The Revision Report of WCTR2007
We would like to thank the meticulous comments from the reviewers. Grammatical and writing style errors in the original version have been corrected by our colleague who is a native English speaker. For those questions raised by reviewers in each reviewer’s report we answer and explain them item by item in the following paragraphs. These corrections based on comments and suggestions are reflected in the manuscript too.
Reviewer 1 Comments:
1. The problem proposed in this paper is obviously composed of four constraints of minimum ground turn-around time, flow balance, flight swap, and maximum delay time and one objective function of minimization of total delay time. I wonder why authors transform all of these four constraints into objective functions. It is a very confused concept.

Answer: In traditional method the search process is finding a candidate solution one by one and step by step. But in GA, one can find numerous candidates simultaneously. GA distinguish the feasible solutions form all candidates. For this reason the design can put the constraints and objective together into objective functions and choose the better ones for improving.
2. Please explain the encoding method of chromosome on page 14 in more detail. Since authors employ each gene to represent the “flight” flown by an aircraft, what is the value of gene? And what kind of mechanism is employed to avoid the duplicative assignment of a flight to different aircraft?

Answer: For instance, the chromosome {1,1,1,2,2,2,3,3,3,4,4,5,5, …, 7} represents the schedule code for the airline of flight list in Table 2. In the chromosome, every number indicates every flight schedule code. The number “1” represents the flights of the first aircraft and “2” represents that of the second aircraft and others. We defined the airport code name in Table 1 in order to programming. The chromosome only takes the order of classes that may receive the perturbation. With this mechanism one can avoid the duplicative assignment of a flight to different aircraft.
3. Randomly generated chromosomes are hard to satisfy the “hard constraints”, making very few feasible chromosomes left in the gene pool, which might seriously affect the performance of GA. If authors have modified any mechanism of GA operators, it should be clearly stated.

Answer: With same mechanism as above, the authors use the code of order of flight not flight itself. This can guarantee the satisfaction of ground turn around time hard constraints for same plan then use the repair strategy (departure time sorting) to repair the fatal chromosome. By this treatment one can get the feasible chromosome in gene pool.
4. Every flight should be consisted of specific origin and destination airports with corresponding arrival and departure time. It won’t be differed once it is assigned to different aircrafts.

Answer: The authors use a mapping table to guarantee the attributes of each flight. The flight coded by a gene in chromosome is always referee to its original assignment. The mechanism is similar to the case of question3. Please refer the answer of question 3. 
5. Is Si,j the decision variable with value of 0, 1? If so, how can the set of flight schedule be represented by Eq. (1)? More explanations to Eq.(1) are necessary.

Answer: Thank you for this precious comment. We have modify the first attribute “
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represents the order of an aircraft assignment of flight. It belongs to {1,1, … , 2 , 2, … , 3, 3, 3, …, 7,7, …, 7} which is defined by Table 2. The other properties of 
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are followed by n and given in Table 1.
6. There are some typos and grammar errors. A professional editing service should be considered.

Answer: Grammatical and typing errors in the original version have been corrected.
Reviewer 2 Comments:
1. About Fitness Function (which I think the most important part for multi-objective optimization). The authors propose following fitness function for each objective:


[image: image5.wmf]M

i

if

if

i

i

i

i

i

i

i

i

,...,

2

,

1

,

)

)

(

(

)

(

)

)

(

(

0

)

,

(

=

î

í

ì

>

-

£

º

 

S

S

S

S

e

f

e

f

e

f

e

l


The authors “follow this rule to calculate the fitness value”. Obviously, the above fitness functions weigh all 5 objectives the same – they only set a valve for each objective. On the other hand, as the authors say, the first two objectives are hard constraints – must be zero to make a schedule feasible. In order to maintain more chances to get a better feasible solution, the authors model these two hard constraints as ‘soft’ constraints – to keep the chances to apply repairing strategy to an infeasible solution.  However, the proposed algorithm does not explain how to repair an infeasible solution and how to ensure a solution feasible while the conditions are modeled as objectives other than constraints.
Moreover, the above functions give a vector of fitness values, while a method to evaluate vectors is not provided in the paper. For example, how to determine which is better for the following two fitness vectors: v1=(0,0,3,4,5), v2=(0,0,4,3,5)? The paper does not explain.
Answer: The fitness function consisted of MOI and Pareto optimization methods. (a) There are numerous solutions in Pareto set. GA can find and improve the Pareto optimal set in each generation. If a utopian solution which satisfy all the admissible values 
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, designer can simply use it as the solution. If the utopian solution does not exist, the designer can choose the candidate solution in Pareto set with the first two values are zeros.
(b) This study indicates that the flights assigned to each aircraft in random sequence by genetic algorithms may result in a temporary solution with high violation values, since some flights with earlier departure times are arranged after ones with later departure time.  Such a solution could be repaired to reduce the number of violations on the ground turn-around time objective. Therefore, the repairing strategy is adopted to reorder all flights according to their departure times for each aircraft.

