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ABSTRACT 
 
This study explores the use of discrete choice methods for airline passenger cancellation 

behavior.  A Discrete Time Proportional Odds model with a retrospective time scale is estimated 

based on the occurrence of refund and exchange events in a sample of tickets provided by the 

Airline Reporting Corporation.  Empirical results based on 2004 data from eight domestic U.S. 

markets indicate cancellation rates are strongly influenced by both the time of ticket purchase 

and the time until departure.  In particular, while business travelers purchasing tickets close to 

flight departure are more likely to refund or exchange their tickets, both leisure and business 

travelers increase their refund and exchange activities as their flights approach departure.  

Cancellation rates are also influenced by several other covariates, including departure day of 

week, market, and group size. 

 

 

 
Keywords: hazard model, discrete choice, revenue management, cancellation, air traveler 
behavior 



 

 

A HAZARD MODEL OF U.S. AIRLINE PASSENGERS’  
REFUND AND EXCHANGE BEHAVIOR 

 
 

1.  INTRODUCTION  

Currently, there is renewed interest in the airline industry in integrating discrete choice models of 

passenger behavior with traditional revenue management, scheduling, and other applications.  

This interest is renewed, not new, in the sense that as early as the 1980’s several attempts were 

made to use discrete choice models in revenue management.  However, with a few exceptions, 

these initial discrete choice modeling efforts were abandoned in favor of more simplistic 

probability models (e.g., demand for booking classes on a flight arrives according to a Poisson 

process, cancellations are binomially distributed, etc.) and/or time-series methodologies based on 

historical averages (e.g., the no show rate for a flight is a weighted average of no show rates for 

the previous two months).  While these probability and time-series models were easier to 

implement, they did not capture or explain how individual airline passengers made decisions.  

Moreover, many of the models currently used in practice make strong independence 

assumptions; e.g., it is common to assume the demand associated with a booking class on a flight 

is independent of the demand for all other booking classes on that (and surrounding) flights.  

However, over the last several years, these and other assumptions embedded in traditional 

revenue management algorithms have begun to be more openly challenged (Oliveira 2003; Boyd 

2004; Boyd and Kallesen 2004; Hornick 2004; Lieberman 2004; Dunleavy and Westermann 

2005; Ratliff and Vinod 2005; Van Ryzin 2005), forcing a re-examination of how one can model 
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individual airline passengers’ behavior using discrete choice or other models ground in 

behavioral theory.  Recent work using discrete choice methods for revenue management include 

that by Garrow and Koppelman (2004a; 2004b) for no show applications, Ratliff (2006) for 

demand unconstraining and recapture applications, and Talluri and van Ryzin (2004a) who 

explore the use of a simple multinomial logit (MNL) embedded in a optimization model to 

determine seat allocation levels. 

 This study explores the use of discrete choice methods for another component of revenue 

management, namely cancellation models.  Specifically, a model of airline passengers’ 

“cancellation” behavior is estimated based on the occurrence of refund and exchange events in a 

sample of ticketing data from the Airline Reporting Corporation (ARC).  Survival analysis 

methods are used to explore the pattern of cancellation probabilities over time and to determine 

the extent in which the observed heterogeneity of tickets (i.e., predictors) changes that pattern. 

With respect to the pattern of cancellation probabilities over time, survival models are used to 

predict the conditional probability that a purchased ticket will be cancelled in a time period given 

it survived up to that point (hazard probability).  With respect to the observed heterogeneity, 

survival models are used to explore the amount of variation induced by different predictors in the 

hazard probability.  Empirical results based on a Discrete Time Proportional Odds (DTPO) 

model indicate that cancellation rates are indeed influenced by both the time of purchase and 

time until departure, in addition to a many other covariates (including departure day of week, 

market, group size, etc.). 
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This study contributes to the existing literature in two ways.  First, new behavioral 

insights into airline passengers’ refund and exchange behavior emerge.  Second, to the best of 

the authors’ knowledge, this is the first published study to be based on ticketing data from ARC.  

The ticketing database reveals several new characteristics of airline “cancellation” behavior that 

provide additional impetus for challenging the traditional revenue management framework and 

exploring new research directions. 

The remainder of this paper contains several sections.  First, a review of airline 

cancellation models is provided followed by a description of the data used for the analysis.  Next, 

the methodology and results are presented.  Finally, directions for future research are discussed.  

Due to the uniqueness of ARC ticketing data, an Appendix is included that describes how the 

ticketing data used for this study differs from the publicly-available ticketing data more 

commonly reported in the literature. 

 

2.  REVIEW OF AIRLINE CANCELLATION MODELS 

Airlines use revenue management to decide how many seats (associated with a set of prices) to 

make available for sale to customers.  However, since all customers who request seats do not 

actually travel, airlines overbook to reduce the expected number of empty seats on flights when 

there is demand for those seats.  Cancellation and no show rates are used to determine the 

overbooking level, i.e., the number of seats authorized for sale that exceed the capacity of the 

flight.  The difference between cancellation and no show models relates to when the airline 

knows passengers do not intend to travel.  Cancellation models predict how many passengers 
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inform the airline they do not intend to travel prior to the departure of their flights while no show 

models estimate the number of remaining booked passengers, i.e., passengers who have not 

cancelled, but fail to show for their flights.   

Airline no show and cancellation models are based on booking information, which is 

distinct from ticketing information.  The difference between these two data relates to whether the 

passenger has paid for a reservation.  A reservation, or booking request, that has been paid for 

appears in both booking and ticketing databases, while a booking request that has not yet been 

paid for appears only in a booking database.  Historically, many high-yield fares, such as 

unrestricted coach fares and business class fares, did not need to be purchased at the time of 

booking, but rather could be held in the reservation system until flight departure.  However, 

while revenue management systems need to set seat allocation levels based on booking 

information (as some of these unpaid reservations, and particularly high-yield passengers, will 

show for flights), including information on whether a booking has been paid for has been shown 

in prior studies to be one of the most important factors for predicting no show rates (Garrow and 

Koppelman 2004a; 2004b).  This is due to the ability to better identify speculative bookings (i.e., 

low-yield bookings that have not been paid for within 24 to 48 hours after the original booking 

request was made). 

