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Abstract  
Discrete choice models for mode choice are frequently estimated on data from travel surveys supplemented by level of service data (travel times, distances and costs) for different modes obtained from network models. These data are not accurate and we are faced with the problem of measurement errors. This paper is an attempt to explore the possible structure and magnitude of biases introduced in the parameters of a multinomial mode choice model by random measurement errors in two variables that we consider important in this respect, viz access/egress time for public transport and distance for walking and cycling.  A model is set up that satisfies the standard assumptions of multinomial logit model. This model is estimated on a dataset from a travel survey on the assumption of no measurement errors. Subsequently random errors are introduced and the mean values of the parameters from 200 estimations are presented and compared with the original estimates.     
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1. Introduction
Data from travel surveys are frequently used to estimate travel demand models based on the discrete choice framework. The respondents of a travel survey only reports characteristics of the trips undertaken, but for estimation purposes we also need the attributes of the alternatives. It is therefore common practice to use level of service (LoS) variables like travel times, distances and travel costs produced by a network model as attributes of both chosen and non-chosen alternatives (Brownstone, 2001). Network models are based on a division of the study area into traffic zones, each represented by a point (the centroid) that is taken to be the origin and destination of trips to and from the zone. The centroids are linked to the coded network by “artificial” links (the zonal connectors). The values of the LoS-variables are calculated by using variants of shortest path assignments for trips between centroids. 

This procedure will inevitably introduce differences between time, distance and cost experienced by respondents in travel survey and the values of same variables estimated with the network model. At best, the values of LoS-variables produced by a network model may be an accurate estimate of the average values for potential trips between different pair of zones. In that case we may treat the differences between the correct values pertaining to individual trips in a travel survey and the estimated values as random measurement errors (RME) even if it we are not dealing with a measurement error in proper sense of the term.  

Errors caused by the use of model estimates rather than accurate measurements will also be present in other settings. An example from the transport field is the use of models to calculate traffic noise exposure for housing units based on inputs like the volume and composition of traffic, distance to the roads, topography and other factors. The reason for using model based estimates is that accurate measurements can be very costly. RME will also be an issue in application of discrete choice models, but can in this case be treated as an aggregation bias, see for example, Ben-Akiva and Lerman (1985), Ch 6.   

Values of LoS-variables produced by a network model may also contain systematic bias.  Estimated travel time by car between zones or walking distances may, for example, have a systematic upward or downward bias. Systematic bias is not our concern here. We focus only on the consequences of RME in the estimation of models. The objective is to empirically verify how RME in one of the explanatory variables in a mode choice model may contaminate the results of the estimation. 
RME in explanatory variables has been extensively studied for linear regression models. The general conclusion is that RME results in biased and inconsistent parameter estimates both for the variable with RME and also for other variables in the model (Greene (2003). Measures of accounting for biases due to measurement errors have also been investigated and proposed for both linear and nonlinear regression models (Fuller, 1987; Carroll et al., 2006; and Wansbeek and Meijer, 2000). The analysis of RME in regressors in discrete choice models has not received the same attention in the literature. McFadden (1984), for example, comments on this problem: “How to handle measurement error in qualitative response models is an important unsolved problem” (p. 1441). In general this statement still seems to be valid.  

It might be difficult to account for biases due to RME in discrete choice models. The variance of RME in LoS-variables can be reduced by reducing the size of zones (and consequently increasing the number of zones) in a study area. The networks can also be coded more accurately. Increasing accuracy in this way comes at a cost, but may sometimes be worthwhile. However, at present we know a little about the trade-offs involved. Accounting for RME in the estimation procedure may be another option. Before considering different measures to account for biases due to RME in travel demand models, it is probably worthwhile to investigate the direction and magnitude of biases that may be caused by these errors.  As an example we here use a multinomial logit model for choice of mode for travel to work and data from actual travel survey previously used to estimate such a model.
The remainder of this paper is organized as follows. A brief review of the RME in regression models is given in section 2. In section 3 we discuss in more detail the sources of RME in LoS-variables. Section 4 presents the model, methods, and data used in the study. Section 5 presents the results and in section 6 we conclude.    

