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Abstract

There exist thick market externalities in taxi spot markets that larger market will make service

transactions more eécient. When heterogeneous customers visit a market, a mismatching external-

ity also arises that taxicabs could be mismatched with the types of customers not to be preferred.

If spot markets are diãerentiated based upon eécient matching pairs of taxicabs and customers,

information asymmetry between customers and taxis could be partly resolved, eventually increas-

ing matching eéciency between taxicabs and customers. In this paper, equilibrium models of spot

markets are presented incorporating both thick market economies and mismatching diseconomies.

The impacts of fare regulation of taxicabs and market diãerentiation policies upon social welfare

are also investigated by simple numerical examples.
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1. Introduction

In terminal facilities, such as large airports where a lot of unspeciåed passengers use taxi

services, taxi stands (hereafter, call spot markets) only for a speciåc class of passengers, e.g., those

customers that make long distance trips, are often settled. If heterogeneous passengers use only

one spot market, there possibly exists a mismatching in service transactions between them, the

type which taxis expect passengers and one which passengers expect taxis are not necessarily the

same. In such a case, diãerentiation in taxi spot markets depending upon both types of passengers

and taxis, such as diãerence in fare system and destinations of passengers, may make transaction

between them more eécient.

Both passengers and taxis have to pay transaction costs to move to markets and wait for

partners, in order to transact services in taxi spot markets. Therefore, a thick market externality

works where the transaction of services becomes more eécient with decreasing in waiting time for

both agents when both arrival rates increase (Matsushima et al., 2006a). Service transaction in

taxi spot markets becomes more eécient as scale of market becomes large without congestion in

the markets. This suggests that diãerentiation in spot markets is not eãective if we focus upon

scale economy related with thick market externality.

On the other hand, information asymmetricity exists in the transactions between passengers

and taxis in such markets. The taxis cannot recognize the service which passengers need until

when they meet their customers. If market transaction is made on the årst-come-årst-serve basis,

passengers cannot know the service type of taxi they are about to ride, until they actually ride

it. Diãerentiation in taxi spot markets can make both passengers and taxis select a desirable

spot market, to make each partner partially know private information, such as type of taxis and

information about passengers. Such a self selection mechanism makes matching between taxis and

passengers eécient.
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Taxi markets are regulated by the government in many countries. In Japan for example, the

entry to the taxi markets was regulated thorough a licensing system by the road transportation

law in Japan. The principal of a homogenous fare was applied by the authorization system of taxis'

fare. However, deregulations of the fare system and the entry to the market were introduced in

the 1970's in various cities in US starting with Atlanta. The entry and fare systems were widely

deregulated in Sweden in 1991. In Japan, the coordination of demand and supply and the fare

system are being deregulated gradually.

Although not a few studies about taxi market come to existance, there are some former re-

searches to analyze the structure of taxi market and analyze the inpact of the regulation policies to

the market (Orr, 1969, Douglas 1972, DeVany 1975, Schreiber 1977, Willams, 1981). Both theoret-

ical and empirical studies about the outcome of deregulation in taxi markets are published (Teal

et al., 1995, Laitila et al., 1995). These studies mainly focus on demand and supply in a whole city

area reporting skeptical results about the eãect of deregulation, depending upon pioneering case

studies in US and Sweden (Teal et al., 1995, Laitila et al., 1995). Re-regulation of taxi markets

is now investigated in order to solve the harmful eãects caused by deregulation. For example, the

åxed fare system is introduced again for the taxi service between the airport and city center of

Stockholm.

Taxi services are transacted at the local spot markets in a city. Only a few studies are published

about the service transaction in spot markets and the necessity of public regulation. Even though

there exist some reports about parking behavior, those reports fail to analyze market equilibrium.

Matsushima et al. (2006a) proposed a market equilibrium model with a thick market externality in

spot markets to analyze the congestion eãects and spatial equilibrium of spot markets (Matsushima

et al., 2006b). This paper expands their model to formulate a market equilibrium model with an

externality caused by the mismatching between heterogeneous taxis and passengers. This paper
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also tries to analyze the eãects of market diãerentiation polices and fare regulation upon market

eéciency in services in spot markets.

Both taxis and passengers have to visit a spot market in order to transact a service. However,

both agents cannot perfectly access the market condition until they arrive at the market. Both

taxis and passengers decide whether they visit the market or not based on imperfect guess about the

market condition. All agents have to pay transaction costs in order to visit the market. If a queue

at the market already exists, they have to queue and wait to be matched with a partner. Both

passengers and taxis have to bear transaction costs in order to realize the transaction. Because

of 1) imperfect guess and 2) transaction, there is a pecuniary externality in a transaction at spot

markets (Howitt, 1987, Howitt, 1990, Kobayashi et al., 1998, Matsushima et al., 2006). Thick

market externality, where the expectation of increase in demand and supply for both agents is

realized if both expect an increase respectively, works at the market. On the other hand, the

expectation of a decrease in demand and supply is also self-fulålling (Farmer, 1993). As strategic

externality (Bulow et al., 1985, Cooper et al., 1988) works in matching market with imperfect

information and transactions, a multiplier eãect thorough a positive feedback mechanism works

at spot markets. Especially, the service transaction is more eécient as the market scale becomes

larger due to such an externality, as long as both agents are homogenous.

Taxis and passengers with various needs, transact services at spot markets. Taxis do not

recognize which type of passenger is to be matched with until the service transaction is realized.

The type of passengers is private information for the taxis, which is not known to them in advance.

If the service is transacted on a årst-come-årst-served basis, passengers cannot choose type of taxi

(e.g. fare system) to be matched with. As the information asymmetricity works mutually between

taxis and passengers, market ineéciency where both taxis and passengers are not matched with

desirable partners, may occur at spot markets (hereafter, called `mismatching externality'.) If the
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eãect of this externality is large, adverse selection may occur where speciåc types of passengers and

taxis leave the market. This kind of externality becomes large if agents are more heterogeneous.

Mismatching externality occurs because of mutual information asymmetricity between taxis and

passengers. Diãerentiation of markets is one of the possible policies to conquer such information

asymmetricity, where several stands are set in one market depend upon the type of passengers.

Several taxi stands, such as that only for passengers with short distance trip or that for passengers

with long distance trip, are set to allocate speciåc taxis and passengers. That makes passengers

and taxis recognize the type of partners in advance and to make the matching between taxis and

passengers more eécient. Though this scheme makes service transaction eécient, it is necessary

to investigate carefully how it aãects the eéciency in the whole market. Firstly, thin market

externality may occur as this scheme physically divides the market based upon the type of agents.