For instance, a flight with departure time 14:00 may be misplaced after a flight with arrival time 15:00. These conditions strongly violate the calculated objective functions. Performing a repairing procedure, i.e. ordering the flights according to their departure time, can help reduce the violations on the ground turn-around objective.
The violations of the solution can be partially repaired after performing the repairing procedure. Additionally, the Pareto optimal set of the flight schedules can be found easily.
(c) Consider two auxiliary performance index vectors
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Consequentially, v1=(0,0,3,4,5) and v2=(0,0,4,3,5) can be decided as non-dominance each other. Because, v1[1]= v2[1], v1[2]= v2[2], v1[5]= v2[5], v1[3]< v2[3], v1[4]> v2[4], the relations of each element do not meet Eq.(9). 
2. About Flow Balance Objective (hard constraint as the authors say). The paper expresses this objective as: “The flow balance objective guarantees that the arrival airport of Si,j is the same as the departure airport of Si,j+1”. Why it must be (j+1)? This forces aircraft i to take flight (j+1). If this is the case, why the flight swapping objective is still needed? How to trade-off the flow balance objective and the flight swapping objective if they all exist? How to handle the flight cancellations? The paper does not explain. On the other hand, the proposed model does not address the availability of departure time at airports. The reality is that airlines usually have to face the limitations on choosing time slots to re-schedule their flights, particularly at some busy airports (hubs), while the re-scheduling plans at those busy airports are usually the most important part in disruption management.
Answer: (a) In this paper, the attribute 
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 stands for the order of the practical flights not necessary in sequence. So one can exchange 
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(b) The flight cancellation does not take into consideration in our model, because the total effect of flight cancellation is very difficult to evaluate and the model will be hard to describe precisely.

(c) During the real-time schedule disruption management, the airlines will not need to submit the new time slots, so we assume that the time slots are still available.
3. Objective 5 only addresses the flight with longest delayed time. Consider following scenarios:
· Scenario 1: A single flight is delayed by 30 minutes, but all other flights are delayed little or even get back to normal schedule.
· Scenario 2: 10 or 20 flights are delayed by 29 minutes.
According to objective 5, scenario 2 is better than scenario 1. The conclusion is just not convincing. Considering objective 6 is to address the total delayed time, I am not saying that objective 5 does not make sense at all. The key point is that how to weigh objectives 5 and 6, the paper does not explain.
Answer: Let
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 as the decision without doubt. In this condition Objective 5 enhance the confidence of decision making.
Condition 2: If 
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Condition 3: If 
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 can not dominate each other. Both of two are survival and waiting further decision making. In this case Objective 5 plays a counteracting role to avoid the wrong decision.
Remark: In single objective optimization case. The weights might be given in advance then one of the above three cases may be set before decision making. In this case the decisions of weights become critical and important. But it is very difficult to do this in the dynamical operation environment.
4. The authors introduce a few MGA techniques, such as selection, crossover, mutation, etc. but do not explain how to apply these techniques in the proposed algorithm for disruption management problem.
Answer: MGA is a multi-objective optimization approach consisted of MOI, Pareto optimization and GA. At first, we model the problem by MOI to search the utopian or Pareto optimization. We give an admissible set as the specifications of our solution. Then tune the tunable parameter set to find the solution. Since the multiple objective of the problem contains various conflict constraints or objective which is non-compromised. It is very difficult to decide weights for each objective. Therefore, we employ the Pareto optimization set to identify the non-dominance solution in GA search. A decision making must be given when MGA can just find a set of Pareto optimization. One can choose the most suitable solution from the searching results in Pareto optimization set. GA is employed here as a searching method to improve the decision result.
5. The paper needs to be polished on grammar and typing error, for example, below Eq. 2, 
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Answer: Grammatical and writing style errors in the original version have been corrected.
Disruption Management of Airline Schedule by Applications of Multi-Objective Evolutionary Algorithm
Yu-Hern Chang1, Chi-Ruey Jeng2(,
1 Professor, Department of Transportation and Communication Management Science, National Cheng-Kung University, Taiwan, R.O.C.
2 Doctoral Student, Department of Transportation and Communication Management Science, National Cheng-Kung University, Taiwan, R.O.C.
Prepared by: 
Chi-Ruey Jeng
Department of Transportation and Communication Management Science
National Cheng-Kung University
Tainan 701, Taiwan, R.O.C.
Email: bluehawk@seed.net.tw
Submitted to:        11th World Conference on Transportation Research (WCTR 2007)
Disruption Management of Airline Schedule by Applications of Multi-Objective Evolutionary Algorithm
Abstract

This paper propose a method of using Method of Inequality-based Multi-objective Genetic Algorithm (MMGA) to quickly generate a time-effective aircraft routing in response to the schedule disruption of short-haul flights and try to optimize objective functions involving ground turn-around time, flow balance, total flight delay time, flight swap and 30 minutes maximum delay time. The MMGA approach, a method of combining the traditional genetic algorithm (TGA) with the multi-objective optimization method, can consider multiple objectives in the same time then explore the optimal solution. Traditionally, airline disruption management problem is solved by Operations Research techniques, which always require a precise mathematical model. But in real airline operation environment, it is very difficult to define accurately. The computational experiment based on a real airline flight schedule has shown that the proposed method, Multi-objective Optimization Airline Disruption Management (MOADM) by Genetic Algorithm, can recover the perturbation within a very short duration. Finally, the results show that the application is capable of presenting high quality solutions can be used as a real-time decision support tool for practical complexly airline operations.
Key words: Disruption Management, Method of Inequalities, Genetic Algorithms, Schedule Recovery, Multi-objective Optimization.