2. A brief review of the RME in regression models
We expect that some of the conclusions from linear and other nonlinear regression models may carry over to discrete choice models with some possible modifications. At least one conclusion seems intuitively reasonable: the greater the variance of RME, the worse the biases of parameter estimates. We therefore briefly review effects of RME in regressors and approaches to account for these effects in linear and nonlinear models in this section. 
2.1. Effects of RME in explanatory variables
We begin with effects of measurement errors in a regressor in a simple linear regression model estimated by the ordinary least squares procedures (see, for example, Gujarati (2003) and Greene (2003)). Now we assume our correct model:
Yi = α + βXi*+εi 





(1)

Suppose instead of observing Xi*, we observe Xi and we assume classical measurement errors so


Xi = Xi*+ui  => Xi* =
Xi-ui




(2)

Where ui denotes measurement errors in the regressor. Therefore, instead of estimating (1), we estimate

Yi = α + β(Xi-ui)+ εi 

     = α + βXi+(εi-βui)


    = α + βXi+ έi 





(3)

Where έi = εi-βui is a composite error term consisting of both equation and measurement errors.
Cov (έi, Xi) =  E[έi -E(έi)][Xi-E(Xi)]




       =  E(ui-βui ) (ui)  assuming E(ui) = 0, cov (ui,εi) = 0 and using (2)


       =  E(-βu2i) = -βσu2




(4)

where σu2 is variance of ui. Thus, the regressor and the composite error term are correlated violating the crucial assumption of the classical linear regression model. It can be shown (Gujarati, 2003) that:
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and σ2x* denote the probability limit of β and variance of X* respectively. (5) is a simple and transparent formulae and shows that 
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 will not converge to β. It is biased toward zero since the term inside the brackets is less than 1. The bias does not disappear if the sample size increases indefinitely. The measurement error thus results in biased as well as inconsistent parameter estimate. Clearly, the bias becomes worse when the variance of measurement error increases, but the critical factor is the ratio of variances in the denominator.  

Expressions for biases in multiple regression with a single mismeasured regressor can similarly be derived, but matters get more complicated and the result less transparent. In multiple regression model, the coefficient of the mismeasured regressor is still biased toward zero and the other coefficients become biased as well, although in unknown directions (Greene, 2003 and Bound et al., 2001). Thus a mismeasured regressor can contaminate all the estimated parameters in a multiple regression model. Matters get even worse if more than one regressor are mismeasured. We cannot conclude for sure about the direction and magnitudes of the biases, which normally depend on numerous parameters whose signs and magnitudes are unknown and, seemingly unknowable (Greene, 2003). 

While closed form expressions for the biases have been derived for linear regressions models, this has in general not been the case for discrete choice models. But results have been given for some special cases. Yatchew and Griliches (1985) derive expression for bias for the probit model with one mismeasured regressor assuming that all variables are normally distributed and measurement error is classical. According to their results, the coefficient is biased toward zero but it is compounded by an additional term compared to the bias in the linear regression model. But they do not mention anything about the effects on other parameters.  Similarly, Kao and Schnell (1987) show that measurement error in regressors in multinomial logit model results in asymptotically biased parameter estimates and propose a bias-adjusted estimator. This seems an important step in the sparse literature about modeling measurement error in discrete choice models. They do not mention anything about the distribution of variables and type and distribution of measurement error. However, probably surprisingly, this approach is rarely applied in modeling measurement error in discrete choice models in general and multinomial logit models in particular in any field.