Secondly, it is not clear whether the diãerentiation policy is compatible with the passengers' and the

taxis' incentives. Passengers have to get higher utility when they visit the speciåed stand in order

for this scheme to work eãectively. Taxis also have to have an incentive to use the stand. That is,

the diãerentiation policy should be incentive-compatible with the behaviors of both agents. If it is

incentive-incompatible, the behaviors of both agents has to be controlled by fare regulation policy.

Fare regulation policy also aãects the welfare level of both passengers and taxis. If both agents

are heterogeneous, it is important to decide eãective policies to regulate the fares or diãerentiate

the markets by considering both the thick market and the mismatching externalities.

This paper proposes a spot market equilibrium model with both externalities to investigate

a desirable fare regulation and diãerentiation policy. In the next section, a market equilibrium

model with heterogeneous passengers and taxis is formulated. In section 3, market equilibrium

with diãerentiation policy is derived. Section 4 analyzes the structure of market equilibrium. The

eãect of introducing fare regulation and market diãerentiation on social welfare is analyzed in

5



section 5.

2. Double-queuing Model

(1) Assumptions

The analysis of this paper is based upon taxi spot markets which are located at large terminals,

e.g., airports. Only one taxi stand is set at the spot market to form a queue either by taxis or

passengers, respectively. Though spot markets with several stands are treated later on, the analysis

in this section is considering a taxi stand market. Passengers who use the terminal can choose

several modes to and from the terminal. They have information about average waiting time at the

market based upon past experiences. It is not until they arrive at the market that they recognize

the situation of spot markets. It is assumed that passengers will not leave from the market once

they arrive at the market. Taxis also know the average waiting time from past experiences. taxis

can decide whether to join the queue or not, after observing the condition of the market. A taxi

leaves the market if it ånds a very long queue. As taxis enter the market, as long as they can get

positive proåt, equilibrium with 0 proåt will occur in the long run. The maximum length of taxis'

queue is endogenously determined as the result of long term equilibrium. When either a taxi or

a passenger arrives, service transaction is instantaneously completed with a positive queue length.

A taxi has to wait for a customer when no agent is in the market. By following Matsushima

et al., service transaction at the market between taxis and passengers is formulated using the

double-queuing model (Kendall, 1951, Sansieni et al., 1961).

(2) Speciåcation of a Double-queuing Model

Let us assume that a state variable m shows the queuing setting of either the taxis or the

passengers in a spot market. When m > 0, m taxis make a queue, while when m < 0 m passengers

make a queue. As service between passengers and taxis are transacted instantaneously, it is not
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possible that both passengers and taxis make queues. This paper takes no consideration of the

congestion in spot markets in order to narrow our focus of the eãect of market diãerentiation upon

mismatching externality. The passengers do not leave the market once they arrive. The maximum

length of passengers' queue is assumed as Ä1 îm îM . Let us indicate P t(m) as the probability

where a system is in state m at time t. The state equations can then be written as follows.

P t+Å t(M) = (1ÄïÅt)P t(M) + (1ÄïÅt)ñÅtP t(M Ä 1) + o(Åt)! (1a)

P t+Å t(m) = (1ÄïÅt)(1ÄñÅt)P t(m) + (1ÄïÅt)ñÅtP t(mÄ 1) +ïÅt(1ÄñÅt)P t(m+ 1)

+ o(Åt)! (m = Ä1;ÅÅÅ;M Ä 1); (1b)

where o(Åt)! is the higher order term and o(Åt)!=Åt ! 0 is Åt ! 0. Considering Åt ! 0 limit,

in the long-run steady states, we can see that

ÄïP (M) +ñP (M Ä 1) = 0 (2a)

Ä(ï+ñ)P (m) +ñP (mÄ 1) +ïP (m+ 1) = 0 (m = Ä1;ÅÅÅ;M Ä 1): (2b)

P (m) (m = Ä1;ÅÅÅ;M) is the stationary probability when the queue of either taxis or passengers

ism. When the stability of the steady state exists, it should hold thatñ> ï. As
PM
m=Ä1 P (m) = 1

holds, P (m) can be written as follows.

P (m) = (1Äö)öMÄm (Ä1 îm îM); (3)

where ö= ï=ñ. Given the average arrival rates of the customers and the taxis (ï;ñ), the average

lengths of the suppliers' queue and the consumers' queue are given by

E(m > 0 : ï;ñ) =M Ä ö

1Äö(1Äö
M ) (4a)

E(m < 0 : ï;ñ) =
öM+1

1Äö; (4b)

respectively (Matsushima et al., 2006). The average waiting time of the consumers and that of

the suppliers, denoted by T (ï;ñ;M) and S(ï;ñ;M) respectively, with the arrival rates (ï;ñ), are
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given by

S(ï;ñ) = E(m > 0 : ï;ñ)=ñ (5a)

T (ï;ñ) = E(m < 0 : ï;ñ)=ï: (5b)

The probability òthat a newly arrived supplier leaves the market without joining the suppliers'

queue is deåned by P (M) = 1Äö.

(3) Maximum Length of the Taxis' Queue

Suppose that there is no physical limit on the length of the suppliers' queues. Each supplier

who arrives at the spot market observes the current length of the suppliers' queue and decides to

join the queue or to leave. The average waiting time of the mth suppliers in the suppliers' queues,

denoted by W (m), is given by

W (m) =
m

ï
: (6)

The expected proåt of taxis that join the queue is

EU(m; p) = pÄ m
ï
; (7)

where p is the fare for the taxi services. Suppliers will join the queue as long as they can expect

positive average proåts from the spot market. The transaction cost for visiting the market has

already been sunk by the time the supplier arrives at the spot market. In a competitive market, the

maximum length of the suppliers' queues is determined in such a way that the maximum number

of the suppliers waiting in the queues is a number that can guarantee nonnegative expected proåts.

From the non-negativity condition of the proåts, the maximum length of the suppliers' queues,

M(ï; p), is deåned by

M(ï; p) = [pï] ; (8)

where the notation [Å] means the maximum natural number that does not exceed pï.
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3. Heterogeneity in Both Taxis and Passengers and Market Equilibrium

(1) Assumptions

The average arrival rate ñ;ïmay change in the long run as taxis and/or passengers enter or

leave the market. taxis try to enter the market as long as the expected proåt from entering the

market is positive. Passengers may enter the market as long as the expected utility from consuming

the service of the taxies is larger than the reserved utility from consuming other services. The

average arrival rate of passengers and taxis in spot markets may simultaneously converge to an

equilibrium level in a long period from entering and leaving the market. In this subsection, a model

of passengers' and taxis' behavior to enter or leave a market with one spot is formulated to deåne

the market equilibrium in the long run.

