Title: An Integrated Behavioral Model of Land Use and Transport System: a Hyper-Network Equilibrium Approach.

Authors: 
Mr. Mario Bravo, Universidad de Chile 

Mr. Luis Briceño, Universidad de Chile 
Dr. Roberto Cominetti, Universidad de Chile 

Dr. Cristián E. Cortés, Universidad de Chile 

Dr. Francisco Martínez, Universidad de Chile 
 

Title: An Integrated Behavioral Model of Land Use and Transport System: a Hyper-Network Equilibrium Approach.

Authors: Mario Bravo, Luis Briceño, Roberto Cominetti, Cristián E. Cortés, Francisco Martínez
 

Abstract:

The households’ decisions, from their residential location to their members’ trip choices through the network, are analyzed in a long term equilibrium approach by building a model that assumes that all consumers’ choices (location, travel and route choices) are represented by logit or entropy models. Our approach assumes that consumers optimize their combined residence and transport options, which are represented as a set of paths in a network defined by extending the transport sub-network with another fictitious sub-network that represents land use and demand options. In this context, we study the equilibrium of the land use and transport system (LU&T) as a network equilibrium problem. We define an equivalent objective function and the set of system constraints, which optimized on consumers willingness to pay and transport travel times, yields the set of static equilibrium conditions. In the land use market they reproduce the action (bid-choice) market clearance where every household is allocated at her highest utility option and dwellings are assign to best bidders (Martínez and Henríquez, 2003). The transport equilibrium yields the routes assignments and travel times on all links and routes following the Markovian Traffic Equilibrium problem (Baillon and Cominetti, 2006). At equilibrium no household is better off by choosing a different option for residential location, no household member is better of choosing a different set of trips’ destinations, modes and routes (frequency is fixed).

We study the static equilibrium with road congestion differentiating the cases with and without interactions among agents; these interactions include endogenous neighborhood quality for residential choice and trip destination choices based on endogenous land use attractions. In the case without interactions the method defines a strictly convex, coercive and non-restricted objective function (under usual conditions). Our method provides a comprehensive characterization of the solution, regarding existence and uniqueness, and an algorithm to obtain the solution with well-defined convergence properties. In the case with agents’ interactions the equilibrium is not unique. We define the unified problem as a set of fixed-point equations that characterizes the equilibrium. The algorithm to identify solutions is based on fixed-point iterations. In both cases the model is applicable real size problems, with heterogeneous population and locations, and multiple trip purposes.   

1.- INTRODUCTION
One of the major complexities in modeling big urban areas for planning purposes is to properly represent the strong connection between the transportation system and the spatial distribution of residential and non-residential activities. On the one hand, the activities’ spatial patterns represent the major determinant of generation and attraction of trips from(to) each zone, while, on the other hand, the transportation system is also a relevant input for location decisions through the resulting measures of accessibility due to the transportation system design along with the demand conditions for such a system. Therefore, changes in land use and activities directly affect the transportation demand patterns, which can eventually change accessibility, and so on. This multilevel process establishes a complex global equilibrium of the entire urban system, and a close formulation of such a problem can be explored through the interaction between the equilibriums of each subsystem.

In the specialized literature, we can find several articles dealing with the interaction between land use and transport (LU&T). Some models postulate the equilibrium in land use taking into consideration the importance of the transport in the location decisions, through a measure of the generalized transportation costs, which are assumed known for the land use equilibrium mechanism. The generalized costs are normally obtained from network assignment models, computed for fixed location patterns. However, from this framework, the authors do not solve simultaneous land use-transport equilibrium. Instead, they find the global equilibrium by means of iterative calculations of partial equilibrium of land use on the one hand, and transport on the other; these schemes are known as bi-level models in the literature. The major concern with regard to these models (apart from the expensive computation involved in solving these problems) is that we can neither ensure existence nor uniqueness of the procedure solution. Therefore, any heuristic method designed for this purpose does not ensure convergence to the global optimum. From all these observations, we can say that to ensure existence as well as uniqueness of LU&T equilibrium is so far an open research topic.  