2.2.  Accounting for effects due to measurement error
Though the problem of RME in regression models is not new, particularly in linear regression models, it has attracted attention of the researchers increasingly recently. The efforts are largely about accounting for biases in parameter estimates. There are many approaches, for example, instrumental variables estimation, regression calibration, simulation extrapolation, likelihood approach, asymptotically corrected likelihood criterion (Li and Hsiao, 2004), finite bounds (Hu, 2006), etc considered in the contemporary literature to take into account for the biases due to measurement error in linear and nonlinear regression models. 
Readers are referred to Fuller (1987) for linear models, Carroll et al. (2006) for nonlinear models, and Wansbeek and Meijer (2000) for both types of models for detailed study of these approaches. Accounting for biases due to errors in variables is more difficult in nonlinear models than in linear models (Bound et al., 2001). 
Less attention has been paid to modeling measurement error in discrete choice models. Brownstone (2001) describes the use of multiple imputations to correct for the measurement errors due to the use of network data of key variables such as travel time and cost when a small validation study is available to model the measurement error process.  In general we must expect that any method that shall account for measurement error in the estimation procedure itself must be based on some prior information about the distribution of the measurement errors. 

3. Sources of RME in LoS-variables

The input data of transportation models may contain different types of errors. Our concern here is RME due to the use of LoS data obtained from network models. These variables are, at best, estimates of the average values for individual trips between zones. When applied for estimation of discrete choice models these zonal averages introduce errors in the LoS variables for individual trips (Brownstone, 2001 and McFadden and Reid, 1975). 

The main LoS-variables in our study are: 

· Travel distance

· Travel time by car

· On-board time for public transport

· Waiting time for public transport

· Access/egress time for public transport

· Number of transfers for public transport

· Travel cost by car and public transport

Errors in these variables may stem from:

· Network coding, i.e. the coded network does not contain all relevant links of the real network or attributes of the coded links contains errors. 

· The algorithms and assumptions used in the network model for “shortest path” assignments; i.e. travelers may consider other - or additional - attributes of travel paths than those included in the model.   
· The use of centroids and zonal connectors and the degree of geographical dispersion of trip origins and destinations within zones.

Over the years LoS-data have been improved due to more accurate and detailed coding of networks and improved network models. The development has also been towards greater geographical resolution. The number of zones in the transport model for the Oslo-region has for example increased from 430 in 1992 to 1940 zones at present. However, even if estimated LoS-variables are becoming more accurate there are at least 2 variables, namely, distance for walking and cycling trips and access/egress time for public transport, where, in our opinion, relatively large random measurement errors may still be present and cause problems for model estimation. The reason for considering these variables is not that the measurement errors necessarily are greater in absolute terms than for other variables. Rather we take the cue from linear regression models where (5) shows that the magnitude of the bias depends on the ratio between the variance of the error term and the sample variance of the independent variable. 

Walking and cycling tend to be short trips which mean that the calculated distance between centroids may introduce relatively large errors in the distances used for the individual trips between zones in the estimation. 

Access/egress to public transport also tends to involve short distances. In addition to the inaccuracies caused by centroids and zonal connectors, estimated access/egress time will also be influenced by the coding of public transport stops. For example, in the Norwegian models, most bus stops are at present to a large extent located at regular nodes in the road system.     

Both variables can be more accurately estimated by increasing the geographical resolution (i.e. by using smaller zones or by calculating distances on an address to address basis) and by coding public transport stops more accurately. For large travel surveys this will be a costly exercise and one objective of the exploratory work reported here, is to investigate the possible gains for model estimation of such an investment in improved accuracy. 

4. Model, method and data

We use a multinomial logit model of mode choice for the trip to work as a tool. The data is from a travel survey in the Oslo-region conducted in 1997. A detailed description of the travel survey can be found in Stangeby (1997). EMME/2 (INRO Consultants 1999) was used to calculate the values of the LoS-variables. A similar model has previously been estimated on the same dataset (Rekdal, 1999).
As the purpose here is to investigate bias caused by RME we set up a model that by construction should fulfill the standard assumptions of a multinomial logit model, i.e. random terms in the utility functions that are IID Gumbel. We maintain the original model specification with respect to utility functions, variables and criteria for availability of alternatives. The six alternatives are:  