Heterogeneous passengers and taxis make transaction in the spot market. As matching in the

market is transacted on a årst-come-årst-served basis, neither passengers nor taxis can recognize the

partners' type in advance. In this setting, pooling equilibrium occurs under imperfect information

where heterogeneous agents do not know the partners' type. To make our discussion simple,

passengers who visit the spot markets can be classiåed into passengers who make a long distance

trip (type 1) and those who make a short distance trip (type 2). It is assumed also that two types

of taxis arrive at the market. Either type of taxis sets a diãerent fare system, or transaction cost

to access the market and is also diãerent for each type. Let us indicate a fare by type k (k = 1; 2)

taxis for type i (i = 1; 2) passengers pki. The Fare is set in a temporal term, and given exogenously

at an instant. This assumption for the fare system reçects that type 1 taxis are based upon a place

far away from the terminal, while type 2 taxis have a base close to the market, for example. Both

types of taxis have to go back to their base after the transaction is completed. Assume also that

the taxis visit the market without passengers.

Let us indicate the one way transaction cost of type k (k = 1; 2) taxis who visit the spot market
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from their base dk=2, in a temporal term. When a type 1 taxi is matched with a type 1 passenger,

it pays a transaction cost d1 to arrive at the objective place, and comes back to its base without

payment. The taxi also has to pay a transaction cost in the case where the transaction is not

realized. However, it has to bear both the transaction cost d2 to move between the spot markets

and its partner's objective place, and d1 to move between the market and its base. The same

process can be applied to type 2 taxis. Therefore, the transaction cost for type k (k = 1; 2) taxis

that are matched with type i (i = 1; 2) passengers can be written as follows.

dki =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

dk when matched with type i = k passengers

dk + di when matched with type i 6= k passenger

dk with no transaction

(9)

The following equation holds for either type of taxis and passengers.

d11 < d12; d21 > d22: (10)

This shows that the total transaction cost is minimized when type 1 taxis are matched with type

1 passengers, while type 2 taxis are matched with type 2 passengers. This type of matching sets

is deåned as eécient matching.

(2) The Behavior of the Taxies

Assume that the type k (k = 1; 2) taxis' arrival rate is ñk and that the type i (i = 1; 2)

passengers' arrival rate is ïi. Both arrival rates are independent. Assume also that enough taxis

are available in the market. As 2 types of passengers and taxis make a queue at the same stand,

the service transaction in the market can be expressed by a double queuing model with arrival

rates ï= ï1+ï2; andñ= ñ1+ñ2, respectively. Either type of taxis can enter the market with the

probability ö= ï=ñ. They are matched with type 1 passengers with a probability ï1=ï, and type

2 passengers with the probability ï2=ï. A taxi may leave the market with the probability 1 Äö.
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The expected transaction cost which type k (k = 1; 2) haa to bare is

dk = dk +ö
ïi
ï
di (k; i = 1; 2; i 6= k): (11)

From Eq.(11), the relations between d1 and d2 are expressed as

d1 ï d2 when
ê

ñÄï2
ñÄï1 î

d1
d2

ë

d1 < d2 when
ê

ñÄï2
ñÄï1 >

d1
d2

ë

:

(12)

The expected transaction cost for either type of taxis depends upon the ratio of the passengers'

type in the market. Taxis cannot recognize the partner's type until they are matched, as there is

only one stand in the market. The expected fare revenue of type k taxis pk is

pk =

P2
i=1ïipki
ï

: (13)

As it is shown later, both types of taxis cannot always enter the market in a market equilibrium.

Here assume that only type k taxis can enter the market. The maximum queue length of type k

taxis can be shown as follows from Ea.(8).

M(ï1; ï2; pk1; pk2) = [pkï] : (14)

taxis may enter the market when the queuing length is shorter than the maximum length of

queuing, otherwise they leave the market. Type k taxis that visit the market can get an expected

proåt pk Ä S0(ï;ñ) with a probability ö= ï=ñ, while acquire 0 proåt with a probability 1 Ä ö.

S0(ï;ñ) = S(ï;ñ)=ö shows the taxis' average waiting time, and S(ï;ñ) is expressed in Eq.(5a).

Considering that type k taxis bear a transaction cost dk in order to visit the market, the expected

net proåt of type k taxis that visit the market is

EUk(ï1; ï2; ñk; pk1; pk2) = öpk Ä S(ï;ñ)Ä dk: (15)

Let us åx the passengers' arrival rate ï1; ï2 and the taxis' fare pki (i = 1; 2). From the result of

free entries to the market, the conditional equilibrium arrival rate ñÉk with passengers' arrival rate

ï1; ï2 given exogenously can be derived. Suppose a conditional market equilibrium, where ï1; ï2

11



are exogenously given, in which only either type 1 or type 2 taxis enter the market. Suppose also

that EU1(ï1; ï2; ñÉ1; p11; p12) > EU2(ï1; ï2; ñÉ2; p21; p22) is satisåed in such a conditional market

equilibrium. taxis may enter the market in the long run until the expected net proåt becomes

0 when they visit the market. EU1(ï1; ï2; ñÉ1; p11; p12) = 0 is satisåed in the conditional market

equilibrium. As a result, type 2 taxis cannot enter the market as EU2(ï1; ï2; ñÉ2; p21; p22) < 0

holds. On the other hand, type 1 taxis cannot enter the market when EU1(ï1; ï2; ñÉ1; p11; p12) <

EU2(ï1; ï2; ñÉ2; p21; p22) is satisåed. Therefore, taxis with a higher expected net proåt occupy the

market in the long term. The equilibrium arrival rate of taxis that occupy the market can be

expressed as ñÉ which satisåes the following condition.

max
k

ö

ï

ñÉ
pk Ä S(ï;ñÉ)Ä dk

õ

= 0 (16)

Let us indicate a type of taxis that gives the maximum value kÉ for the equation above. Both

ñÉkÉ = ñ
É and ñÉl = 0 are satisåed when the following condition holds for l with k

É 6= l.

ï

ñÉ
pkÉ Ä dkÉ >

ï

ñÉ
pl Ä dl (17)

When the above equation becomes an equlity, the equilibrium arrival rate of taxis ñÉ can be

calculated, even though the ratio of arrival rate is unsettled.