Different types of cancellation models are discussed in the literature, but generally fall 

into two categories.  The first category of models predicts the probability of survival from one 

period to the next while the second category directly predicts the probability a booking survives 

until flight departure.  For example, the cancellation model described by Westerhof (1997) in 
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Figure 1 divides the booking horizon1 into T separate booking periods.  By definition, a booking 

that exists at booking period t survives until booking period t+1 with  probability tp  and is 

cancelled with probability ( )1 tp−  for t > the departure day of the flight.  The probability a 

booking that exists at time t survives until departure is given as 

( )1 1 1 no show rate .t t Tp p p+ −× × × × −K  Values for tp  are empirically derived from historical 

data.  However, it is important to note that this model assumes cancellation probabilities are 

independent of when passengers book.  Thus, conceptually, Tp  does not depend on whether the 

bookings that exist at time T are from business passengers who booked in period T-1 or from 

leisure passengers who booked far in advance of the flight departure at time period t. 

[ Insert Figure 1 about here ] 

While Westerhof’s model predicts the probability a booking that exists at time t will 

survive until the next period, Talluri and van Ryzin (2004b) note that it is also common to 

directly model the number of bookings that survive until departure using a binomial distribution 

defined by tq , the probability a booking at time t survives until departure2.  The authors 

reference a Tasman Empire Airways study (Thompson 1961) as empirical evidence on the 

validity of the binomial distribution assumptions (i.e., that (1) customers cancel independently of 

each other; (2) each customer has the same probability of cancelling; and, (3) cancellation 

                                                 
1 The booking horizon is defined as the period during which an individual can make reservations for a flight.  The 
typical booking horizon for an airline is 330 days. 
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probabilities are “memoryless” in the sense that they depend only on the time to flight departure 

and not on when the booking was first created).   In contrast, Westerhof notes in his 1997 study 

of data from KLM that cancellation rates are not memoryless.  However, while recognizing this 

phenomenon, Westerhof does not propose a methodology that can simultaneously incorporate 

these two dimensions of time, a question that is explicitly addressed in this research. 

The cancellation models commonly reported in the literature are not representative of 

cancellation models used in practice.  In general, cancellation models used in practice by airlines 

are based on two distinct components.  The first component estimates the number of bookings 

currently active (or alive) at time t in the revenue management system that will survive until 

flight departure.  The total number of active bookings at time t is defined as “current gross 

bookings” and those bookings expected to survive until flight departure are referred to as 

“current net bookings.”  The second component estimates the number of bookings that will 

arrive in between time period t and flight departure (“future gross bookings”) and predicts how 

many of these will survive until departure (“future net bookings”).  Different methods are used to 

forecast future demand and apply cancellation rates to current gross and future gross bookings.  

However, it is important to note that these four pieces of “cancellation information” are at the 

core of many revenue management systems used in practice and are distinct from models 

typically discussed in the literature. 

                                                                                                                                                          
2 Note that for time period T, qT is the no show probability.  Talluri and van Ryzin (2004b) also discuss possible 
refinements to the binomial model (inflation of variance of the show demand; moment generating functions) for 
datasets in which the percentage of groups is large. 
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An example of the evolution of cancellation information during the booking3 horizon is 

shown in Figure 2.  For example, at time period five, there are five bookings in the reservation 

system (current gross bookings).  Booking two is not included as a current gross booking 

because it was refunded or exchanged prior to period five.  Of the five current gross bookings, 

one (booking six) cancels prior to departure, resulting in four current net bookings.  Also, 

between time period five and departure, four bookings are “expected” to occur (future gross 

bookings), and one of these (booking eight) is expected to be refunded or exchanged, resulting in 

three bookings that survive (future net bookings).    

[Insert Figure 2 about here] 

3.  DATA  

It is important to emphasize from the outset that this study is based on ticketing data.  This is in 

contrast to the booking data sources that are used by airlines to develop cancellation models.  

One of the key motivations for using ticketing data for this study is because this research needs 

to integrate into the larger effort of Boeing Commercial Airplanes (BCA), the commercial 

products arm of The Boeing Company.  Specifically, BCA has been engaged in a research effort 

to advance its models of passenger behavior.  These models are a central part of the tools used by 

its marketing department to help potential airline customers estimate how much market share and 

revenue can be gained via the introduction of new service and equipment in a market.  One of the 

                                                 
3 To be consistent with the discussion of other cancellation models, the term “booking” is used; however, ticketing 
information is used in the analysis. 
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components of the passenger behavior models is a cancellation model.  However, BCA does not 

have access to the same data that airlines do, including their detailed bookings and check-in 

information.  Thus, one of the key motivations for this study was to determine the viability of 

using alternative data source containing disaggregate passenger records that could support 

development of a cancellation model across multiple carriers and markets4.   

In order to assess the viability of using ticketing data from the Airline Reporting 

Corporation (ARC) for cancellation modeling, a sample of ticketing data was obtained.  

However, because ARC is owned by the airlines, extensive discussions were required to 

determine a data format that could support modeling objectives while protecting airline 

confidentiality.  Specifically, individual tickets are used for the analysis, but each airline code 

has been replaced by a randomly assigned number and flight information (including flight 

numbers, departure and arrival times, number of stops, etc.) has been suppressed.  The data used 

for this study contains simple one-way and round-trip tickets5 for which the outbound departure 

date occurred in 2004.  A total of eight directional markets are included in the analysis and 

reflect a mix of business and leisure markets and a mix of round trip and one ways6.  Each 

market is served by at least three airlines and contains non-stop and connecting itineraries.  The 

markets include travel in origin destination pairs involving Miami, Seattle, or Boston 

                                                 
4 For a detailed discussion on how the ticketing data used in this study relates to the management system used by an 
airline that is based on booking information, see Iliescu, Garrow, and Parker (2006). 
5 A “simple” ORD-HNL one-way itinerary is one in which the trip starts in ORD and ends in HNL.  The passenger 
embarks at ORD (i.e., there are no flight segments before ORD) and disembarks at HNL (i.e., there are no flight 
segments after HNL).  Similar logic applies to round-trip itineraries.  
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(specifically, MIA-SEA, SEA-MIA, MIA-BOS, BOS-MIA, BOS-SEA, SEA-BOS) in addition to 

travel between Chicago O’Hare airport and Honolulu (ORD-HNL, HNL-ORD).  Overall, 1.3% 

of the tickets are refunded and 1.2% are exchanged, but there are large differences across 

markets.  While carrier confidentially considerations restrict the amount of flight-level 

information available for analysis, the sample data is unique in its ability to capture information 

about the time until refund and exchange events across multiple markets and multiple carriers. 