1. Car driver. Available to those who has car and parking place and possesses driving licenses 

2. Car passenger. Available to all

3. Public transport. Available when on-board time > 0 and access + egress time ≤ 60 minutes.

4. Taxi. Always available

5. Walking. Available if distance to workplace ≤ 10 km

6. Cycling. Available if distance to workplace  ≤  30 km

A set of “true” parameters was assumed. While not the same as the parameters originally estimated, most of the parameters were quite similar. The values of the systematic part of the utility functions were calculated with the original variables and the ‘true’ parameters. For each observation 6 random draws of a variable assumed to be Gumbel (0, 1) was made and these random variables were added to the calculated value of the 6 utility functions.  The choice was then taken as the alternative with the highest utility (including the random term) provided that this alternative was also available. If the alternative with the highest value of the utility function was unavailable, the choice is the alternative with the second highest value and so forth. Table 1 shows the simulated choices that were used for all subsequent estimations. 

Table 1: Simulated choices

	Mode:
	Trips
	Per cent

	Car driver
	1033
	48.7

	Car passenger
	125
	5.9

	Taxi
	6
	0.3

	Public transport
	452
	21.3

	Walk
	147
	6.9

	Cycle
	358
	16.9

	Total
	2121
	100.0


By this procedure we should now have a data set based on real observations, but with choices that are generated in order to fulfill the standard assumption of a MNL- model. This is the starting point for simulation of RMEs in the variables. RMEs were subsequently introduced in the two variables that we consider most prone to the measurement error problem, viz. distance for walking and cycling and access/egress time for public transport. 

Table 2:  Descriptive statistics of major explanatory variables (excluding non-available alternatives)

	Explanatory variable:
	Mean 
	Std dev
	Minimum
	Maximum

	Car travel time (hours)
	0.4628    
	0.3358      
	0.0833
	1.9567      

	Car travel cost (‘00NOK)
	0.1565    
	0.1569      
	0.00001)    
	1.1770      

	Travel cost by taxi (‘00NOK)
	1.5717    
	1.1563      
	0.4010    
	9.1704      

	Travel time by taxi (hours)
	0.5831    
	0.3022      
	0.2417    
	1.9277      

	Onboard time by PT (hours)
	0.4266
	0.3116
	0.0167
	2.3067

	PT fare (‘00NOK)
	0.1708
	0.0493
	0.1120    
	0.3210      

	Access and egress time to PT  (hours)
	0.3053    
	0.1635
	0.0198    
	0.9910      

	Waiting time for PT (hours)
	0.1115
	0.0983
	0.0113
	0.7500      

	Number of transfers for PT 
	0.4616    
	0.5693      
	0.0000    
	3.0000      

	Walking distance (km  ≤ 10)
	5.2580
	2.5721
	0.4000
	9.9500

	Cycling distance (km  ≤ 30)
	10.6774
	7.1919
	0.4000
	30.0000


1) Cost is assumed to be zero if the respondent uses a company car
Table 2 show the major explanatory variables used in the model and their descriptive statistics. The other explanatory variables are eight dummy variables, namely, visit on way to work, destination zone with good public transport service, guaranteed and free parking space at work, car used for business trips, gender, age group, free parking at work, and R-zone.
For the base model we estimated the parameters in Table 3. The 2 first letters indicates the utility function. The first 5 parameters are alternative specific constants. GC_TM is a generic parameter for travel time by car (CD, CP, TX). GC_CO is a generic parameter for travel cost. As expected the estimated parameters deviates from the “true” parameters due to the normal sampling error. The mean value of parameters estimated for 100 set of draws for the Gumbel variable came very close to the “true” parameters and confirmed that the model behaves as predicted by theory.

In order to investigate the impact of RME on estimated parameters we introduce random “errors”, first for access/egress time for public transport (PT_WALKT) and than walking and cycling distance (WC_DIST). The results presented below is the average value of the parameters based on 200 estimations of the model, each with different draws for the “measurement error”.     