(3) The Behavior of the Passengers

Let us assume that type k taxis arrive at the market with an arrival rate ñk. Passengers cannot

select the partner's type as taxis are allocated on a årst-come-årst-served basis. The expected fare

which type i passengers have to bear is

Pi =

P2
k=1ñkpki
ñ

: (18)
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The subjective expected utility EVi(ï1; ï2; ñ1; ñ2; Pi) of type i passengers visiting the market with

an arrival rate ïi is

EVi(ï1; ï2; ñ1; ñ2; Pi) = vi Ä Pi Ä T (ï;ñ); (19)

where vi shows the utility of type i passengers who consume taxis' services' Pi is the fare type i

passengers pay in a temporal dimension. Type i passengers decide whether to visit the market

by considering their expected utility EVi(ï1; ï2; ñ1; ñ2; Pi). Assume that the probabilistic term

of the passengers' utility vi is distributed along the probabilistic distribution function Fi(vi) (the

probabilistic density function fi(vi)) with a range [0; vi] independently from the passengers' type.

vi is the upper limit of the passengers' utility who consume the taxi services. Let us normalize the

reserved utility level 0 when the passengers consume any other service. That means passengers

who can acquire a positive utility from consuming taxi services may use the taxi service. The

following condition have to be satisåed in order that type i passengers visit the market.

T (ï;ñ) + Pi î vi (20)

The number of passengers hi who consume the taxi services can be represented as follows when

the potential number of type i passengers is Hi.

hi = Hif1Ä Fi(T (ï;ñ) + Pi)g (21)

If we assume that the arrival interval of each passenger to the market is distributed based upon a

Poisson arrival with mean 1=ói, the average arrival rate of hi passengers is expressed as ïi = hiói.

The arrival rates of type i passengers in the long term equilibrium are ïÉi (i = 1; 2), which satisåes

ïÉi = õif1Ä Fi(T (ïÉ; ñ) + Pi)g (i = 1; 2); (22)
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where õi = óiHi. The market equilibrium where fare pki (k; i = 1; 2) is exogenously given is

expressed as ïÉ1; ï
É
2; ñ

É
kÉ which satisåes

ïÉ1 = õ1f1Ä F1(T (ïÉ; ñÉ) + P1)g (23a)

ïÉ2 = õ2f1Ä F2(T (ïÉ; ñÉ) + P2)g (23b)

min
k

ö

ïÉ

ñÉ
pk Ä S(ïÉ; ñÉ)Ä dk

õ

= 0; (23c)

where kÉ is the k tha minimizes Eq. (23c).

4. Fare Regulation and Diãerentiation in the Market

(1) The Settings

There exists information asymmetricity in spot markets where the taxis and the passengers

cannot recognize the partners' type in advance and where unspeciåc taxis and passengers make

service transaction. Eécient matching between taxis and passengers is not guaranteed with hetero-

geneous agents. When the heterogeneity of both agents is large enough, mismatching externality

may occuur where a speciåc type of taxis occupy the market or the taxis' transaction cost increases.

In order to reduce this type of externality, it is necessary to introduce a diãerentiation policy to

separate the markets depending on the types of both agents. In the next subsection, a case where

taxis and passengers transact services at one stand with fare regulation is considered. A pooling

equilibrium can be derived with one stand in the market. In the following section, the case where

several stands are set for each type of passengers is considerd. A separating equilibrium is derived

with multiple stands. It is also investigated whether separating equilibrium is incentive compatible

with the taxis' and passengers' behavior.
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(2) Pooling Equilibrium and Fare Regulation

The taxis' fare is exogenously given in the previous section. However, the fare is derived

endogenously as a result of the market competition in a long tperiod when taxis can freely set

their fare. Assume that taxis can freely decide their fare under the condition where a public agent

sets the price cap p1; p2 for each type of passengers. Let us suppose that both types of taxis set

their fare at p1i; p2i (i = 1; 2). However, this is not sustainable. Only type kÉÉ taxis, which pay a

lower transaction cost, occupy the market because eq.(17) is satisåed in the market equilibrium as

taxis have to join the queue in order to make a transaction in the spot market. On the other hand,

taxis who leave the market have to set a higher fare than that of type kÉÉ taxis in order to enter

the market because passengers cannot select their desirable type of taxis. Type kÉÉ taxis can also

increase the fare in such a situation. They set an upper limit p1; p2 to their fare from the result

of the long term entry competition of taxis. Type kÉÉ taxis can stop the other types of taxies to

enter the market. This result shows that the price cap regulation works as a fare regulation. The

market may disappear as a result of long term competition without a price cap regulation. Price

cap regulation is necessary to keep the spot market going. Such pooling equilibrium (PE) can be

expressed by ïÉÉ1 ; ï
ÉÉ
2 ; ñ

ÉÉ which satisåes the following conditions.

ïÉÉ1 = õ1f1Ä F1(T (ïÉÉ; ñÉÉ) + p1)g (24a)

ïÉÉ2 = õ2f1Ä F2(T (ïÉÉ; ñÉÉ) + p2)g (24b)

ïÉÉ

ñÉÉ
pÄ S(ïÉÉ; ñÉÉ) = min

k
fdkg (24c)

p =
P2
i=1 piïi=ï. When Eq.(17) is satisåed, ñ

ÉÉ
kÉÉ = ñ

ÉÉ; ñÉÉl = 0. When Eq.(17) is satisåed as an

equality, both types of taxis can enter the market with an unspeciåed ratio of both types. Only

type kÉÉ taxis having a lower transaction cost can enter the market in the long term equilibrium,

while the other type of taxis cannot enter the market. As a result, the taxis' transaction cost

dkÉÉ;i which type kÉÉ taxis have to pay when they are matched with type i passengers satisåes the
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following conditions.

dkÉÉi ï di (i = 1; 2): (25)

Because of the information asymmetricity between taxis and passengers, taxis are matched with

passengers who impose on them a higher transaction cost. The transaction cost that taxis bear

increases as compared with the case of eécient matching. This means that a mismatching exter-

nality occurs where both taxis and passengers are not matched with their desirable partners in a

pooling equilibrium with heterogeneous agents.

(3) Separating Equilibrium and Fare Regulation

Suppose that 2 taxi stands are set in the market and that type 1 taxis and passengers use

stand 1 while type 2 taxis and passengers use stand 2. For the moment, assume that every agent

is obligated to use a speciåc stand for its type for eécient matching. The incentive compatibility

of usage regulation is analyzed later in this paper. There is also price cap regulation with p1 for

transaction between type 1 passengers and taxis and p2 for that between type 2 passengers and

taxis, respectively. The price cap regulation has an essential meaning same as the fare regulation

through market entry competition in the long run as discussed ealier in the paper.