In this research, we first develop an integrated LU&T model based on a variational inequality formulation for the equilibrium. A convex optimization problem is defined on an extended network, representing the decisions not only taken at the transport system level but also at the land use system, both in the same graph. We ensure existence as well as uniqueness of the optimum under reasonable assumptions. The first order conditions of this problem reproduce the equilibrium conditions of two previously developed models, the “Random Bidding and Supply Model” (RB&SM) by Martínez and Henríquez (2006) for urban location and the “Markovian Traffic Equilibrium” proposed in Baillon and Cominetti (2006) for private urban transport networks. Thus, the proposed model yields the equilibrium of the integrated LU&T system. One important feature of such models is that all agent decisions can be modeled by a logit model, which also applies in the case of the proposed model for the global equilibrium. Moreover, a solution algorithm is developed, from which its convergence to the global LU&T equilibrium is also proved. 

The aforementioned model does consider neither externalities among households nor agglomeration economies among firms.  In fact, including these types of interaction does not allow writing the problem as a variational inequality. Nevertheless, we recognize that land use externalities can constitute an important antecedent when taking medium and long term location decisions, for both households and firms. In the case of households, location decisions of certain socioeconomic group members are usually affected by the socioeconomic characteristics of the neighbors, resulting in segregation, among other phenomena. In the case of firms, we observe important interactions among firms that, for example, generate incentives to stay together, called agglomeration economies.

Hence, also in this paper we develop a modified LU&T model, which includes externalities in the locations of the agents. Such a model is formulated as a multidimensional fixed point, and represents the simultaneous equilibrium of land use, generation of trips, distribution and network assignment. The approach is based on splitting the entire system into smaller (simpler) subsystems. The interrelation among subsystems allows us to prove existence and uniqueness of the global equilibrium solution. With this added complexity of including externalities in the model, there is no closed-form for the optimization problem. However, the system still can be seen as an expanded network considering the entire modeled process, as described in detail in Section 4. A solution algorithm for this model is also proposed, which under very reasonable assumptions ensures convergence to the equilibrium.

Thus, in Section 3 and 4 the two above described approaches are presented, both conceived to represent the interaction between the land use market and the transport system, written under an integrated formulation: a variational approach for the case without externalities, and a fixed-point approach to add externalities in the model. Both approaches ensure not only existence but also uniqueness of the equilibrium solution, under very reasonable assumptions.

In the next section, the most relevant previous research efforts to model the interaction between land use and transportation, and the LU&T equilibrium, are briefly described. 

2.- BACKGROUND
In the specialized literature, we can find several examples of interactions between the land use market and the transportation system (LU&T). According to Chang (2006), the models can be categorized in Spatial Interaction, Mathematical Programming, Random Utility and Bid-Rent models. However, the problem of formulating the equilibrium LU&T is still an open problem, so far described and formulated by using some simplified models (in most cases heuristics), from which there is no analytical way to establish conditions of existence, uniqueness and convergence of such an equilibrium.

The first step to find an integrated formulation LU&T is to properly model the trip structure behind the system. The spatial interaction model proposed by Lowry (1964) and later generalized in Wilson (1970), introduces the concept of cost impedance between zones, explicitly represented by a cost function. Wilson (1970) postulated a model based upon the maximization of the system entropy. Although this case considers a fixed cost between zones, the author introduces a relative measure of the zone attractiveness. The model is not really able to completely explain the relation between land use and transport, mainly due to considering constant transportation costs.

A relevant land use model to discuss is the context of this paper is the RB&SM, which belongs to the “Bid-Rent” type modeling (Martínez and Henríquez, 2006). Real estate transactions are commanded by an auction mechanism, under a best bid rule. In this scheme, the resulting willingness to pay for each location describes the behavior of the decision takers, as proposed by Alonso (1965). The RB&SM model is an extension of the Random Bidding Model (RBM) previously developed by Martínez and Donoso (2001). 

Another relevant land use model within the spatial interaction approach, is the doubly constrained entropy model (Roy, 2004), similar to the proposal by Wilson (1970) with the difference that in this case the location is determined by the agents´ willingness to pay assumed to be known. From this model, the logit probabilities proposed by Ellickson (1981) are obtained, because the entropy maximization approach and the multinomial logit are equivalents when the parameters of the latter are estimated with the maximum likelihood method (Anas, 1981). Then, the RB&SM model can also be derived by formulating an optimization problem as a maximization of an entropy function (with neither externalities nor scale economies). 