Table 2: Base case – model estimated without measurement error.

	Log likelihood = -1445.2
	N=2121
	
	

	Variable:
	"True" 
	Estimates
	Std. err.
	Est./s.e.

	
	parameters
	(base)
	
	("t-value")

	CP_00
	-3.20
	-3.1676
	0.3355
	-9.443

	TX_00
	-1.40
	-1.6177
	0.6297
	-2.569

	PT_00
	1.30
	1.6176
	0.2934
	5.514

	WK_00
	2.10
	2.5498
	0.3269
	7.799

	CK_00
	0.70
	0.8978
	0.2658
	3.378

	GC_TM
	-2.50
	-2.5158
	0.4613
	-5.454

	GA_C0
	-2.60
	-2.5299
	0.6666
	-3.795

	CD_V2W
	1.20
	1.0798
	0.1669
	6.471

	CD_AZONE
	-0.90
	-0.9564
	0.1955
	-4.892

	CD_PARK
	1.20
	1.3031
	0.1947
	6.694

	CD_CINW
	1.30
	1.3897
	0.2021
	6.876

	CP_FEM
	1.30
	1.3016
	0.2629
	4.951

	CP_AGE_1
	0.70
	0.2952
	0.3301
	0.895

	PT_ONBOARD
	-2.00
	-1.9442
	0.5132
	-3.788

	PT_WALKT
	-3.50
	-4.0987
	0.6826
	-6.005

	PT_WAIT
	-3.50
	-4.5446
	1.3809
	-3.291

	PT_TRANSF
	-0.70
	-0.7443
	0.1732
	-4.297

	PT_FREEP
	-1.00
	-1.2506
	0.1564
	-7.999

	WK_DIST
	-0.80
	-0.8752
	0.0743
	-11.785

	CK_DIST
	-0.20
	-0.2163
	0.0171
	-12.633

	CK_FEM     
	-1.00
	-1.0247
	0.1405
	-7.292

	CK_R_Z
	0.50
	0.5373
	0.1405
	3.824


CP=car passenger  CD=car driver  TX = taxi  PT = public transport WK = walking CK = cycling

5.  Simulation of measurement errors
5.1.  Measurement error in access/egress time for public transport
It is possible to have different error structures for the measurement errors. The standard results for linear regression models are based on additive and homoscedastic random errors, e.g (1)-(5). This implies that the variance of the error term is independent of the true value of the variable. 

The first example is based on this assumption and we use a random normal additive term. 

In the first case we assume a variance for error term that corresponds to 10 per cent of the sample variance for access/egress time for available public transport alternatives. The sample variance is 0.0258 for this subset of observations, and the error term consequently gets a variance of 0.00258 and a standard deviation of 0.0508. Notice that that for this case a simple linear regression model according to (5) will give a downward bias of 9 per cent (1/1.1=0.909).  For the second case we increase the variance of the error term to 25 per cent of the sample variance for access/egress time. This gives a standard deviation of 0.0803. A normal distribution for the error term may cause some negative values for the recalculated access/egress time and also some of the recalculated values may also exceed the limit set for availability (1 hour). To avoid negative values, any negative value is replaced by 0.005 and availability is set according to the recalculated values.   

Table 4: Mean values for 200 estimations. Additive normal and homoscedastic error term. Error in access/egress time for public transport. Selected parameters.  