The service transaction in each stand can be described by an independent double queuing

model. The average waiting time at stand i of taxis and passengers are represented as Si(ïi; ñi)，

Ti(ïi; ñi), assuming each arrival rate ïi and ñi, respectively. The maximum queue length of type

i taxis is

Mi(ïi; pi) = [piïi] : (26)

The expected net proåt of type i taxis is

EUi(ïi; ñi; pi) = öipi Ä Si(ïi; ñi)Ä di; (27)
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where öi = ïi=ñi. The conditional equilibrium arrival rate of type i taxis with exogenous passen-

gers' arrival rate ïi is ñéi which satisåes the following condition.

ïi
ñéi
pi Ä Si(ïi; ñéi )Ä di = 0 (28)

On the other hand, the subjective expected utility EVi(ïi; ñi; pi) of type i passengers who visit

stand i is expressed as follows.

EVi(ïi; ñi; pi) = vi Ä pi Ä Ti(ïi; ñi) (29)

The equilibrium arrival rate of type i passengers with exogenous ñi is ïéi , which satisåes the

following equation.

ïéi = õif1Ä Fi(Ti(ïéi ; ñi) + pi)g (i = 1; 2) (30)

From the above conditions, the separating equilibrium (SE) can be expressed with (ïé1; ñ
é
1); (ï

é
2; ñ

é
2)

which satisåes the following equations.

ïé1 = õ1f1Ä F1(T1(ïé1; ñé1) + p1)g (31a)

ïé2 = õ2f1Ä F2(T2(ïé2; ñé2) + p2)g (31b)

ïé1
ñé1
p1 Ä S1(ïé1; ñé1) = d1 (31c)

ïé2
ñé2
p2 Ä S2(ïé2; ñé2) = d2 (31d)

As only taxis with lower transaction cost visit each stand, there is no mismatching externality in

this setting.

In the above discussion, each type of taxis and passengers are forced to visit a speciåc stand.

It is necessary to investigate whether such regulation to their behavior is incentive compatible or

not. When type k (k = 1; 2) taxis visit stand k, they make a transaction with type k passengers

and pay a transaction cost dk, while when they visit stand j (j 6= k), they are matched with type j

passengers and pay a transaction cost dk + dj . In the market equilibrium, the following conditions
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are always satisåed.

EU2(ï
é
1; ñ

é
1; p1) î EU1(ïé1; ñé1; p1) = 0 (32a)

EU1(ï
é
2; ñ

é
2; p2) î EU2(ïé2; ñé2; p2) = 0 (32b)

In this case, type 1 taxis have an incentive to visit stand 1, while type 2 taxis have an incentive

to visit stand 2. This result means that diãerentiation policy is incentive compatible with the

taxis' behavior. In the following, let us compare the expected utilities of the passengers of each

type when they visit the other stand in the market equilibrium, in order to investigate the incen-

tive compatibility of the passengers' behavior. Assume that T1(ïé1; ñ
é
1) > T2(ïé2; ñ

é
2) is satisåed

regarding the waiting time in both stands. Then

EV1(ï
é
1; ñ

é
1; p1) < EV1(ï

é
2; ñ

é
2; p2) (33a)

EV2(ï
é
1; ñ

é
1; p1) < EV2(ï

é
2; ñ

é
2; p2) (33b)

are satisåed which shows that either type of passengers have an incentive to visit stand 1. This

type of market diãerentiation policy is not incentive compatible with the passengers' behavior. In

order to realize a market diãerentiation through the passengers' self-selection mechanism, public

agent introduce a penalty fare system p̂1; p̂2 which satisåes the following conditions.

p1 + T1(ï
é
1; ñ

é
1) < p̂1 + T2(ï

é
2; ñ

é
2) (34a)

p̂2 + T1(ï
é
1; ñ

é
1) > p2 + T2(ï

é
2; ñ

é
2) (34b)

That is, p̂1 is charged when type 1 passenger visit stand 2, while p̂2 is charged when type 2

passenger visit stand 1. Passengers do not pay penalty fares as each type of passengers is forced

to use a speciåc stand under this penalty fare system.
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(4) Spot Markets Speciåcs

The mismatching externality in pooling equilibrium and the incentive compatibility in sepa-

rating equilibrium are closely related with an assumption of a transaction mechanism where taxis

and passengers are matched on a årst-come-årst-served basis. Both taxis and passengers cannot

select their desirable partners in this mechanism. As a result, market entry competition of taxis

brings about an increase in the taxis' fare. When an expensive fare is set, those taxis wait for

passengers even if they have to wait long enough. Taxis who set a lower fare cannot enter the

queue because they acquire a negative proåt. That is, only taxis with a higher fare occupy the

market. Because of the peculiarity in the service transaction of the spot market, fare regulation is

required in order for the market competition to bring about an equilibrium fare which is socially

optimum. In order to secure the passengers' incentive compatibility in a separating equilibrium,

it is necessary to introduce a market diãerentiation policy through the passengers' self-selection

behavior. There might be other fare systems to be consistent with the incentive compatibility. As

this paper assumes 2 types of passengers, the åxed fare system is adequate. In general, a non-linear

fare system can be applied to solve these problems.

5. Characteristics of Market Equilibrium and Multiple Equilibria

Thick Market Externality

In spot markets, there exists thick market externality where an increase in the passengers' and

taxis' arrival rate brings about an increase in the others' arrival rate through an active market

transaction. In a market with thick market externality, a service transaction becomes eécient

when the market scale is large, unless congestion or a mismatching externality is present. Let us

pay attention to the fact that the average waiting length in spot markets can be expressed with

Eqs.(4a)，(4b). The average waiting length E(m > 0 : ï;ñ); E(m < 0 : ï;ñ) was a degree of 0 for
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the average arrival rate ñ;ï. For any ñ> ïï 0 and íï 0, the following equations are satisåed.

E(m < 0 : ï;ñ) = E(m < 0 : íï;íñ) (35a)

E(m > 0 : ï;ñ) = E(m > 0 : íï;íñ) (35b)

Therefore, for the average waiting times for taxis and passengers S; T , the following conditions are

satisåed.