The aforementioned land use models find the equilibrium considering the transport system and its interaction with the land use market. However, in all cases the generalized costs for transport are assumed exogenous.

The trip assignment models determine the route to be followed by each trip once both the mode and destination have been chosen (see Ortúzar and Willumsen, 1994). The process is modeled through the Wardrop network equilibrium conditions, for both determinist and stochastic traffic assignment (Sheffi, 1985). Nagurney and Dong (2002) propose an integrated model and formulates the network assignment problem as a variational inequality, reproducing the Wardrop conditions. Baillon and Cominetti (2006) on the other hand, developed a markovian equilibrium model for stochastic assignment. Unlike the other network equilibrium models (route based decision), the markovian equilibrium models a chain of decisions, where at each node the user decides the next link to get in, pursuing the minimization of the expected travel time to reach a predefined destination, regardless of the assignment decisions taken before. 
The link between transport and land use may be identified by access measures, which can be derived from a rigorous microeconomic framework (Martínez, 1995), and has been used to identify the complex relationship between user benefit measures from both the land use and the transport systems (Martínez and Araya, 2000). They explicitly compute the transport benefits associated to origin and destination zones (accessibility and attractiveness) in the context of a doubly constrained spatial interaction model.

One way to deal with the integrated problem is to use mathematical programming in the modeling. That consists on writing the decision problem as an optimization problem. The associated objective function must ensure existence and uniqueness of the global minimum. Chang and Mackett (2005) formulate a bi-level problem to integrate both levels. At the superior level, the location problem is faced under a bid-rent approach by computing the access (accessibility and attractiveness) of the zones. At the inferior level, the network decisions are made taking into account the access measures decided at the higher level. This procedure, however, does not ensure the existence of equilibria. Another model of this type is the one proposed by Boyce y Mattsson (1999) based on mathematical programming, in which the equilibrium at the transport network level, as well as that of land use, are solved through optimization problems. The formulation satisfies equilibrium conditions at the transport level, however, there are no equilibrium conditions attained at the location level.

The objective of this paper is to model the interaction between the transport and the land use system, ensuring existence and uniqueness of equilibrium, adding also a fixed-point approach to deal with externalities in location. Moreover, efficient algorithms to solve these models are proposed, ensuring convergence toward the global optimum of the entire urban system. 

Before formulating the model, a glossary of the problem variables is presented:
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 : willingness to pay component corresponding to the value of location amenities, including accessibility and neighborhood quality given by a household h for a place within zone i.
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- Hhi : number of households located at location i at equilibrium. H is the matrix of households locations.
3.- INTEGRATED LAND USE – TRANSPORT MODEL WITHOUT EXTERNALITIES: BASE MODEL (FIXED SUPPLY)
In the markovian equilibrium scheme (MTE) by Baillon and Cominetti (2006), the authors develop a traffic flow assignment model on a transportation network, assuming known the trip distribution patterns. They search for the equilibrium by means of the minimization of an objective function defined on the transport network. In this first formulation we extend the MTE model, but considering a more complex network, in which fictitious arcs and nodes are added in order to represent the agents’ location decision. Then, the original objective function is modified to represent the LU&T integrated problem.

In Figure 1 the extended proposed network G(N,A) is depicted. In this scheme a household h choose the optimal path including an initial arc from a fictitious node h to the location node i. This node also belongs to the network from which the members of household h will start their trips. The trip generation process is represented by a second layer in the network. Each trip chooses an optimal path through the transport network and finishes at a destination node d. We assume that the number of trips generated is constant for each household type, and also that the destination in the transport network is decided by the optimal path; only one transport mode is assumed in the formulation framework. 
The cost assigned to the location arcs represents the willingness to pay of the households for the land use around the end (head) node of such an arc. The location is decided through a bid-rent mechanism in the location decisions. Under this approach, the willingness to pay function represents the agents’ behavior in the location decisions (Alonso, 1965). In this model, the following willingness to pay function is postulated:
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Figure 1: Urban system equilibrium: Hyper-network representation