1. Introduction

According to Janic (2003), some figures have been indicated that the total average direct annual costs of the irregular operations of ten U.S. major airlines for the period 1996-1999 have been about $1.9 billion. Delays have accounted approximately $900 millions, cancellations between $800 and $900 millions and diversions between $50 and $60 millions. In recent years, the surge in jet fuel prices must make this cost increase inevitably.

Airline operations are typically identical with any other enterprise to maximize revenue and minimize cost. They spend a great deal of effort to developing their flight schedules to maximize their utilization by creating aircraft routings with very little buffer left to accommodate for any form of variation from the optimal solution. They also assume that every flight sector will depart and arrive as their pre-planned schedules. Any minor perturbation of planned schedules can result in a chain of events that can cause major disruptions throughout the whole schedules. But on daily operations, airlines frequently encounter numbers of uncertainties and unforeseen events that prevent them from operating as planned. The most common reasons for these disruptions are mechanical problems, crew unavailability, bad weather, air traffic congestion and airport facility restrictions, etc. When there is any disruption in executing a planned schedule, the Operations Dispatchers (ODs) in Airline Operation Control Center (AOCC) will take the responsibility to handle the disrupted schedule and are usually the ones who decide first on which action to take.
According to Federal Aviation Regulations (FARs) Part 121.533, one of the major responsibilities of ODs is to monitoring the progress of each flight and the deviation of the original schedule. If the deviation between the actual and original schedule exceeds a certain threshold, schedule recovery must be taken. The first priority for the ODs is then to restore the original flight schedule as soon as possible to minimize the negative consequences of this disturbance.
To recover the disturbed flight schedule, ODs can use a mixture of flight delays, swaps, i.e. let any flight leg flown by a aircraft not originally assigned to it, cancellations, diversions, spare aircraft and ferried aircraft. In the majority of situations, flight delays and cancellations are feasible solutions to recover the original schedule (Thengvall et al., 2000). Clausen et al. (2001) denote this process of monitoring and scheduling the resources close to the day of operations as ‘Disruption Management’. Moreover, Yu & Qi (2004) defined the concept of disruption management is to get back to regular operations as quickly as possible, and minimize the loss and negative impact in the recovery process.

Since Taiwan domestic flights are mostly short-haul flights, typically less then one hour, and the markets are very competitive with buses, high-speed railway and other airlines, disruptions in the schedule will become more serious with time if no reactions are taken. Thus the ODs have to make very quick decisions and cannot wait a long time for the optimal solution. Presently, they do it manually with the assistance of various tools such as computer based graphical user interfaces (GUI) that allow them easy access the information on present situation.
Due to the dynamic environment, the disruption management problem in airline industry is extremely complex and is well known as a NP-hard problem. Traditionally, this kind of problem is solved by Operations Research (OR) techniques, which always requires a precise mathematical model and is difficult to define. According to Chan et al. (2006), application of a pure mathematical optimization approach to determine an optimal solution may not be efficient in practice even in classical scheduling problems. On the other hand, heuristic approaches, which can obtain a near optimal solution in a relatively shorter period, are more appreciated and practical.

Among different heuristic approaches, Genetic Algorithms (GAs) have already demonstrated considerable success in providing appropriate and efficient solutions to many NP-hard optimization problems. The search process is finding a candidate solution one by one and step by step in traditional method. But in GA, we can find numerous candidates simultaneously.
In the airline industry, a significant amount of computational time and effort will be invested in developing a revised flight schedule which is affected by any disruption. The recovery solution should have less change as possible from the original schedule and return to normal schedule after a certain time. In this paper, we propose a method of Multi-objective Optimization Airline Disruption Management (MOADM) by GA to quickly generate a time-effective aircraft routing in response to the schedule disruption of short-haul flights and try to optimize objective functions involving ground turn-around time, flow balance, total flight delay time, flight swap and 30 minutes maximum delay time of the original schedules. The objectives are to find the most suitable alternative with the least schedule disruption to prevent additional cost and minimize the inconvenience of passengers.

2. Literature Review

2.1 Airline Schedule Disruption Problem
Teodorović & Guberinić (1984) were one of the first to study the airline schedule disruption problem from an OR perspective. They considered a situation where an aircraft is taken out of service and tried to minimize total passenger delay by swapping and delaying flights. The concept is further developed in Teodorović & Stojković (1990) to include cancellations and station curfews. Jarrah et al. (1993) introduced two minimum cost network flow models. They outlined two separate network flow models which provide solutions in flight delays or flight cancellations, while allowing for aircraft swapping among flights and the utilization of spare aircraft. Yan & Yang (1996) were the first to incorporate flight cancellations, delays and ferry flights in a single model. They developed a basic time-space network representation of the problem which can be extended to include options to ferry aircraft and delay flights. This framework was extended by Yan & Lin (1997) to handle airport closures and by Yan & Tu (1997) to handle multiple fleets.