From a modeling perspective, it is generally believed that cancellation rates differ for 

business and leisure passengers.  For example, business passengers who are more time-sensitive 

and require more travel flexibility may be more likely to modify their itineraries than leisure 

passengers, leading to higher cancellation rates.  While airlines do not explicitly collect 

information about trip purpose, trip purpose can be inferred from several other booking (or 

ticketing) information related to the passenger’s itinerary.  An itinerary is defined as a flight or 

sequence of flights that connects an origin and destination.  Non-directional itineraries do not 

contain information on whether passengers on a flight from MIA-SEA are traveling outbound (as 

would be the case for a passenger living in MIA) or inbound (representing a passenger returning 

home to SEA after visiting MIA).  While non-directional information is predominately used in 

airline’s revenue management systems (and is becoming a larger percentage of all bookings due 

to the predominance of one-way pricing strategies favored by low-cost carriers that are being 

partially adopted by legacy carriers), directional itinerary information provides a much richer set 

                                                                                                                                                          
6 Based on ticketing information available from the U.S. Department of Transportation (described in the Appendix), 
the markets selected for this analysis represent a market share of approximately 60% for American Airlines, 10% for 
Alaska Airlines, 10% for United Airlines and 5% for Delta Air Lines.  Several other carriers are also represented.   
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of variables from which trip purpose can be inferred.  For example, business passengers are more 

likely to depart early in the week, stay a few nights, and return home later in the week (and thus 

not stay over a Saturday night).  In contrast, leisure passengers are more likely to depart later in 

the week, stay more nights than a business passenger, and stay over a Saturday night. 

With respect to ARC data, ticketing information includes the issue date (or date the ticket 

was purchased), the outbound and inbound departure dates, outbound and inbound ticketing class 

(i.e., first letter of the fare basis code), ticketing cabin code (i.e., first, business, coach, 

other/unknown), net fare7 (i.e., fare that does not include taxes and fees), and total tax and fees.  

From the outbound and inbound departure dates, several variables commonly used to segment 

customers into business and leisure segments can be derived including departure and return days 

of week, length of stay, and trips that include a Saturday night stay. Descriptive statistics for 

these and other variables are provided in  Iliescu, Garrow, and Parker (2006).  

 

4.  METHODOLOGY 

A Discrete Time Proportional Odds (DTPO) model is used to predict the conditional probability 

of a ticket being “cancelled” (i.e., refunded or exchanged before outbound departure date) at 

each day from departure given the time the ticket was purchased.  In addition, the effects of 

observed heterogeneity (i.e., Saturday night stay, group size, departure day of the week, market 

and carrier) on the conditional probability are explored. The DTPO formulation adds to the 
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cancellation forecasting methods used in the airline industry (Polt 1998; Chatterjee 2001) by 

better quantifying the uncertainty of ticket cancellation rates and providing empirical evidence 

that the memoryless property of the cancellation rates is violated.   

This section contains several sections.  First, an overview of key concepts of time-to-

event modeling that need to be considered in the context of airline cancellation models is 

provided, followed by a discussion of how the DTPO model can be applied to ARC ticketing 

data.  Finally, the formulation and estimation of the DTPO model is described. 

 

4.1 Fundamental Concepts for Time-to-Event Modeling 

Time-to-event models are designed to analyze data for which the response variable is defined as 

the time to an event(s).  In contrast to classical linear regression methods, time-to-event models 

typically exhibit two notable features.  First, the outcome variable, “time” may be only partially 

observed for some individuals, which creates the presence of censored data.  Second, distinct 

from cross-sectional studies that measure the impact of covariates at a single point in time, time-

varying covariates are possible (McCullagh and Nedler 1989).  Both aspects are governed by a 

“time at risk” mechanism in which the dynamics of conditional probabilities of an event 

happening (i.e., the transition intensity) are assessed as a function of the elapsed time since the 

                                                                                                                                                          
7 For round trip itineraries, outbound and inbound fares are obtained by prorating the total fare to each directional 
itinerary according to trip distance. 
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entry time.8  The presence of multiple events complicates this mechanism and may create 

identification problems when the transition pattern from one event to another varies across 

different observations, e.g., for the case of competing risks.   

The medical field was the first to benefit from the time-to-event models capabilities. 

Statistical methods for “survival” data were introduced as epidemiological applications (that 

capture the time-to-occurrence of an event given exposure to an infection) or as clinical 

applications (that capture the time-to-occurrence of an event given exposure to treatment). 

Besides their scope difference, the two applications were distinguished by the way in which 

survival time was considered - either retrospective or prospective (Kim and Lagakos 1990).  In 

retrospective studies, investigators analyze the disease incidence for exposed individuals “in 

hindsight” based only the prevalence of disease at the time the data is collected.  In contrast, in 

prospective studies investigators use a “forward looking” approach to analyze the evolution of 

disease for individuals exposed to various treatments.  As discussed in subsequent sections, the 

use of a retrospective time scale proves particularly advantageous in airline cancellation 

modeling.  For a detailed review of survival analysis applications and how they can be 

incorporated into the class of generalized additive models (GAM), see Shiboski (1998).  

Although survival analysis concepts were first tested and validated by the medical field, 

their potential application to demography, econometrics, travel demand, and other areas was 

immediate.  Nevertheless, if at their core, the new applications made use of “survival” concepts 

                                                 
8 In the case when entry time is the same as the time when the subject becomes at risk. This might not always be the 
case (e.g. delayed entry). 
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(i.e., they modeled the dynamics of the conditional probabilities of event happening given the 

length of “exposure”), the events of interests and spells9 characteristics differed.  The research 

community was prolific in exploiting these conceptual differences.  Indeed, the multitude of 

methodological “add-ons” is testimonial to the degree of generalization that survival analysis 

concepts have reached. Comprehensive reviews of these applications are provided by several 

authors (Kiefer 1988; Jain and Vilcassim 1991; Hensher and Mannering 1994; Bhat 2000; Wu 

2003).  While an extensive overview of the methodological challenges associated with adapting 

survival models to different applications is beyond the scope of this paper, two on-going research 

topics are particularly relevant in the context of cancellation modeling. 