[image: image38.wmf](,)()

dd

hihhhihi

dD

BbtbzNt

t

Î

=-+-

å





(1)
Note that this form for the willingness to pay is derived from assuming: a quasi-linear subjacent utility function, in at least one of the consumption goods; an exogenous household income; and that the consumer chooses only one location for residence. It can be shown that under these assumptions
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 the marginal utility of income (Martínez and Henríquez, 2006). Thus, the first term shows the utility level reached by a household of type h, which has to be the same for all households of the same type under equilibrium conditions. The second term is assumed to be constant and it captures how a household of type h values the attributes of a specific zone i, in this case assuming that location externalities are exogenous to the equilibrium process. Finally, the third term provides a measure for the transport cost, as explained ahead in this paper, assuming only one trip purpose and 
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 trips per each destination zone d exogenously given. 
The values of state variables at the optimum are found by solving the following optimization problem:
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This problem may be explained as the dual of the following doubly constrained maximum entropy problem (P), assuming transport costs as fixed:
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where
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. This problem conceptually represents the maximization of bids under stochastic bids, or the representation of the auction prices.  
In this model, the function 
[image: image45.wmf]||||||

:

AIC

++

F®

¡¡
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, is bounded from above by the zone supply, which is assumed to be fixed in this scheme. Additionally, equation (2) is invariant to shifts in b and r, that is 
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. Like in the markovian equilibrium model, the objective function in (2) is strictly convex and coercive, under the assumptions (Hyp A), 
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. These conditions ensure both existence and uniqueness of the solution at the optimum.
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The first order conditions of problem (2) characterize the equilibrium, not only in the bid-rent market (RB&SM) but also in the transport system, through the traffic markovian equilibrium MTE. Analytically, the first optimality condition is
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Defining 
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 that corresponds to the total number of type h families located at zone 
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, the following land-use equilibrium condition is fulfilled:
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Moreover, by replacing the expression for 
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Thus, replacing (3) in the definition of 
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where Pi/h represents the probability for a household of type 
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 to prefer a real estate at zone 
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. Note that Martínez (1992b) obtains this probability (which is called “choice”), assuming that, on the one hand, the household’ surplus, defined by 
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 From equation (3) we can also deduce that, for each 
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Note that equation (7) reproduces fixed point problem for the RB&SM market clearance equilibrium condition.
A second optimality condition is
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which is equivalent to 
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and
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where Ph/i is called the “bid” probability in the RB&SM. This represents the probability that the consumer of type h is the best bidder in location i competing with all bidders in C, which is derived in Martínez (1992) by assuming bids distributed iid Gumbel with parameter 
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Moreover, from (10) we obtain that, for each 
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Expression (11) is, again, the same as the result obtained in the RB&SM model, and can be interpreted as the expected value of the maximum expected willingness to pay among the households asking for a place to be located.
In addition, a third condition is provided by the equilibrium on the transport network, from where the following first order conditions are obtained:
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Then,
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By defining
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from where, the equilibrium condition on the arcs belonging to the transport network system is reproduced, 
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From such results, we can prove that the solution of the optimization problem in (2) simultaneously satisfies the equilibrium conditions of both models, RB&SM and MTE.

Remark
Several extensions of the proposed model can be analytically developed. One straightforward extension is to add the distribution of trips problem into the integrated modeling framework. Another interesting extension is to incorporate the real estate supply as an endogenous variable. For further details on these, see Briceño (2006)
4.- INTEGRATED LAND USE – TRANSPORT MODEL WITH EXTERNALITIES
4.1.- General framework 