On 1997, Argüello et al. have presented a Greedy Randomized Adaptive Search Procedure (GRASP) to reconstruct aircraft routings in response to groundings and delays experienced over the course of the delay (Argüello et al., 1997). A real-time decision support tool for the integration of airline flight cancellations and delays has been discussed by Cao & Kanafani (Cao & Kanafani, 1997a, b). This research has presented a 0-1 Quadratic Programming (QP) model for addressing cancellations and delays. They extended the delay model of Jarrah et al. (1993) to include both delays and cancellations simultaneously, as well as the entire network of stations.
Thengvall et al. (2000) used the models presented in Yan & Yang (1996), Yan & Tu (1997), and extended them to incorporate the ability to penalize deviations from the original schedule. Thengvall et al. (2001) continued their work where the more serious disruption of airport closures is considered. Further more, a mixed integer multi-commodity flow model with side constraints is developed by Andersson (Andersson, 2004). Cancellations, delays and aircraft swaps are used to resolve the perturbation, and the model ensures that the schedule returns to normal within a certain time.
There will be many factors that affect the performance of schedule recovery following the disruptions. These factors include static recovery scheduling, stochastic flight delays and real-time schedule recovery. Most research on recovery scheduling has focused on improving static recovery scheduling models. None has analyzed these factors from a systems perspective. Yan et al. (2005) proposed a framework that embodied a simulation process. That is not only be able to analyze the influence of stochastic flight delays on static recovery scheduling, but also can help to design more effective flexible buffer times and real-time schedule recovery rules.
2.2 Genetic Algorithm and Multi-objective Optimization
Genetic algorithms (GAs) originated from the studies of cellular automata, conducted by John Holland and his colleagues at the University of Michigan. GAs are search algorithms based on the mechanisms of natural selection and natural genetics. They combine the concept of survival of the fittest among string structures with a structured yet randomized information exchange to form a search algorithm with some of the innovative flair of human search. GAs also are nature-based stochastic computational techniques. The major advantages of these nature-based algorithms are their broad applicability, flexibility, ease of implementation, and the potential of finding near-optimal solutions (Goldberg, 1989).
In the past few years, the GAs have received a rapidly growing interest in the combinatorial optimization community and have shown great power with very promising results from experimentation and practice of many engineering areas. One of the main differences between GAs and other local search heuristics, e.g. tabu search, simulated annealing, is that GAs search are based in a population of solutions instead of a single solution. They use a structured but stochastic way to utilize genetic information in finding new directions of search. As the name suggests, they employ the concepts of natural selection and genetics. The major genetic operators that reflect nature’s evolutionary process are reproduction, crossover, and mutation. Those techniques can apply to global optimization in a complex search space.
Although GAs are some types of stochastic search method, and have been applied to NP-Hard problems in many areas, only a few approaches have tried to apply them to scheduling problems until now. Moreover, most of them have been restricted to job shop, flow shop scheduling problems or production scheduling problems (Mori et al., 1997). The method of GAs for combinatorial optimization problems can be effectively if there is a suitable representation of the state space and feasibility preserving genetic operators had been defined, Adachi et al. (2004) took a practical-scale aircraft scheduling problem and constructed a solution method that uses a genetic algorithm. They set up a problem that simultaneously sets the departure times, determines the aircraft types, and assigns the aircraft and also minimizes the total number of aircraft.
Global search capability of GAs is very attractive as a search method for the method of inequalities (MOI). For multi-objective optimization, various multi-objective optimization genetic algorithms have been proposed. MMGA is a multi-objective optimization approach consisted of MOI, Pareto optimization and GA. At first, we model the problem by MOI to search the utopian or Pareto optimization. We give an admissible set as the specifications of our solution. Then tune the tunable parameter set to find the solution. Since the multiple objective of the problem contains various conflict constraints or objective which is non-compromised. It is very difficult to decide weights for each objective. Therefore, we employ the Pareto optimization set to identify the non-dominance solution in GA search. A decision making must be given when MMGA can just find a set of Pareto optimization. One can choose the most suitable solution from the searching results in Pareto optimization set. GA is employed here as a searching method to improve the decision result.
However, due to the fundamental difference between the MOI and the conventional multi-objective optimization, it is not apparent how multi-objective optimization genetic algorithms should be used for the MOI. Liu & Ishihara discuss the use of inequality-based multi-objective optimization genetic algorithms in 2005 (Liu & Ishihara, 2005). For the effective use of multi-objective optimization genetic algorithms, an auxiliary vector performance index (AVPI) related to the set of design specifications is introduced. In their research, a simple MMGA with the Pareto ranking is proposed to be used with the auxiliary vector index. Then simulation examples are presented to illustrate the effectiveness of the proposed MMGA.
3. Problem statement and genetic algorithms
Temporary closure of an airport and resulting flight schedule disruptions are an extreme occurrence in the daily operations of an airline. When an airport is temporary closed, the airline must evaluate immediately if this situation would influence any flight by knock-on delay or connection delays. Previous research on recovery scheduling has focused on improving recovery models. However, in real world, there are many factors that will affect the performance of airline disruption management during its operations, e.g. the passenger demand, aircraft availability, company policies, uncertainty of weather condition, etc. By the way, the whole recovery process is very subjective, time consuming, and human decision is very easy mistaking and hard to training. Providing an objective, efficient and artificial intelligence (AI) based decision making tool for airlines seems be very important in recent competitive environment.