The first topic relates to how to “appropriately” specify models when multiple time 

dimensions are present.  This problem is frequently encountered in life course demographic 

studies based on cohort datasets.  Specifically, an underlying identification problem exists 

because given knowledge of the respondents’ age and duration in the study, their cohort (or entry 

in the study) is uniquely determined.  Thus, the researcher needs to determine which two time 

dimensions are most appropriate to include in the analysis.  Specifically, as noted by Wu (2003) 

“due to the complex nature of individual biographies, it has become clear that the notion of life 

course cannot be understood simply as a process of unilinear aging.”  If, by and large, life course 

researchers have agreed on the necessity to consider multiple dimensions of the dependent 

variable (e.g., age, duration and cohort), the choice of which ones to include in the analysis is 

rather subjective and requires external knowledge that is often very difficult to acquire.  This 

                                                 
9 Spells, defined as the length of time spend in each state, are also called durations. 
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issue is relevant in the context of cancellation models when testing for the validity of the 

memoryless property (i.e., how to simultaneous consider both the time of ticketing and days 

from departure). 

The second topic refers to the difficulty of isolating the transition domain of a single 

event in an environment in which inherent interrelationships between different events exist. 

Nevertheless, solutions to the competing risks problem have been successfully designed and 

tested in the travel demand field.  Under the more general taxonomy of “duration models,” (Bhat 

1996) addresses the problem of “multiple duration-ending outcomes” as a joint estimation of 

outcomes and outcomes-specific hazard durations using a proportional hazard model with a non-

parametric specification of the base-line hazard.  This issue becomes relevant in the context of 

cancellation models if one wants to consider ticketing refund and exchange as separate, 

competing events. 

In addition to these specific methodological issues, it is important to note that when 

modeling time-to-event data, choosing the most appropriate model can be cumbersome since 

“methods are so similar in their underlying philosophy that they usually give similar results” 

(Allison 1995).  In general, time-to-event models are characterized by two categories of 

assumptions: (1) distributional assumptions about the dependent variable, and (2) observed 

heterogeneity assumptions about the influence of the vector of covariates on the time-to-event 

process.   

With respect to the first category of assumptions, it is important to note that the results of 

a time-to-event model can be interpreted using two closely related functions: survival and 
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hazard10.  As such, assumptions about the time-to-event density function are closely related to 

assumptions about the hazard function (e.g., the exponential density function will generate a 

constant hazard rate while the Gompertz density function will generate a linear increase in 

hazard rate).  Furthermore, in the case when there is no clear evidence to favor one parametric 

specification over the other, or in cases where the time-to-event process evolves along a discrete-

time scale, parametric specifications can be replaced by semi-parametric or non-parametric 

counterparts.  

With respect to the second category of assumptions, the influence of the vector of 

covariates on the time-to-event process can be addressed using two classes of models – 

proportional hazard models (PH) and accelerated failure time models (AFT).  The fundamental 

difference between them is that while AFT models coefficients represent changes in survival 

time due to a unit change in a given covariate, PH models coefficients represent changes in the 

hazard rates due to a unit change in a given covariate.   

Among the time-to-event models, the Discrete Time Proportional Odds (DTPO) 

specification represents a viable alternative to its well-known parametric counterparts.  First 

introduced by Cox (1972) as an extension to the semi-parametric COX model, the DTPO model 

has three main advantages: (1) is can be used with datasets in which a large number of ties11 are 

                                                 
10 The hazard function (the instantaneous risk that an event will occur at time t = h(t)) is defined by the survivor 
function (probability of survival beyond t= S(t)) and time-to-event density function (f(t)) .  

( )( )
( )

f th t
S t

=  

11 Events occurring at the same point in time. 
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present; (2) it has the ability to incorporate different assumptions related to the shape of the 

hazard function; and, (3) it has a built-in flexibility for incorporating time-varying covariates or 

time-varying effects of covariates. The main disadvantage of the DTPO model is that few 

statistical estimation packages exist that can be used to estimate a DTPO model using partial 

likelihood (PL) methods.  However, this limitation can be addressed by reformatting a dataset 

prepared in time-to-event format, and estimating the model using maximum likelihood (ML) 

methods. 

In the context of this research, two arguments favor the use of the DTPO model as an 

appropriate formulation to estimate the pattern of tickets’ cancellation probabilities. The first 

argument refers to the computational efficiency of the ML estimators when compared to the PL 

estimators. Indeed, since the ARC sample dataset is a “consolidated” dataset, with tickets 

aggregated from eight different markets, the presence of a large number of ties is inevitable, a 

fact that eliminates the alternative of an exact COX model estimation. The second argument 

refers to an on-going debate in the revenue management field as to which is the most appropriate 

model to describe how cancellation probabilities evolve over time. Although several authors 

indicate that the value of cancellation probability over time is constant (Littlewood 2005) and 

independent of the time of booking (Talluri and Van Ryzin 2004b), empirical evidence suggests 

otherwise (Westerhof 1997; Chatterjee 2001). In this context, the DTPO model offers the 

flexibility of testing different scenarios with minor adjustments.  In view of these advantages, the 

next section describes the DTPO model as an alternative way to estimate cancellation 

probabilities for the sample of ARC airline tickets. 
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4.2 Discrete Time Proportional Odds (DTPO) Model and ARC Data 

The DTPO model extends previous research on the distribution of cancellation 

rates/proportions12 in four aspects.  First, it relaxes the general assumption of population 

homogeneity and tests the influence of observed heterogeneity on cancellation rates/proportions 

by considering different segmentations/covariates (Saturday night stay, outbound departure day 

of week, market, carrier, group size, pro-rated fare).  Second, it assumes that heterogeneity 

across tickets is fully captured by these covariates and its effect is distinct from that of time 

(changes in covariates values produce only vertical shifts and no distortions in a “baseline” 

cancellation rate line, i.e., the proportional hazard assumption).  Third, by construction, the 

DPTO model accommodates time-varying effects of covariates, thus allowing for interactions 

between time of ticketing and days from departure to be explored.  Finally, since the time-scale 

is discrete, the DTPO model has sufficient flexibility to test different distributional shapes for the 

baseline cancellation rate. 