S(ï;ñ) = íS(íï;íñ) (36a)

T (ï;ñ) = íT (íï;íñ) (36b)

In this way, a positive feedback mechanism where an increase (decrease) in the arrival rate of one

agent brings about an increase (decrease) in the arrival rate of the other agent in spot markets. As

a result, average waiting time decreases when the arrival rates of both taxis and passengers increase

simultaneously, which makes market transactions eécient, that is, thick market externality is at

work. There possibly exist multiple equilibria in markets with scale economies. In this section, thick

market externality at work in spot markets is investigated. A mechanism where multiple equilibria

occur both in pooling equilibrium and separating equilibrium is also analyzed. A mechanism in

pooling equilibria is analyzed årst for the sake of convenience.

(1) The Structure of Separating Equilibrium

In separating equilibrium, market equilibrium is realized in each stand, independently. Without

loss of generality, let us focus upon stand 1. A type 1 passenger and a type 1 taxi make a transaction

at stand 1. The market equilibrium at stand 1 can be deåned as the combination of equilibrium

arrival rate (ïé1; ñ
é
1), which satisåes the following conditions.

ïé1 = õ1f1Ä F1(T1(ïé1; ñé1) + p1)g (37a)

ïé1
ñé1
p1 Ä S1(ïé1; ñé1) = d1 (37b)
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From Eq.(20), the following equation should be satisåed for the passengers to have an incentive to

visit the market.

T1(ï
é
1; ñ

é
1) + p1 î v1 (38)

There exist a ñ1 which satisåes 0 ï ö1 ï 1 for any ï1 in Eq.(37b) (Matsushima et al., 2006). Let

us indicate that ñ as ñé1(ï1). Then Eq.(37a) can be rewritten as ï1 = Ä1(ï1; ñ
é
1(ï1)). Both sides

of Eq.(37a) can be divided into y = ï1, y = Ä1(ï1; ñé1(ï1)), which are shown as 2 diagrams in

Figure-1. The 45 degree line in this ågure shows y = ï1. Cross points in this ågure show the

ï1 which satisåes Eqs.(37a), (37b) simultaneously. Let us indicate the shift dynamics of ï1 in a

market disequilibrium in the following equation.

dï1
dt

= ê1fï1 ÄÄ1(ï1; ñé1(ï1))g (39)

where ê1 > 0 indicates a parameter. In the initial event, let us suppose that the initial arrival rate

of type 1 passengers is plotted at C which satisåes ïB1 < ï1. The term dï1=dt ï 0 is satisåed from

Eq.(39), where the arrival rate of type 1 passengers ånally converges to the equilibrium solution

A. The equilibrium solution (ïé1; ñ
é
1(ï

é
1)) is a stable equilibrium. On the other hand, dï1=dt î 0

holds if 0 î ï1 < ïB1 is satisåed, that is, the arrival rate of type 1 passengers decreases. Then it

converges to a stable equilibrium (0; 0). There are two stable equilibria (0; 0) and (1:76; 0:90) in

the case shown in Figure-1. The authors have already proved that the equilibrium (0; 0) where

a spot market is not realized is always stable, and that there are two stable equilibrium including

(0; 0) when Eqs.(37a) and (37b) have 2 equilibria solutions which satisfy the condition (38) other

than (0; 0) (Matsushima et al., 2006).

[Insert Figure-1 here]
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(2) The Structure of Pooling Equilibrium

To make the discussion simple, let us suppose that the fare of both types of taxis are set

in the same level p11 = p21 = p1; p21 = p22 = p2 and that the transaction cost is set as d.

From Eqs.(23a), (23b) and (23c), pooling equilibrium can be deåned as ïÉÉi ; ñ
ÉÉ
i which satisåes the

following conditions.

ïÉÉ1 = õ1f1Ä F1(T (ïÉÉ; ñÉÉ) + p1)g (40a)

ïÉÉ2 = õ2f1Ä F2(T (ïÉÉ; ñÉÉ) + p2)g (40b)

ïÉÉ

ñÉÉ
pÄ S(ïÉÉ; ñÉÉ) = d (40c)

As the taxis' fare and transaction cost are same for all types, condition (17) is deåned from the

expected transaction cost. Also d1 < d2 is satisåed when ï1 > ï2 holds, that is, type 1 taxis

dominate the market. When ï1 < ï2 is satisåed on the other hand, type 2 taxis dominate the

market.

Suppose Eq.(40a) and (40b) are expressed as ï1 = Ç1(ï1; ï2; ñ); ï2 = Ç2(ï1; ï2; ñ) in order

to make the description simple. Suppose also that ñ which satisåes Eq.(40c) for any ï1; ï2 is

ñÉÉ(ï1; ï2). Assume ï2 is åxed as ï2. Eq.(40a) can be divided into two equations y = ï1 and

y = Ç1(ï1; ï2; ñÉÉ(ï1; ï2)). A point of intersection of the two equations shows a conditional

equilibrium where ï2 is exogenously given. The equilibrium solution changes as ï2 changes. The

locus of the equilibrium is expressed as ~ï1(ï2). In the same way, the locus of the equilibrium

solution ~ï2(ï1) can be derived for any ï2. The ï1Äï2 plane can be divided into four territories, 1)

ï1 > ~ï1(ï2), ï2 > ~ï2(ï1)（domain I-1), 2)ï1 > ~ï1(ï2), ï2 < ~ï2(ï1)（domain I-2), 3)ï1 < ~ï1(ï2),

ï2 > ~ï2(ï1)（domain I-3), 4)ï1 < ~ï1(ï2)，ï2 < ~ï2(ï1)（domain II-1, II-2) as shown in Figure-

2. The equilibrium solutions are deåned as the arrival rates of both types which are consistent

with the conditional equilibrium arrival rates which are realized when the arrival rate of other

type passengers are exogenously given. That is, an equilibrium can be deåned which satisåes
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(ïé1(ï
é
2); ï

é
2) = (ïé1; ï

é
2(ï

é
1)). As symmetricity is assumed in taxis' fare and transaction for each

type in this case, the two loci ~ï1(ï2) and ~ï2(ï1) are symmetric about the 45 degree line as shown

in Figure-2. Type 1 taxis dominate the market in the domain above the 45 degree line, while

type 2 taxis dominate the market below the 45 degree line.

[Insert Figure-2 here]

Move dynamics of ï1; ï2 in the market disequilibrium is deåned as follows.

dï1
dt

= ë1fï1 ÄÇ1(ï1; ï2; ñÉÉ(ï1; ï2))g (41a)

dï2
dt

= ë2fï2 ÄÇ2(ï2; ï1; ñÉÉ(ï2; ï1))g; (41b)

where ë1 > 0; ë2 > 0 are parameters. Suppose that the initial points ï1; ï2 are located in the

domain II-1. The terms dï1=dt î 0; dï2=dt î 0 are satisåed from Eqs.(41a),(41b). That is, the

arrival rates of passengers of both types gradually decreases (moves to the direction of the arrow

shown in the domain II-1 in Figure-2) to converge to a stable equilibrium (ïÉÉ1 ; ï
ÉÉ
2 ) = (0:42; 0:42).