In this research, we propose a method of using MGA to deal with the disruption management problem of short-haul flights by optimizing five objective functions involving ground turn-around time, flow balance, total flight delay time, flight swap and 30 minutes maximum delay time. The effectiveness of the proposed method is certified by a real flight schedule obtained from a Taiwan domestic airline.
3.1 Definition of Airline Disruption Problem
There are many objectives functions in the airline disruption problem, including hard constraints and soft constraints. The objectives in this research are formulated as a multi-objective optimization problem. In the practical use, the objectives can be defined as total flights delay time, flight swap, flow balance, ground turn-around time and the 30 minutes maximum delay time (service promise delay time). Let 
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where

subscript i : a specific aircraft,

subscript j : a specific flight,
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Table 1 Airport code name
	Airport code name
	Airport

	0
	TSA

	1
	KHH

	2
	KNH

	3
	TTT

	4
	MZG


Table 2: Schedule code name
	Aircraft Number
	Sector Number
	Departure Time
	Arrival Time
	Origin station
	Destination station
	Flight Number

	1
	1-1
	470
	520
	0
	1
	803

	1
	1-2
	550
	600
	1
	0
	810

	1
	1-3
	640
	690
	0
	1
	809

	1
	1-4
	765
	815
	1
	0
	816

	…
	…
	…
	…
	…
	…
	…

	2
	2-1
	425
	475
	0
	1
	801

	…
	…
	…
	…
	…
	…
	…

	…
	…
	…
	…
	…
	…
	…

	7
	7-1
	…
	…
	…
	…
	…

	…
	…
	…
	…
	…
	…
	…


This study attempts to generate a feasible flight schedule S by MGA to meet the basic requirements of ground turn-around time, flow balance, total flight delay time, flight swap and 30 minutes maximum delay time. However, the requirements are often conflicting and violated for a given flight schedule S. Therefore, the violations and conflicting requirements must be resolved to generate a feasible solution to the current airline schedule disruption management problem.
Considering the objectives of the airline disruption management problem, since each objective has a different definition of optimality, the objectives are generally combined into a single scalar in traditional methods. However, a set of suitable weights to combine the objectives is difficult to find. Moreover, a set of weights may exist to make different solutions become identical through a weighted-sum process. In this research, the problem is formulated as a multi-objective optimization problem, defined as 
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. The objectives of hard constraints considered here are ground turn-around time and flow balance. The objectives of soft constraints considered here are total flight delay time, flight swap and 30 minutes maximal delay time. If one flight schedule violates any of the hard constraints, it will not be a feasible one. According to Gen & Cheng (1997), the infeasible solutions are handled by rejecting, repairing, penalizing, and modifying genetic operators. If the objective of ground turn-around time is modeled in the form of a hard constraint, then one candidate solution that violates the hard constraint is rejected. The rejecting strategy works well when the feasible region is convex. However, this strategy has limitations when the feasible region is non-convex. Also, the chance to discover a better solution would be reduced when rejecting a temporary infeasible solution if it is repairable. Moreover, when a repairing strategy is applied, the optimum can be potentially reached since it can help across an infeasible region. Therefore, the objective is modeled in the form of soft constraint. Every element in the vector of multiple objectives denotes a violation of each objective 
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The ground turn-around time objective ensures that each aircraft has adequate ground turn-around time not less than the legal minimum ground turn-around time requested by civil aviation authority, denoted as TGH, to be allowed for the subsequent flight. The evaluation function of this objective is defined as Eq. (2).
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The flow balance objective guarantees that the arrival airport of 
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The flight duty swap objective guarantees that the original flight duty is assigned to the same aircraft in S, for
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. This objective reduces the extra cost of the nonprofit duty swap for flights. The evaluation function of this objective is defined as Eq. (4).
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The total flight delay time objective ensures the sum of delay time for each flight is as minimum as possible. The evaluation function of this objective is defined as Eq. (5).
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For each airline, providing a reliable service to passengers is important to attract high-value passengers who are sensitive to on-time reliability, increase customer loyalty and customer retention rates, as satisfied customers are less likely to defect (Suzuki, 2000), and reduce direct and indirect costs resulting from passenger disruptions (Bratu & Barnhart, 2006). Since the domestic flights in Taiwan are mostly short-haul flights, long delay time might cause airline extra cost by transfer passenger to other airlines or providing meal service, etc. To comply with the promised service level, the maximum flight delay time objective ensures that each flight has adequate delay time not more than 30 minutes. The evaluation function of this objective is defined as Eq. (6).
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3.2 Auxiliary Vector Performance Index in MOI