	
	Standard deviation = 0.0508
	Standard deviation = 0.0803

	Variable:
	Mean
	Std Dev
	Mean/base
	Mean
	Std Dev
	Mean/base

	GC_TM
	-2.3775
	0.0554
	0.945
	-2.2499
	0.0746
	0.894

	GA_C0
	-2.5484
	0.0161
	1.007
	-2.5632
	0.0215
	1.013

	PT_ON_B
	-1.8551
	0.0415
	0.954
	-1.7676
	0.0610
	0.909

	PT_WALKT
	-3.4135
	0.2372
	0.833
	-2.7926
	0.3149
	0.681

	PT_WAIT
	-4.8208
	0.1189
	1.061
	-5.0966
	0.1674
	1.122

	PT_TRANS
	-0.7658
	0.0126
	1.029
	-0.7905
	0.0186
	1.062

	WK_DIST
	-0.8696
	0.0025
	0.994
	-0.8640
	0.0034
	0.987

	CK_DIST
	-0.2114
	0.0020
	0.977
	-0.2068
	0.0027
	0.956


The fourth and the last column show the mean value from 200 estimations divided by the parameter values for the base case (no measurement error) in Table 3. We take this as a measure of the bias even though the estimates for the base case are affected by the sampling error. 
Like in the linear regression case we see that the variable with measurement error (PT_WALKT) is biased towards zero. In the first case the mean value of the parameter is 83.3 per cent of the value estimated for the base case, i.e. a downward bias of 16.7 per cent. The bias increases to 32 per cent in the second case. 
In the first case driving time for car (GC_TM) and on board time for public transport (PT_ON_B) both get a downward bias of approximately 5 per cent, while waiting time for public transport get an upwards bias of 6 per cent. The parameter for travel cost (GA_CO) is hardly affected at all and this means that the implicit value of riding time both for car and public transport becomes biased downwards by approximately 5 per cent.  The implicit weight of waiting time for public transport gets an upward bias of 11 per cent (1.061/0.954).
In the second case the pattern with respect to other affected parameters and the direction of the bias persists, but the magnitude of the biases increases. For this particular model it thus seems that the bias introduced by an additive measurement error is at least as severe as we could expect from the formulae derived for simple linear regression. It also shows that the main impact on other parameters are found for onboard time for public transport (downward bias), waiting time for public transport (upward bias) and driving time for cars (downward bias).  We also get a downward bias in the implicit values of time.  
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        Figure 2: Development of the mean value with the number of estimations.

Are 200 simulations sufficient to draw firm conclusion?  The number of simulations necessary to get a reasonably stable result will depend on the variance of the error term. . Figure 2 shows the development of the mean value of PT_WALKT for 2 runs of 200 estimations with a standard deviation of 0.0508.  From the figure it seems that the mean value will converge to approximately 3.415. For this particular case 200 estimations should be sufficient for our purpose and are used in all subsequent simulations.  
An additive normal and homoscedastic error term may not be the most realistic assumption for the measurement error. Among possible alternatives we also tested the impact of a multiplicative error and an additive heteroscedastic error term.

The multiplicative error term had the form:
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The additive hetereoscedastic error term was assumed to come from a symmetric triangular distribution with a minimum of - αX* and a maximum of αX*.  With 0<α<1 this assures that the recalculated value always will be positive.

Table 5 shows the results for the multiplicative error with σ = 0.2027 and for the triangular case with a range for the error term of  ±0.45X*.  This particular choice of standard deviation for the multiplicative case implies that the interval 0.67 – 1.5 should contain approximately 95 % of the values for eu .  It also turns out that the variance (and standard deviation) for w = X* - X then becomes approximately the same as for the second case in Table 4, i.e normal additive with σ=0.0803.  The main difference is that the distribution of w is heteroscedastic and not symmetric.  The triangular case gives a slightly smaller variance for w than the multiplicative case (0.0054 versus 0.0061) and the distribution of the error term is symmetric. The triangular distribution also implies that extreme values for the error term are avoided.  In both cases the PT was set to non-available if the recalculated value exceeded the criteria for availability.   

The two alternatives in Table 5 give very similar results with respect to the pattern and magnitude of the biases.  It is the same parameters that most strongly affected as in Table 4, but the biases are smaller than those in last column in Table 4. This may indicate that the consequences of a heteroscedastic measurement error with variance increasing with the true value of the variable are less severe than a homoscedastic error term produces the same variance for w.  

Table 5: Lognormal error with σu = 0.2027 and triangular with range ±0.45X* .