The directions of move of ï1; ï2 are shown in each domain in the Figure-2. As a result, the arrival

rates of both types decreases and converges to a stable equilibrium (ïÉÉ1 ; ï
ÉÉ
2 ) = (0:0; 0:0) when the

initial arrival rates are in the domain II-2. When the initial arrival rates are in other territories,

the long run equilibrium arrival rates converge to the stable equilibrium (ïÉÉ1 ; ï
ÉÉ
2 ) = (0:42; 0:42).

D in this ågure shows the unstable equilibrium. From the above, market equilibria are diãerent

depending upon the initial arrival rates of passengers. Therefore, market equilibria exist in spot

markets.

6. Diãerentiation Policy and Social Welfare

(1) Type of Market Equilibrium and Social Welfare

There are two types of market equilibrium, 1) pooling equilibrium (ñÉÉi ; ï
ÉÉ
i ), and 2) separating

equilibrium (ñéi ; ï
é
i ). As discussed in the former section, two stable equilibria possibly exist: one
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with positive arrival rates, and another without taxi and passenger. The social welfare is 0 when

no agent visits the market. Social welfare in the market equilibrium is deåned by focusing upon

the market equilibrium with positive arrival rates as follows. The producers' surplus is 0 as taxis

enter the market until the expected net proåt is 0. Therefore, only the consumers' surplus is taken

into consideration. The expected utility of each type of passengers is deåned in Eq.(19) in the

pooling equilibrium. When the probabilistic utility vi is distributed along the probabilistic density

function fi(vi), social welfare SSPE is expressed as follows.

SSPE =
2

X

i=1

õi
n

Z vi

úPEi

(vi ÄúPEi )fi(vi)dvi
o

(42)

úPEi = T (ïÉÉ; ñÉÉ) + P i is satisåed. For the separating equilibrium SE, the social welfare SSSE

can be deåned by replacing úPEi in Eq.(42) with úSEi = Ti(ïéi ; ñ
é
i ) + pi.

Let us take notice that the social welfares SSPE and SSSE are functions of regulated fares

p1; p2. Suppose that the social welfare in a pooling equilibrium and a separating equilibrium

SSPE(p1; p2), SSSE(p1; p2) are functions of p1; p2 in order to make this point clearly. The optimal

regulated fare (pÉÉ1 ; p
ÉÉ
2 )，(p

é
1; p

é
2) can be deåned as follows.

(pÉÉ1 ; p
ÉÉ
2 ) = argmaxp1;p2

fSSPE(p1; p2)g (43a)

(pé1; p
é
2) = argmaxp1;p2

fSSSE(p1; p2)g (43b)

`arg' denotes a fare that maximize the right-hand side of Eqs.(43a) and (43b).

(2) Optimal Fare and Social Welfare

Let us explain the eãect of diãerentiation policy and fare regulation upon social welfare through

a simple numerical example. The results of numerical examples are shown in Figure-3 to Figure-7

with parameters shown in the footnotes of ågures. Figure-3 shows the relation between price cap

fares p1; p2 and the social welfare in stable equilibrium. The optimal price cap fare in the pooling

equilibrium is (pÉÉ1 ; p
ÉÉ
2 ) = (3:43; 1:41). The social welfare in pooling equilibrium is SS

PE = 3:78.
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Figure-4 shows the relation between the price cap fare pi and social welfare in a stand of pooling

market i (i = 1; 2). In the separating equilibrium, pé1 = 2:28 for stand 1, and pé2 = 1:95 for

stand 2. Social welfare in separating market SS is 4.26, that makes social welfare increase by

the market diãerentiation policy. The average waiting time of each stand under the optimal price

cap regulation (T1(ïé1; ñ
é
1); T2(ï

é
2; ñ

é
2)) is (0:91; 0:89) in this case. The penalty fare which satisåes

p̂1 > 2:31; p̂2 > 1:92 should be set to lead passengers' behavior in order to make the diãerentiation

policy incentive compatible with their behavior.

[Insert Figure-3 here]

[Insert Figure-4 here]

[Insert Figure-5 here]

[Insert Figure-6 here]

[Insert Figure-7 here]

Next, the relation between the market condition and the eãect of market diãerentiation policy

is discussed. Figure-5 shows the change in social welfare in both the pooling equilibrium and

the separating equilibrium under an optimal fare regulation according to the change in d with

(d1; d2) = (d + 0:25; d). As transaction of type 1 taxis is larger than that of type 2 in this

case, the market is dominated by type 2 taxis. As the transaction cost of type 2 taxis which

are matched with type 1 passengers becomes large, when the taxis' transaction cost d is large,

the eãect of mismatching externality is large in the pooling equilibrium. On the other hand,

there is no mismatching externality in the separating equilibrium, while thin market externality is

present. The social welfare in a separating market is large as the eãect of mismatching externality

is large when d ï 0:43 in Figure-5. The pooling market is desirable when d < 0:43, as the

eãect of thick market externality is larger than that of mismatching externality. Figure-6 shows
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the relation between õ and the social welfare in the market equilibrium under an optimal fare

regulation with õ1 = õ2 = õ. The number of passengers who visit the market becomes large as the

passengers' density is large. Therefore, mismatching externality works well while the eãect of thin

market externality in the separating equilibrium is small. A separating market which decreases

mismatching externality is optimal when õï 2:26 in Figure-6.

Figuer-7 shows the relation between the ratio of passengers and the social welfare in both

types of market with õ1+õ2 = 4:5. The horizontal axis shows the density of type 1 passengers per

total density of passengers ê= õ1=(õ+õ2). The separating market is optimal with 0:50 î êî 0:68,

otherwise the pooling market. The expected gross proåt for taxis is large as êincreases, because

the ratio of long distance passengers increases. As a result, more taxis arrive at the market in

order to increase the social welfare. However, the eãect of mismatching externality becomes large

when the average transaction cost of taxis increases, as both types of passengers visit the market

in a pooling equilibrium of 0:50 î êî 0:68. That is, the diãerentiation policy is eãective in this

case. The stand for type 1 passengers may disappear in a separating market when ê< 0:18, as the

arrival rate of type 1 passengers is small in order to make the eãect of thin market externality more

eãective. On the other hand, a type 2 stand cannot exist when ê> 0:72. In a pooling market, the

market is alive for any êas the total number of passengers is åxed.