It is important to note that compared to the typical time-to-event datasets, the ARC 

sample ticketing data has several unique characteristics.  The first characteristic is that the tickets 

“lifetimes” are completely determined, and end either in a cancellation (exchange/refund date) or 

in certain non-cancellation (outbound departure date).  Both events are outside the control of the 

investigator.  To compensate for this particularity of the data which can generate problems, the 

entry time (i.e., Time of Ticketing) was included in the model as a means to control potential 

                                                 
12 Chatterjee (2001) defines a cancellation rate at time t as the proportion of those booked at t which cancel by t+1 
and a cancellation proportion at time t as the proportion of those booked at t which cancel by departure day. 
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estimation bias (Allison, 1995).  In addition, a retrospective time scale was used.  The sample 

hazard using a retrospective time scale for the ten tickets shown in Figure 2 is presented in 

Figure 3.  Note that, in contrast to the prior example, at time t=5  the “population” includes all 

tickets that purchased in time periods five to nine, including ticket two that was purchased in 

period eight and refunded or exchanged in period six.  The sample hazard at this point in time is 

0/5 = 0% because all of the tickets in the population survive until the “next” retrospective time 

period, or time period six.  While outside the scope of this paper, the use of a retrospective time 

scale in conjunction with booking information associated with “current” and “future” bookings 

can be translated into the cancellation information shown in Figure 2. 

[ Insert Figure 3 about here ] 

The second characteristic is that out of the total population of refund and exchange 

events, a significant part (i.e., 25%) occurs after the outbound departure date. As discussed in 

Iliescu, Garrow, and Parker (2006), these events will generally appear as no shows.  As such, the 

current analysis makes use of only those exchange or refund events that occur prior to the 

outbound departure. Furthermore, it assimilates these events into a single “cancellation event” 

and thus develops a cancellation model for the outbound legs of an airline itinerary.  

The third characteristic is that the assumption of independence between observations is 

undoubtedly violated by the presence of groups.  Therefore, the ARC dataset was transformed 

from an individual ticket level database to a group level database. More specific, observations 

determined to have the same values on the entire set of covariates with the same scrambled 
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passenger name record (PNR)13 were eliminated and a variable indicating the group size added to 

the set of covariates.  Finally, taking into account that the majority of tickets are booked in the 0 

to 90 days from departure (DFD) time interval (95% of total number of tickets) and cancellation 

events for the rest of tickets are relatively scarce (5% out of total number of events), the ARC 

dataset was reduced to tickets purchased within 90 days of departure. Given all of the above 

characteristics, the ARC time-to-event application can be viewed as a ticketing cancellation 

model on the outbound legs of an airline itinerary for groups for a ticketing horizon of 90 days 

from departure.  After this data reduction process, the original ARC dataset of 234,370 tickets 

(1.3% -Refunds; 1.2%-Exchanges) was transformed to 151,118 distinctive groups (2.03% -

Cancellations). 

 

4.3 Model Formulation and Estimation  

Using the transformed ARC data, the Discrete Time Proportional Odds (DTPO) model partitions 

the time-to-event of the ith ticket (Ti) into a number of k disjoint time intervals (t0, t1], (t1, t2],(t2, 

t3], …,(tk-1, tk].  The bounds of the time intervals (t0,t1,…,tk) identify the days from departure 

(DFD) with outbound departure date as t0 as the outbound departure date and tk as either the time 

of ticketing (non-cancelled tickets) or the time of ticket refund/exchange (cancelled tickets).  

Furthermore, the discrete hazard of a cancellation event for the ith ticket in the kth interval is 

defined as the conditional probability that ticket i will experience the cancellation event in 

                                                 
13 To ensure carrier and passenger confidentiality, ARC provided “scambled” PNR information and ensured that 
these records were unique within a specific market.  PNRs can be used to determine how many passengers are 
traveling together on the same reservations. 
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interval k given survival up to that point (Equation 4.1). Using conditional probability theory, it 

follows that the probability that a cancelled ticket will experience the event in the kth interval is 

equal to the product between the non-event conditional probabilities of 1 to k-1 time intervals 

and the event conditional probability of k time interval (Equation 4.2). Similarly, the probability 

that a non-cancelled ticket will experience the cancellation after the kth interval is equal with the 

product of non-event conditional probabilities of all k time intervals (Equation 4.3). 

( | )ik i ih P T k T k= = ≥                              (4.1) 

( 1) ( 2) 1

( ) P( | ) P( 1| 1)...P( 1| 1)
( ) (1 ) (1 )...(1 )

i i i i i i i

i ik i k i k i

P T k T k T k T k T k T T
P T k h h h h− −

= = = ≥ ⋅ ≠ − ≥ − ≠ ≥
= = ⋅ − ⋅ − −

                            (4.2)                       

( 1) ( 2) 1

( ) P( | ) P( 1| 1)...P( 1| 1)
( ) (1 ) (1 ) (1 )...(1 )

i i i i i i i

i ik i k i k i

P T k T k T k T k T k T T
P T k h h h h− −

> = ≠ ≥ ⋅ ≠ − ≥ − ≠ ≥
> = − ⋅ − ⋅ − −

                            (4.3) 

As a result, the likelihood contribution for canceled and non-cancelled tickets can be 

expressed using Equations 4.4 and 4.5 and further detailed as the product of all the individual 

likelihoods14 – Equation 4.6 (Cox 1972).   

