0.144
	0.249

	Oz
	Australian x Log Fare
	0.000*
	-
	0.435
	0.201

	J
	Japanese x Log Fare
	1.405
	0.238
	0.000*
	-

	1-6
	1-6 Day Journey Duration
	-0.073
	0.022
	-0.251
	0.026

	7-10
	7-10 Day Journey Duration
	0.000*
	-
	-0.138
	0.020

	
	10-20 Day Journey Duration
	-0.062
	0.018
	0.000*
	-

	G
	Gender x Duration
	-0.065
	0.020
	0.000*
	-

	ecEu
	European x Economy Cabin
	-0.287
	0.146
	-0.317
	0.223

	*not statistically significant


Table 2:  Estimates of Coefficients of the Low Resolution Passenger Choice Model
	Model Term
	Business Trip Purpose
	Leisure Trip

Purpose

	
	Estimated Value
	Standard

Error
	Estimated

Value
	Standard

Error

	f
	Log Fare
	-3.608
	0.137
	-4.298
	0.130

	d
	Duration
	-0.998
	0.073
	-0.817
	0.065

	db
	Duration x Log Base Duration
	0.267
	0.024
	0.205
	0.021

	S
	Stops
	-2.728
	0.024
	-2.728
	0.021

	md
	Morning Departure
	-0.189
	0.065
	0.177
	0.063

	ma
	Morning Arrival
	0.000*
	-
	0.000*
	-

	ed
	Evening Departure
	0.000*
	-
	-0.130
	0.055

	ea
	Evening Arrival
	0.000*
	-
	0.000*
	-

	1st
	1st Class Cabin
	0.280
	0.047
	0.288
	0.043

	ec
	Economy Cabin
	-0.584
	0.048
	-0.465
	0.045

	*not statistically significant


Table 3:  Log Sum of Original Schedule
	Fare
	Duration
	Stops
	AM Depart
	V
	eV

	$200
	7 hours
	2
	No
	-10.898
	0.00001849

	$400
	5 hours
	1
	Yes
	-7.574
	0.00051363

	$400
	4.5 hours
	1
	No
	-7.357
	0.00063766

	
	
	
	Log Sum
	
	-6.75093216


Table 4:  Log Sum of the New Schedule
	Fare
	Duration
	Stops
	AM Depart
	V
	eV

	$200
	7 hours
	2
	No
	-10.898
	0.00001849

	$400
	5 hours
	1
	Yes
	-7.574
	0.00051363

	$400
	4.5 hours
	1
	No
	-7.357
	0.00063766

	$400
	4 hours
	0
	Yes
	-5.141
	0.00584949

	
	
	
	Log Sum
	
	-4.95909415


Table 5:  WTP Utility Structure

	
	Constant
	Fare
	Distance

	VF
	0
	f
	0

	V~F
	c
	0
	d
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Figure 1:  SideStep Survey Screen Image

[image: image76.wmf]Figure 2:  The Vision of the ‘Ultimate’ Passenger Choice Model

[image: image77.wmf]Figure 3:  A Hypothetical Origin-Destination Network

[image: image78.wmf]Figure 4:  The Paths from the Hypothetical Network of Figure 3.

Figure 5:  Major UMS Components
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Figure 6:  UMS Message Flow
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Figure 7:  UMS System Architecture

Figure  8:  Time-of-Day Demand Utility Structure

Figure 9:  Willingness-to-Pay Curve
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�If we specifically assert the Independence of Irrelevant Alternatives (IIA) assumption then we have no problem (since knowledge of options not considered is of no consequence).  But to validate the IIA assumption requires knowledge of all the options available, and that can be quite difficult in practice.  We thus can get trapped in a circular reasoning situation, where knowledge of what we don’t know is needed to support an assumption about the nature of what we don’t know.
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