Selected parameters. 
	
	 lognormal σ=0.2027 
	Triangular ±0.45*X*

	Variable
	Mean
	Std Dev
	Mean/base
	Mean
	Std Dev
	Mean/base

	GC_TM
	-2.2420
	0.0734
	0.938
	-2.3658
	0.0650
	0.940

	GA_C0
	-2.5647
	0.0225
	1.004
	-2.5421
	0.0244
	1.005

	PT_ON_B
	-1.7615
	0.0599
	0.944
	-1.8460
	0.0531
	0.950

	PT_WALKT
	-2.7554
	0.3130
	0.782
	-3.3102
	0.2514
	0.808

	PT_WAIT
	-5.1148
	0.1672
	1.097
	-4.9107
	0.1461
	1.081

	PT_TRANS
	-0.7907
	0.0170
	1.047
	-0.7720
	0.0160
	1.037

	WK_DIST
	-0.8639
	0.0034
	0.992
	-0.8687
	0.0025
	0.993

	CK_DIST
	-0.2066
	0.0027
	0.972
	-0.2108
	0.0021
	0.974


For the triangular distribution we also increased the error range in steps of 10 per cent of the “true” value access/egress time. Figure 3 shows the results.  There seems to be a non-linearity involved as the lines get steeper when the error range exceeds 20 – 30 per cent of the true value. Below the 20-30 per cent range the biases are rather insignificant for this error structure.
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 Figure 3: Bias as a function of error range.
In our opinion the “measurement errors” caused by the use of centroids and zonal connectors in conjunction with inaccurate coding of stops for public transport can easily involve an error range that exceeds ± 50 per cent of the true value for access/egress time. 

5.2. Measurement error in distance for walking and cycling

While access/egress time for public transport deals with error in one component of a journey, distance for walking and cycling deals with a variable that is relevant for the whole trip. As walking and cycling will tend follow the same paths in the coded network, the measurement errors will be highly correlated for these two modes. In our case they are perfectly correlated. 

We begin with a normal additive error. The variance of the error term in the first simulation is set at 10 % of the sample variance for trips within the distance band where walking is an available alternative, i.e. up to 10 km. The variance for this subset of observations is 6.62 and consequently we use 0.662 for variance and a standard deviation of 0.8134 for the error term. As for access/egress time we also run a simulation with variance corresponding to 25%. In this case the standard deviation of the error term is 1.286. If the recalculated variable initially becomes negative, the distance is set to 0.1 km. Availability is also set according to the value of the recalculated variable. The results of 200 simulations are shown in Table 6.
As expected both WK_DIST and CK_DIST becomes biased towards zero. The bias for WK_DIST is also in this case greater than the expected bias in linear regression with a corresponding variance of the error term. There is also substantial bias GC_TM and PT_ON_B. The implicit values of in-vehicle time becomes biased downwards while the implicit weights on access/egress time and wait time for public transport becomes biased upwards. 

Table 6: Additive normal error in walking/cycling distance. Selected parameters.
	
	Additive normal σ=0.8134
	Additive normal σ=1.286

	Variable
	Mean
	Std Dev
	Mean/base
	Mean
	Std Dev
	Mean/base

	GC_TM
	-2.2838
	0.0545
	0.908
	-1.9993
	0.0793
	0.795

	GA_C0
	-2.4532
	0.0256
	0.970
	-2.3607
	0.0346
	0.933

	PT_ON_B
	-1.7075
	0.0590
	0.878
	-1.4199
	0.0893
	0.730

	PT_WALKT
	-3.9208
	0.0603
	0.957
	-3.7151
	0.0785
	0.906

	PT_WAIT
	-4.3769
	0.0732
	0.963
	-4.1518
	0.0982
	0.914

	PT_TRANS
	-0.7467
	0.0099
	1.003
	-0.7480
	0.0150
	1.005

	WK_DIST
	-0.7343
	0.0274
	0.839
	-0.6160
	0.0307
	0.704

	CK_DIST
	-0.2048
	0.0035
	0.947
	-0.1905
	0.0053
	0.881


For the last simulation for WC_DIST we use an additive heteroscedastic error term from a symmetric triangular distribution. If the true distance is 5 km or less, the range of the error term is  ±2/3 of the distance. If the true distance above 5 km the range is set at ± 3.33 km. Thus above 5 km the error term has a constant variance. This choice of error structure produces a slightly smaller variance for w = X* - X  than for N(0, 1.286) in Table 6. 