1

1

(1 )
k

i ik ij
j

L h h
−

=

= ⋅ −∏              (4.4) 

1

(1 )
k

i ij
j

L h
=

= −∏              (4.5) 

                                                 
14 ci is a censoring indicator equal to 0 for cancelled tickets and 1 for non-cancelled tickets. 
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Furthermore, since the exact time of tickets transition from the state of not-cancelled to 

cancelled can be captured using a binary variable yij equal with 1 if ticket is cancelled in the jth 

day from departure and 0 otherwise, it follows that Equation 4.7 is an alternative form to express 

the log-likelihood function. Moreover, the likelihood function for the entire sample (Equation 

4.8) is equivalent with the likelihood function of a binary logistic regression model for which yij 

are assumed to be a collection of independent variables and whose data structure is expanded15 to 

represent an unbalanced panel dataset (i.e., each ticket observation is replicated multiple times, 

one time for each day from departure of the ticket lifetime).  

( )
1 1 1 1

log log log 1
1

n k n k
ij

ij ij
i j i jij

h
l L y h

h= = = =

⎛ ⎞
= = ⋅ + −⎜ ⎟⎜ ⎟−⎝ ⎠

∑∑ ∑∑           (4.7) 

(1 )

1 1

(1 )ij ij
n k

y y
ij ij

i j

L h h −

= =

= −∏∏                        (4.8) 

The equivalence between the two likelihood formulations (Equations 4.6 and 4.8) defines 

the rationale behind the DTPO model, a model introduced by Cox (1972) and further detailed by 

several authors (Brown 1975; Thompson 1977).  For a general set of covariates Xl, Equation 4.9 

presents the general formulation of the DPTO model, while Equations 4.10 and 4.11 presents the 

estimation of hazard and survival probabilities.   

                                                 
15 The creation of the expanded dataset process has several steps: (1) duplicating the set of time-invariant covariates 
over the entire life-time of a ticket, (2) filling in the time-variant covariates (if present) and  (3) creating the binary 
indicators of the cancellation status yij. 
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where j=1,2,…,k  time intervals ; i=1,2,…,n observations ; Ψij- baseline hazard function 

1

1 1 2 2[1 exp( ( .... )]ij ij ij ij l ijlh X X Xβ β β
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1 2
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5. EMPIRICAL RESULTS  

This section presents empirical results of the DTPO model. The choice of functional form for the 

baseline hazard and the effect of the observed heterogeneity on this pattern are detailed.  

 

5.1  Interpretation of the Baseline Hazard 

With respect to the choice of functional form for the baseline hazard, it is important to note that 

the DTPO model estimation is constructed using two fundamental assumptions.  First, a linear 

relation between the covariates and the logistic transformation of ticket cancellation hazard is 

assumed (linearity assumption).  Second, the effect of covariates over the odds of cancellation is 

considered to be constant over time (proportionality assumption).  In view of these assumptions, 

the DTPO model formulation can be conceptualized as the multiplicative effect of the covariates’ 

log-linear function on a baseline odds function (Equation 5.1). 
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When the magnitude of conditional probabilities is small (as is the case with the ARC 

data), Equation 5.1 indicates that the DTPO model can be a close approximation of the 

proportional hazard (PH) model16.  In this context, non-parametric estimators of survival 

probability (Kaplan-Meier), cumulative hazard (Nelson-Aalen) and hazard rate (Cox-Oaks) are 

important since they provide a starting point for the assumptions on the time-to-event 

distribution, i.e. the shape of hazard rate with respect to time.  Figure 4 presents the survival 

Kaplan-Meier estimator and lowess smoother with neighborhood bandwidth equal to 0.1 for the 

sample hazard hj=sj/nj (sj- number of cancelled tickets during jth day from departure; nj- number 

of total tickets during jth day from departure).  A visual inspection of the two graphs reveals the 

large number of non-cancelled tickets and a decreasing trend of the hazard probability in the     

0-60 days from departure (DFD) time horizon.  Still, no conclusion can be draw about the shape 

of hazard probability for the 61-90 DFD time horizon, for which signs of instability are present 

(e.g., at 69 and 75 days from departure).          

[ Insert Figure 4 about here ] 

The shape of the non-parametric hazard smoother was used as a basis for defining three 

baseline hazards specifications for the DTPO model: discrete, quadratic, and logarithmic. 

                                                 
16 The odds of a cancellation event will be approximately equal to the conditional probability of cancellation (i.e., hij 
≈ hij / (1- hij). 
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Estimation results for the transformed ARC dataset using these specifications are presented in 

Table 1 while graphs of the baseline hazards are presented in Figure 5. 

[ Insert Table 1 about here ] 

[ Insert Figure 5 about here ] 

Although the visual inspection of Figure 5 indicates that the second order polynomial is 

the only functional form that can be used to capture the typical “bath-tub” shape of lifetime 

processes, the instability of hazard cancellation values for the 61 to 90 DFD booking horizon 

makes this result uncertain.  However, from an interpretation perspective, it is important to note 

that the potential existence of a “bath-tub” shape points to the presence two underlying 

behaviors.  First, increased refund and exchange activities occurring close to flight departure 

reflect an increase in individuals’ rescheduling activities.  This may occur as individuals 

becoming more certain of their travel plans (and/or ability to travel) as their flights near 

departure.  Second, among travelers purchasing tickets 21-90 DFD,  those purchasing further in 

advance (e.g., 61-90 DFD) may be more likely to refund or exchange their tickets due to the 

longer “time of expose” during which there are increased opportunities for traveling conflicts to 

arise.  Further, given these individuals are more price sensitive, they may be more likely to 

reschedule shortly after their initial purchase in order to take advantage of lower fares.  In 

contrast, the use of a logarithmic formulation would capture only the first effect. 

Although the discrete formulation has the advantage of estimating average cancellation 

rates over user-defined time periods consistent with those used in revenue management systems, 

it lacks parsimony, and is therefore excluded from further estimation.  Finally, since the evidence 
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to favor the polynomial over the logarithmic (i.e., Weibull) formulation is inconclusive, both 

specifications are kept for further estimation17.  

Before introducing the effect of observed heterogeneity on the baseline hazard, it is 

important to note that although by means of linearity in log-odds the DTPO model is similar to 

the binary logit model, its focus is mainly towards predicting conditional probabilities of an 

event at different times (i.e., there is a time-to-event process associated with the DTPO model).  