In this research, we employ the concept of the auxiliary vector performance index (AVPI) introduced by Liu & Ishihara (2005) for the effective use of MGA in the method of inequalities. The auxiliary performance indices related to the inequality performance specifications is defined as Eq. (7).
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An AVPI is defined as Eq. (8).
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Where 
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 and S is a given flight schedule defined in Eq. (1). The admissible bound vector has two effects in a genetic algorithm: first, concentrating on searching a solution in the regions of interest, and second reducing the inefficient searches by relaxing some constraints, regardless of whether the optimal solution exists or not.
Consider two auxiliary performance index vectors
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For a two objective optimization example
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, we consider two scenarios:

- Scenario 1: A single flight is delayed by 30 minutes, but all other flights are delayed little or even get back to normal schedule.

- Scenario 2: 10 or 20 flights are delayed by 29 minutes.
The solutions of theses two scenarios are represented as
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 can not dominate each other. Both of two are survival and waiting further decision making. In this case Objective 5 plays a counteracting role to avoid the wrong decision.
According to Liu et al. (2007), a solution can be called a non-dominated solution, or a Pareto optimal solution, if no other solutions exist to dominate it. Additionally, the set of Pareto optimal solutions is called a Pareto optimal set. Here, the Pareto optimal solutions of the auxiliary performance index vector are not the same with the ones of original objectives. The set of Pareto optimal solutions of the auxiliary performance index vector is the subset of the whole solution space that is restricted in the region of interest. If MOI does not have a solution, then the Pareto optimal set for the auxiliary performance index vector gives the designer helpful information to modify the admissible bounds so that a solution is obtainable.
Assuming that the population is consisted with a set 
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, M means auxiliary vector size. In this research there are five objectives to be optimized, so we use 
[image: image123.wmf]}

,

,

,

,

{

5

4

3

i

i

i

i2

i1

i

l

l

l

l

l

L

=

 to deal with the auxiliary vector with five objectives, representing Eqs. (2) to (6), in each individual. Then, we can adjust tolerance vector 
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 to search the optimal population.
3.3 MMGA Approach for Airline Disruption Problem
The flowchart of MMGA algorithm for airline disruption problem is shown in Fig. 1. The details of the algorithm will be explained in the followings.
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Fig. 1 The flowchart of the MMGA algorithm for airline disruption problem
1) Chromosome Representation
In this research, the symbolic chromosome representation method is used to encode an airline schedule. The chromosome length is determined the number of aircrafts and the number of airports simultaneously. Each gene denotes each flight of an aircraft and a chromosome can be decoded into a schedule indirectly. The mapping relation of airport code is listed in Table 1 and the flight schedule code is listed in Table 2. For instance, the chromosome [1,1,1,2,2,2,3,3,3,4,4,5,5, …, 7] represents the scheduling for the airline of flight list in Table 2. In chromosome every number indicated every flight, “1” represents the flights of the first aircraft and “2” represents that of the second aircraft and so on. We defined the airport code name in Table 1 in order to programming. The chromosome only takes the order of classes that may receive the perturbation. With this mechanism one can avoid the duplicative assignment of a flight to different aircraft. We use those mapping tables to guarantee the attributes of each flight. The flight coded by a gene in chromosome is always referee to its original assignment.
With same mechanism as above, we use the code of order of flight not flight itself. This can guarantee the satisfaction of ground turn around time hard constraints for same plan then use the repair strategy (departure time sorting) to repair the fatal chromosome. By this treatment one can get the feasible chromosome in gene pool.
2) Selection
Selection stands for reproduction, the goal of selection is to select the best fitting individual from the current population to the next generation, called offspring. The opportunity of individual who can enter the mating pool is determined by a selection probability. There are several selection methods in genetic algorithms. For example: random selection, tournament selection and roulette-wheel selection, etc. The selection process in this study adopts the roulette-wheel selection method. Each of individuals is selected by selection probability. The selection probability of each individual is determined by fitness in the population. The higher fitness, the higher probability it can enter the matting pool.
3) Crossover
We employ the one-cut-point crossover integrated with an arithmetical operator derived from convex set theory (Tsai et al., 2004), which randomly selects one cut-point, exchanges the right parts of two parents after the cut-point, and calculates the linear combinations at the cut-point genes to generate new offspring. For example, let two parents be x = (x1, x2, …, xN) and y = (y1, y2, …, yN ). If they are crossed after the kth position, the resulting offspring defined as:
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Where:

lk and uk: The domain of yk,
(: The random value, in which ( ({0, 0.1, 0.2, …, 1}.
4) Mutation
In this research, we use Neighbor Search Mutation (NSM) (Gen & Cheng, 1997) for mutation operation. For example three genes 3, 1 and 2 are chosen to mutate then one has 
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 permutations. The best one among the neighborhood in all neighbors is used and it became one offspring produced after mutation operation.
The steps of Neighbor Search Mutation as follows:
Step1. Select three genes as randomly.
Step2. Generate neighbors according to all possible permutations of the selected genes.
Step3. Evaluate all neighbors and select the best one as one offspring.
5) Fitness function
Fitness function is a mathematical equation for evaluating each chromosome, and also denotes objective function of the problem. It is an important performance index of GA that decided the existence and elimination of chromosomes in the course of evolution. In this research we denotes five objectives 
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 are the objective functions in Eqs. (2) to (6). We follow this rule to calculate the fitness value.
The fitness function consisted of MOI and Pareto optimization methods. There are numerous solutions in Pareto set. GA can find and improve the Pareto optimal set in each generation. If a utopian solution which satisfy all the admissible values 
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, designer can simply use it as the solution. If the utopian solution does not exist, the designer can choose the candidate solution in Pareto set with the first two values are zeros.
This study indicates that the flights assigned to each aircraft in random sequence by genetic algorithms may result in a temporary solution with high violation values, since some flights with earlier departure times are arranged after ones with later departure time. Such a solution could be repaired to reduce the number of violations on the ground turn-around time objective. Therefore, the repairing strategy is adopted to reorder all flights according to their departure times for each aircraft. For instance, a flight with departure time 14:00 may be misplaced after a flight with arrival time 15:00. These conditions strongly violate the calculated objective functions. Performing a repairing procedure, i.e. ordering the flights according to their departure time, can help reduce the violations on the ground turn-around objective. The violations of the solution can be partially repaired after performing the repairing procedure. Additionally, the Pareto optimal set of the flight schedules can be found easily.
4. Experiment Analysis
In this paper, we address on determining the optimal solution when an airport is reopened from one-hour temporary closure. This situation represents the extreme of foreseeable disruptions. When an airport through which a large number of flights are suspended for any length of time, major disruptions to an airline’s flight schedule are unavoidable. Intelligently rescheduling of aircraft routing in such situations can save airlines cost and minimize the adverse impact on passengers.
The purpose of this research is to determine a recovery schedule by optimizing 5 objectives functions mentioned above in response to the airport closure. In our proposed method allows for delaying flights and swapping flight duty between same fleet. For example, the experiment in this research limits that any alternative aircraft routing must be feasible with respect to the following constraints and assumptions:
1) Only flight swaps and flight delays are allowable, i.e. no flight cancellation.
2) A minimum ground turnaround time must be 25 minutes by regulation.
3) Every flight in each aircraft route must depart from the airport where the immediately preceding flight arrived.
4) By company’s policy, all of the aircrafts will not be scheduled more than 12 flight legs in one operation day.
5) Airport time slots are assumed to be available.

Due to the complexity of schedule recovery problem, previous works on this similar question usually only use flight delaying, flight swapping, or cancellation separately. In this paper, we will incorporate flight delays and flight swaps in a single model. We expect to minimize the perturbation as few as possible by reduce flight swaps and flight delays to assure the passenger’s satisfaction, and reduce airline’s cost.
Generally, GAs are used to search the optimal solution. But in the case of airline disruption management one needs to recover the schedule in a limited time rather than find the optimal result. In this research, we will use a MD90 fleet flight schedule of one Taiwan domestic airline, including 7 aircrafts and total 70 flights in one operation day shown in Fig. 2. The flight routes involve 5 different airports, including Taipei Sungshan (TSA), Kaohsiung (KHH), Kinmen (KNH), Taitung (TTT), and Makung (MZG). We will discuss a case of one-hour temporary closure of TSA due to a summer afternoon thunderstorm, and try to recover this disrupted schedule and evaluate the difference between recovered schedule and original schedule.
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Fig. 2 The Gantt chart of original schedule
The hardware used in this study is a Pentium4 2.4G CPU computer with 512M RAM and the program is written by C language in Dev C++ development environment. MGA operators are population size 100, crossover rate 0.8, mutation rate 0.01 and generation number 10,000. The results show that the application is capable of presenting high quality solutions in 5 to 6 minutes and therefore can be used as a real-time decision supporting tool for practical complex airline operations.
The problem in this research is a multi-objective optimization problem. The objectives consisted with three soft constraints, i.e. flight swaps, total delay time and maximum flight delay time, and two hard constraints, i.e. ground turn-around time and flow balance. After calculation we obtain a Pareto Optimal set shown in Table 3. This solution set provides the user the chance for decision making. From this point of view, the objective of flight swap of schedule 1 is superior to schedule 2. On the other hand, the objectives of total delay time and delay flights of schedule 1 are inferior to schedule 2. Furthermore, among them, the schedule 1 and schedule 2 that can not be dominated each other, according to Eq. (9), as the solutions to the problem. These two schedules are said to be Pareto set. From this Pareto set of schedule 1 and 2, we can find that the schedule 1 has the minimum flight swaps and the schedule 2 has the minimum total delay time.
Table 3 A Pareto Optimal Set
	