(3) Policy Implications

As two externalities, thick market externality and mismatching externality, exist in spot mar-

kets, the desirable form of the markets cannot be deåned concretely. Whether the market diãer-

entiation policy is eãective or not depends upon the circumstances of markets. A public agency

has to investigate carefully considering both externalities when introducing a diãerentiation policy.

The numerical examples in the paper show that the separating market gives a higher social welfare

when õand d are large. Even though general results cannot be derived from limited numerical ex-
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amples, this result suggest that several stands should be set for spot markets where the transaction

cost is large and the demand for taxis is large, e.g., airports.

The knowledge from this paper depends upon the assumptions that passengers are matched

with taxis on a årst-come-årst-served basis and that there is no limit in the arrival rate of taxis.

For example, passengers have to bear the waiting time in order to wait for their desirable type

of taxis in a cruising market, while the price competition mechanism works as they can choose

the taxis' type. Passengers cannot choose their desirable taxis when they are matched with taxis

on a årst-come-årst-served basis. Then, taxis with higher fares can make a transaction with the

passengers. Taxis have an incentive to raise the fare in the long run. When the taxis' fare is

high enough, more taxis enter the market thus increasing the waiting time of taxis as a result.

If there is no limit in the taxis' fare, the market is dominated only by taxis with higher fares

pushing the taxis with lower fares out of the market. Taxis that are forced to leave the market

may wait for passengers outside of the market, which causes congestion. From the standpoint of

view of congestion relaxation in the market, queuing is the eécient way for matching. However,

fare competition does not work well in spot markets, thus creating a necessity for fare regulation.

When queuing is applied for transaction in spot markets, the åxed fare system for speciåc places

may be also eãective. It is necessary to develop a general equilibrium model for the whole taxi

market.

This paper proposes an equilibrium model to explain thick market externality and mismatching

externality by heterogeneous agents for the case where supply and demand are matched in a taxi

market. This kind of mechanism can be applied for various services other than the taxi market. For

example, public transportation or logistics can be explained with matching mechanism. Similar

discussion may be applied for the allocation problem of the peoples'S scheduling. Expanding this

model may give us useful knowledge to other areas of transportation modeling.
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7. Conclusion

In taxi spot markets where taxis and passengers of all types transact taxi services, thick market

externality appears where the service transaction becomes more eécient while more passengers

and taxis visit the market. On the other hand, mismatching externality may also appears, where

speciåc types of taxis dominate the market or the transaction cost of taxis increases, as both agents

cannot recognize the partners' type. In this paper, a spot market equilibrium model with both

thick market externality and mismatching externality is formulated. The mechanism of market

equilibrium and the eãect of market diãerentiation policy upon social welfare are analyzed for a

pooling market where both types of passengers and taxis visit one stand and a separating market

where several stand are set according to the type of agents. The theoretical knowledge derived

from this paper is as follows.

è Speciåc type of taxis dominate the market in a pooling equilibrium.

èA market diãerentiation policy is incentive compatible with the taxis' behavior.

èWhen the market diãerentiation policy is not incentive compatible with the passengers'

behavior, it is necessary to introduce fare regulations.

è Introduction of a market diãerentiation policy should be carefully investigated as both thick

market externality and mismatching externality appears in spot markets.

Even though these results are derived under the assumption that the matching between supply and

demand is transacted in a spot market, it is useful to consider transportation market diãerentiation

policies.

Some future researchs still remains when considering a realistic market diãerentiation policies.

Firstly, this paper assumes no limit in the arrival rate of each type of taxis. If the maximum

number of taxis which can be utilized is introduced, several types of taxis can possibly coexist in a

pooling equilibrium. Secondly, when the number of types of passengers is larger than the number
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of stands, an optimal matching pattern should be investigated. Thirdly, this paper assumes a

åxed fare for each type of passengers in order to simplify the disucussion. If passengers are more

heterogeneous, a discussion about an optimal nonlinear fare system which consists of åxed fare

and variable fare should be investigated. Finally, this paper proposes a partial equilibrium model

where taxis and passengers are matched in one spot market. A general equilibrium model with

total taxi services in a city is necessary to be considered in order to check the eãectiveness of fare

regulation policies.
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This example shows a case where v1 is uniformly

distributed in the range [0; 5:0], where õ1 = 2:5,

x1 = 0:5 and p1 = 3:0. In this case, there are two

equilibria with (ñé1; ï
é
1) = (1:76; 0:90) and (0; 0).

　

Figure-1 Separating equilibria
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Probabilistic utility term of passengers vi (i = 1; 2)

are uniformly distributed in the area [0:0; 5:0]. This

ågure shows a case with õ1 = õ2 = 2:5．d1 = d2 =

0:5 and p = p1 = p2 = 4:0. The ratio of arrival rate

of both types are undecided on the line ï1 = ï2 as

d1 = d2; p1 = p2.

　

Figure-2 Pooling equilibria
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v1 and v2 are uniformly distributed in the area

[0:0; 7:5] and [0:0; 5:0], respectively. This example

shows the result from calculation withõ1 = õ2 = 2:5，

d1 = 1:0，d2 = 0:75.

　

Figure-3 Fare and social welfare (a case with pooling equilibria)
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v1 and v2 are uniformly distributed in the area

[0:0; 7:5] and [0:0; 5:0], respectively. This example

shows the result from calculation withõ1 = õ2 = 2:5，

d1 = 1:0，d2 = 0:75.

　

Figure-4 Fare and social welfare (a case with separating equilibria)
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v1 and v2 are uniformly distributed in the area

[0:0; 7:5] and [0:0; 5:0], respectively. This example

shows the result from calculation withõ1 = õ2 = 2:5，

d1 = d+ 0:25，d2 = d.

　

Figure-5 Taxis' transaction cost and optimal regulation policy
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v1 and v2 are uniformly distributed in the area

[0:0; 7:5] and [0:0; 5:0], respectively. This example

shows the result from calculation with õ1 = õ2 = õ，

d1 = 0:75，d2 = 0:5.

　

Figure-6 Passengers' density and optimal regulation policy
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v1 and v2 are uniformly distributed in the area

[0:0; 7:5] and [0:0; 5:0], respectively. This example

shows the relation between êand social welfare with

õ1 +õ2 = 4:5, ê=
õ1

õ1+õ2
，d1 = 0:75，d2 = 0:5.

　

Figure-7 The ratio of passengers and optimal regulation policy
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