Furthermore, when time-to-event datasets exhibit a significant number of tied events and the 

ratio between events and non-events is low (as in the case of the ARC sample database), the 

results of the DTPO model will be similar with the results of an “exact” Cox proportional 

hazards model.  Therefore, without loss of generality, the coefficients estimates of the DTPO 

model can be interpreted in the proportional hazard framework (i.e., changes in the hazard rates 

due to a unit change in a given covariate).  In this context, Table 2 presents the results in odds-

ratio format of the DTPO estimation for the logarithmic and quadratic baseline hazards. 

[ Insert Table 2 about here ] 

The Time of Ticketing variables show that, relative to the reference category of 60-90 

DFD, the conditional probabilities of cancelling tickets (i.e. cancellation rates) are twice as high 

for those tickets purchased 0-14 DFD and decrease linearly as the ticketing horizon increases.  

Conceptually, this reinforces the commonly held opinion that business passengers, who tend to 

book close to departure, are more likely to refund or exchange tickets than leisure passengers.  

                                                 
17  With the addition of the void data a more complete set of specifications can be investigated.  
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Moreover, the significance of Time of Ticketing categories in Table 2 reinforces previous 

empirical evidence (Westerhof 1997) that the memoryless property of cancellation rates is 

violated.  In view of current methods used to forecast cancellation rates, this finding is 

particularly important. Specifically, it suggests that determining cancellation rates only as 

extrapolations of previously realized values18 may not be valid, as different cancellation rates 

will be observed depending on when a passenger tickets.  However, prior to generalizing this 

result to airline cancellation models based on booking data, the impact of the distribution of 

cancellations not included in current analysis (e.g., due to booking churn) will have to be 

explored.  Discussions are currently underway with ARC to obtain the data needed to look at part 

of this booking churn process. 

 

5.2  Interpretation of Covariates 

Several covariates were also examined in the study, including the outbound departure day of 

week, presence of a Saturday night stay on the itinerary, group size, carrier, market, and pro-

rated fare.   Similar to the trends observed with ticketing periods, those variables typically 

associated with leisure passengers exhibit decreased cancellation rates.  Those passengers with a 

Saturday night stay are 1.3 times more likely not to cancel than those passengers without a 

Saturday night stay.  In addition, those passengers traveling in groups are 2.5 – 3.3 times less 

likely to cancel than passengers traveling alone.  Moreover, those traveling with two or more 

                                                 
18 The use of separate cancellation rates for each booking class only partially corrects for this problem, as some 
booking classes are available for purchase over the entire (or large portion) of the booking horizon. 
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individuals are less likely to cancel than those traveling with just one other person.  In addition, 

those traveling outbound early in the work week (typically associated with business travelers) are 

more likely to cancel than those departing later in the week.  Specifically, departures on Monday 

and Tuesday are 1.16 times more likely to cancel than those departures on Saturday and Sunday.  

Departures on Thursday and Friday departures are 1.28 times less likely to cancel than 

departures on Saturday and Sunday.  

The effects of the last three categories of covariates: Market, Carrier and the Pro-Rated 

Fare, although significant, are more difficult to generalize because of endogenity concerns (the 

fare is highly correlated with market, and different carriers may impose different refund and 

exchange ticketing policies).  Additional ticketing data is currently being obtained and will be 

used in future analysis to help decompose the effects of market, carrier, and fare. 

 Finally, it is important to note that seasonality, defined by the month of departure, was 

not statistically significant. 

  

6. SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH  

This study demonstrated how discrete choice methods can be used to model airline passengers’ 

cancellation behavior.  In particular, a “cancellation” model for the outbound legs of an airline 

itinerary for groups ticketing within 90 days of flight departure was estimated based on 

occurrence of refund and exchange events in sample of ticketing data from the Airline Reporting 

Corporation (ARC).  Compared to cancellation models reported in the literature or used in 
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practice, the proposed model is more “customer-focused” in the sense that it captures underlying 

behavior of passengers.  In particular, a Discrete Time Proportional Odds (DTPO) model with a 

retrospective time scale shows that cancellation rates are not independent over time.  Both the 

both time of ticketing and time until departure are important. In particular, leisure passengers, 

who are more likely to book further in advance of flight departure, are less likely to cancel than 

business passengers.  However, as the flight nears departure, both leisure and business travelers 

are more likely to refund and exchange their tickets.  Several other covariates typically 

associated with leisure passengers are also associated with lower cancellation rates.  These 

include itineraries with a Saturday night stay, itineraries departing on Thursday and Friday, and 

itineraries involving groups.   

In addition to providing new behavioral insights to airline passengers’ refund and 

exchange behavior, this study is one of the first to be based on ticketing data from ARC.  The 

occurrence of cancellations as measured by refund and exchange events was much smaller (less 

than 8% across all markets) than rates reported using booking information.  For example, Smith, 

Leimkuhler, and Darrow (1992) report combined no-show and cancellation rates/proportions of 

50% for American Airlines; while these proportions vary across carriers and markets and may 

have decreased over time, cancellation proportions of 30% or more are not uncommon today.  

Therefore, one of the questions that naturally arises from this study is: Why is there a large 

discrepancy in cancellation proportions between booking and ticketing data?  One possible 

explanation is that booking data (and revenue management systems) are capturing the initial 

searching and pre-purchasing behavior of passengers.  This would occur, for example, if a 
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business traveler called a travel agent to booked a reservation, but then waited a few days to 

either modify or pay for the reservation once travel plans became more firm.  In general, the time 

period a reservation can be held is short – 24 to 48 hours.  Thus, failure to pay for a reservation 

could lead to rebooking the same (or similar) itinerary multiple times.  Part of this booking 

activity or booking “churn” as it is more commonly referred to may be represented in ARC void 

data.  The void data represents tickets that were created, but not purchased and thus “voided” 

before a financial transaction was required.  Future analysis will extend the cancellation analysis 

presented in this study to include cancellations from voids.  This should permit a better linkage 

between the cancellation rates developed from ARC ticketing data and the booking data used in 

airline revenue management systems.  Moreover, given the cancellation hazard of voids is 

expected to exhibit a very different pattern than the cancellation hazard of purchased tickets 