	Flight swaps

(Flights)
	Total delay times

(Min.)
	Delay flight
	Delay over 30 min. (Flights)

	Schedule 1
	5
	390
	11
	6

	Schedule 2
	7
	265
	7
	5


There will be total 13 delay flights including 9 flights delay more than 30 minutes if no recovery action is taken after one-hour airport closure from 13:30 to 14:30. For the result of the proposed MOADM shown in Tables 4 and 5, there are total 5 flight swaps, total delay time 390 minutes, and 11 flight disruptions in recovered schedule 1. On the other hand, there are total 7 flight swaps, total delay time 265 minutes, and 7 flight disruptions in recovered schedule 2.
Table 4 Original vs. Recovered Schedule 1

	Original Schedule
	Recovered Schedule

	A/C No.
	Flt. No.
	ETD
	A/C No.
	ETD
	Delay
(Min.)
	Swap

	1
	817
	1410
	6
	1455
	45
	Yes

	
	822
	1530
	6
	1610
	40
	No

	
	823
	1650
	1
	1735
	45
	Yes

	
	830
	1830
	1
	1850
	20
	No

	
	8135
	2000
	1
	2005
	5
	No

	6
	1445
	1540
	7
	1445
	0
	Yes

	
	1655
	1750
	7
	1655
	0
	No

	
	1820
	1910
	7
	1820
	0
	No

	
	1950
	2040
	7
	1950
	0
	No

	
	2110
	2200
	7
	2110
	0
	No

	7
	8191
	1350
	1
	1455
	65
	Yes

	
	8192
	1520
	1
	1615
	55
	No

	
	6113
	1645
	6
	1725
	40
	Yes

	
	6112
	1805
	6
	1835
	30
	No

	
	8161
	1920
	6
	1945
	25
	No

	
	8162
	2040
	6
	2100
	20
	No


Table 5 Original vs. Recovered Schedule 2

	Original Schedule
	Recovered Schedule

	A/C No.
	Flt. No.
	ETD
	A/C No.
	ETD
	Delay
(Min.)
	Swap

	1
	817
	1410
	1
	1455
	45
	No

	
	822
	1530
	1
	1610
	40
	No

	
	823
	1650
	1
	1725
	35
	No

	
	830
	1830
	1
	1840
	10
	No

	3
	876
	1500
	7
	1605
	65
	Yes

	
	826
	1630
	4
	1635
	5
	Yes

	4
	828
	1730
	7
	1730
	0
	Yes

	
	8291
	1900
	7
	1900
	0
	No

	
	8292
	2030
	7
	2030
	0
	No

	6
	891
	1445
	7
	1445
	0
	Yes

	
	892
	1655
	6
	1655
	0
	Yes

	7
	8191
	1350
	6
	1455
	65
	Yes

	
	8192
	1520
	3
	1520
	0
	Yes


5. Conclusion
After the terrible attacks on the World Trade Center on September 11, 2001 had seriously impact on the whole world airline industry. Furthermore, followed by the impact of jet fuel prices surge in recent years, airlines face the most difficult business environment than ever. How to react the perturbed flight schedule efficiently to provide consistent service level for passengers and keep airline profitability become more and more critical and worth studying.
In present airline operations, the process of schedule disruption management depends on personal experience judgments very much. Providing a powerful interactive tool for airline ODs to recover the disrupted schedule becomes increasingly imperative in today’s difficult and competitive airline environment. In this paper, we have successfully presented the ability of Multi-objective Optimization Airline Disruption Management (MOADM) by GA. Due to the particular civil aviation operation environment in Taiwan, e.g. short-haul flight, quick turn-around, and very competitive market, airline ODs usually cannot wait too long to get a feasibly recovered schedule. The computational experiments based on a real airline flight schedule, has shown that the proposed method can recover the disrupted schedule within a very short duration. This seems to be a very useful supporting tool for decision making during airline disruption management process.
Airline disruption management problems in real world, due to the complex situations and limited resource, it does not always have an optimal solution. However, airline ODs have to find a feasible solution in an acceptable short time to guarantee the promised service level and keep the profitability of airline. Pareto optimization and method of inequalities (MOI) seem good solutions for this situation, because Pareto optimization provides a multiple objective optimization consideration and MOI provides a decision making tool to handle the conflict conditions. The method proposed in the paper employing MOI and Pareto optimization has showed that can deal with the drawback of those problems very well.

In single objective optimization case, the weights might be given in advance then one of the above three cases may be set before decision making. In this case the decisions of weights become critical and important. But it is very difficult to do this in the dynamical operation environment. MMGA combining Genetic Algorithm with Pareto optimization and MOI has the abilities of global searching, multi-objective optimization and decision making. MMGA can have more chance to find out optimal solutions when they exist otherwise find a feasible solution to compromise the conflict objectives. It is also suitable to handle the dynamic variation of airline disruption management problem efficiently. From the experimental results, the proposed method has shown the ability to solve the dynamic and complex problem of airline disruption management.
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