Table 7: Triangular additive heteroscedastic error term. 
Selected parameters 

	Variable
	Mean
	Std Dev
	Mean/base

	GC_TM
	-2.0975
	0.0773
	0.834

	GA_C0
	-2.3947
	0.0353
	0.947

	PT_ON_B
	-1.5111
	0.0867
	0.777

	PT_WALKT
	-3.7901
	0.0727
	0.925

	PT_WAIT
	-4.2357
	0.0989
	0.932

	PT_TRANS
	-0.7471
	0.0156
	1.004

	WK_DIST
	-0.7219
	0.0313
	0.825

	CK_DIST
	-0.1948
	0.0051
	0.900


The pattern of biases remains the same as in Table 6, but the magnitude is slightly smaller.   

5.3.  Errors in both access/egress time and distance for walking and cycling
The previous simulations have assumed RME in one variable. In most models estimated with LoS-variables produced by network models, both variables tested here will contain measurement error. In the final simulation we therefore introduced errors simultaneously in both variables and used the assumption of additive normal with the lowest standard deviation from Table 4 and 6 respectively.       

One interesting result in Table 8 is that the bias in the parameters for PT_WALKT and WK_DIST are smaller than in Tables 4 and 6 respectively, but the bias becomes quite large for GC_TM and PT_ON_B. 

Compared to the base case, the implicit value of in-vehicle time for car gets a downward bias of 30 per cent while the implicit value for public transport on-board time gets a downward bias of 74 per cent!

Table 8: Additive homoscedastic normal error in both variables.

Selected parameters. 

	 Variable
	Mean
	Std Dev
	Mean/base

	GC_TM
	 -1.7362    0.0826
	0.6901

	GA_C0
	 -2.4962    0.0324
	0.9867

	PT_ON_B
	 -0.6962    0.0786
	0.3581

	PT_WALKT
	 -3.7206    0.2325
	0.9077

	PT_WAIT
	 -3.3416    0.1353
	0.7353

	PT_TRANS
	 -0.8344    0.0189
	1.1211

	WK_DIST
	 -0.7606    0.0295
	0.8691

	CK_DIST
	 -0.1947    0.0040
	0.9001


Thus when we combine rather moderate RMEs in access/egress time for public transport and distances for walking and cycling it seemingly causes large biases in parameters for in-vehicle time and implicit values of time, most notably for public transport. 
5 Conclusions
The simulations of RMEs reported here shows that the expected bias in the variable measured with error is at least as severe as in the case of simple linear regression with RME that has a comparable error structure. Other parameters are also affected, both for variables in the utility function that contains the variable with measurement error and for variables in other utility functions.  It also seems that the pattern and magnitude of biases are only moderately affected by the choice of homoscedastic versus heteroscedastic error terms with a variance increasing with the value of the true variable. 

For our particular mode choice model, a persistent result over all simulations is that RME in access/egress time for public transport or distance for walking and cycling bias downwards the parameters for in-vehicle time both for car and public transport, with the largest bias for public transport. RMEs have comparatively small impact on the generic parameter for travel cost, with the implication that implicit values of time also become biased downwards with the largest bias for public transport. Somewhat disturbing: RMEs introduced simultaneously in both variables greatly amplify these effects, while the biases in parameters for the mismeasured variables actually become smaller. 

At present we can not say whether biases with the same pattern and magnitudes also will show up in similar models estimated on other datasets and in models for simultaneous choice of mode and destination or in models with different types of nesting structures. If they do, the implications are rather severe.     
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