(with the former having a much smaller probability of surviving past two days), other modeling 

methodologies (including competing risks or a multi-stage estimation approach) will be 

explored.  Finally, ticketing data from 2005 departures will be used in future analysis to validate 

the DTPO cancellation model and compare its performance to the models currently used by 

airlines and/or reported in the academic literature. 
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APPENDIX: OVERVIEW OF TICKETING DATA SOURCES 

The ticketing data used for this study is distinct from the data collected as part of the United 

States Department of Transportation (US DOT) Origin and Destination Data Bank 1A or Data 

Bank 1B (commonly referred to as DB1A or DB1B).  The data are based on a 10 percent sample 

of flown tickets collected from passengers as they board aircraft operated by U.S. airlines19.  The 

data provide demand information on the number of passengers transported between origin-

destination pairs, itinerary information (marketing carrier, operating carrier, class of service, 

etc.), and price information (quarterly fare charged by each airline for an origin-destination pair 

that is averaged across all classes of service).  While the raw DB datasets are commonly used in 

academic publications (after going though some cleaning to remove frequent flyer fares, travel 

by airline employees and crew, etc.), airlines generally purchase Superset data from Data Base 

Products.  Superset is a cleaned version of the DB data that is cross-validated against other data-

sources to provide a more accurate estimate of the market size.  See the Bureau of Transportation 

Statistics website at www.bts.gov or the Data Base Products, Inc. website at 

www.airlinedata.com for additional information.20 

Data based on the DB tickets differs from the ticketing data obtained from ARC for this 

study in three important ways.  First, DB data reports aggregate information using quarterly 

averages and passenger counts while ARC data contains information about individual tickets.  

                                                 
19 “The raw materials for the Origin-Destination survey are provided by all U.S. certificated route air carriers, except 
for a) helicopter carriers, b) intra-Alaska carriers, and c) domestic carriers who have been granted waivers because 
they operate only small aircraft with 60 or fewer seats.” (Data Base Products, 2006). 
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Second, DB data contains a sample of tickets that were used to board aircraft, or for which 

airline passengers “show” for their flights.  In contrast, ARC data provides information about the 

ticketing process from the financial perspective.  Thus, historical information is available for 

events that trigger a cash transaction (purchase, exchange, refund), but no information is 

available for whether and how the individual passenger used the ticket to board an aircraft; this 

information can only be obtained via linking with the ARC data with airlines’ day of departure 

check-in systems.  Finally, ARC ticketing information does not include changes that passengers 

make on the day of departure; thus, the refund and exchange rates will tend to be lower than 

other rates reported by airlines or in the literature. 

 

                                                                                                                                                          
20 The website describes the data and federally-mandated reporting requirement for U.S. airlines. 
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TABLE 1: Comparison of Baseline Hazard Specifications 

Baseline hazard functional form ( ijΨ ) Parameter Estimates LL Pseudo-R 

1 1 5 5 6: ...ij ijDiscrete D Dα α α⋅ + + ⋅ +
 

 α1= 1.438    α2= 0.734   α3= -0.422 

α4= 0.044    α5= -0.055  α6= -8.082 

 

-24421.975 0.0180 

: ln( )Weibull jα β+ ⋅  α =-5.882   β=.524 -24308.124 0.0226 

2
1 2:Polynomial j jα β β+ ⋅ + ⋅  α=-6.157 β1 = -.081  β2 =0.00077 -29294.407 0.0231 
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TABLE 2: Discrete Time Proportional Odds Estimation Results  

 
 Baseline hazard - Logarithmic  Baseline hazard - Quadratic Covariates 

Parameter z-stat Parameter  z-stat 
Time (DFD=Days from Departure)   
    DFD     0.95 -14.68 
    DFD2     1.00 9.91 
    Log (DFD) 0.72 -17.27     
Time of Ticketing (reference category 60-90 days from departure)   
     0 – 13  2.09 9.02 2.11 8.6 
     14 - 20 1.84 7.63 1.79 6.64 
     21 - 29 1.68 6.77 1.67 6.06 
     30 - 44 1.50 5.6 1.55 5.48 
     45 - 60 1.23 2.46 1.30 3.03 
Group Size (reference= one person)   
     2 people 0.43 -13.91 0.43 -13.92 
     3 or more people 0.30 -10.85 0.30 -10.85 
Saturday Night Indicator   
     Saturday night  0.77 -6.22 0.77 -6.27 
Outbound Day of the Week (reference = Saturday or Sunday)   
     Mon or Tues 1.16 3.37 1.16 3.35 
     Wed 1.0 - 1.0 - 
     Thurs or Fri 0.78 -5.43 0.78 -5.41 
Market   
     Bos-Sea 0.65 -7.35 0.65 -7.34 
     Hnl-Ord 0.45 -5.37 0.45 -5.37 
     Mia-Bos 0.58 -7.73 0.58 -7.73 
     Mia-Sea 1.33 3.46 1.33 3.5 
     Ord-Hnl 0.73 -3.84 0.72 -3.87 
     Sea-Bos 0.66 -6.62 0.66 -6.63 
     SeaMia 0.65 -5.19 0.65 -5.18 
Carriers (masked information)   
     Carrier 2 1.08 1.28 1.08 1.26 
     Carrier 3 0.39 -10.44 0.39 -10.45 
     Carrier 4 0.79 -2.33 0.79 -2.33 
     Carrier 5 1.05 0.71 1.05 0.72 
Pro-Rated Fare   
     Fare 1.001 18.84 1.001 18.88 
Goodness of fit statistics    
     Number of obs.   3,691,317 3,691,317 
     LR chi2(df)  2687.34  (23) 2679.81 (24) 
     Pseudo R2    0.054 0.054 
     Log likelihood -23,526 -23,530 
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FIGURE 1: Cancellation Model Described by Westerhof (1997) 
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FIGURE 2: Cancellation Information Commonly Used in Practice 
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FIGURE 3: Sample Hazard Using a Retrospective Time Scale 

Time moves “backwards” 

    Population 1 1  1  2 5   6  9 10 10 
    Cancel Events 0 0  0  1 0   0  1  1  0 
    Sample Hazard    0%         0%      0%      50%         0%       0%      11%        10%         0% 
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FIGURE 4: Non-parametric Estimators for S(t) and h(t) 
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FIGURE 5: Non-parametric Estimators for S(t) and h(t) 