The objective of this part of the paper is to prove existence of the static equilibrium associated to the location, generation, distribution and assignment as a joint global equilibrium considering externalities. Since externalities (either positive or negative) do not allow us to write the equilibrium as an optimization problem, we propose a four stage approach in order to conveniently split the problem into: Generation, Distribution/Assignment, Land Use equilibrium and Location externalities. The objective of this scheme is to capture the properties of each subsystem, stating a multidimensional fixed point equation, in order to prove the existence of the global equilibrium. The proof of existence in the fixed point equation is quite hard due to the complexity of the model when adding externalities that influence the agents’ decisions. 
In simple words, the modeling approach considers people searching for a location. They make their decision based upon (among other things) accessibility, attractiveness and the features of other agents located at each zone (externalities). Those aspects associated with access are provided by the transport equilibrium, i.e., the generation and distribution of trips and the travelers’ assignment on the physical transport network. Besides, such transport equilibrium depends on the location of households and firms in the city. Thus, as noticed here, there are too many endogenous variables that are intrinsically connected, and form part of the global equilibria studied in this paper.
In order to understand how the land use process enters in this modeling approach, let us express the willingness to pay (bid) for agent type h and zone i as follows:
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Expression (13) shows the interactions between transport and land use. The arguments for existence we will develop in this paper consider any quasi-linear bid function of the form 
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, with f  being a smooth function (of class 
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). We can even consider a bid depending explicitly on the travel time.
In Figure 2 we graphically show the proposed 4-stage methodology: first, we consider the vector 
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 (provided that it has to fulfill the typical total summations and no-negativity constraints). Then, the trip generation is computed by means of the evaluation of a function. After that, the network assignment, along with the trip distribution problem, is solved obtaining as a result the accessibility parameters. These are used to construct the willingness to pay functions that enter the land use equilibrium to satisfy the conditions associated to the total agents to be located. Then, the location problem with externalities is solved. At each stage, the other stages’ parameters will be considered fixed, defining the general fixed point (corresponding to the global equilibrium) simply as the composition of the proper functions. 
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Figure 2: 4-stage methodology to prove existence of urban system global equilibrium

In the next subsections, each stage is analytically presented, highlighting the interactions with the other procedures. However, in Section 4 the global equilibrium is studied. 
4.2.- Generation

For this stage, we consider a growth factor type model as follows:
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which differs from the model in Section 3 where 
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The expression (14) for the total number of trips generated at zone i for agent of type h comes from assuming a deviation from the traditional fixed rate generation procedure, namely 
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Let us denote 
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4.3.- Distribution/Network Assignment

At this stage, we jointly find the equilibria associated to both, the trip distribution and network assignment problems. For the distribution problem, and in order to add generality to the embedded attraction process, we focus our analysis on the simply constrained case, in which the total number of trip generated at each zone is assumed to be known. The joint equilibrium is reached by minimizing the following objective function:


[image: image106.wmf]1

,

0

1

(,)()()exp((()()))

a

t

dh

ahihihihid

t

aAiNhChCdNiN

h

MintszdzOHtH

a

aamtag

m

-

ÎÎÎÎÎÎ

F=++-+-

åååååå

ò

 (15)

This model is an extension of the markovian traffic equilibrium (MTE), which models the network and the distribution of trips simultaneously. We assume that any node of the transport network is destination of some trip, i.e D=N. Hereafter we assume also that 
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. As in the previous model, we assume the hypothesis (Hyp A) only asking the functions in family 
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Now, we can say that the optimal solution of problem (19) satisfies the following first order conditions: 
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obtaining
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This last equation shows the relationship between the Lagrange multipliers vector
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 and travel times, which makes bids in equation (13) dependent on the travel times in the traffic network.

 Let us define
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where
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This expression corresponds to the logit probability of choosing as trip destination zone d, conditional on the trip origin zone i and the individual of type h. Thus, 
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 measures the total number of trips generated at zone i choosing destination d for individual h. Besides, 
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obtaining the transport network equilibrium condition as follows
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 since 
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 corresponds to the total vehicle flow on link a  (Baillon and Cominetti, 2006). Note that equation (17) guaranties that the network attains the MTE.

The model summarized in (15) corresponds to the dual of the simply constrained entropy model, where the parameter 
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 is the Lagrange multiplier associated to the origin constraints. Moreover, note that the number of zones and nodes do not have to match necessarily. However, the formulation above can be easily adapted (by defining proper fictitious links with cost zero) to such a case.

As before, let us denote 
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Lemma 1.  If (Hyp A) holds, then 
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Proof:  First, provided that for any set of parameters 
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4.4.- Equilibrium in Land Use 

At this point of the construction, the term 
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 in the agents’ bid is studied. Such a term corresponds to an adjustment of the perceived utility (or cost) for the individual 
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 that corresponds to the equilibrium can be obtained from the equation that ensures to locate all the agents. Analytically,
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When the 
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 terms correspond also to those obtained for the location equilibrium (see section 4.5), equation (18) becomes:
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Note that equation (19) summarizes the first order condition of the following problem:
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The normalization
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The function 
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 is strictly convex and coercive. Then, there exists a unique minimum 
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 of the previous problem that fulfills the first order conditions. Note that, at this stage all terms, except 
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, are assumed fixed in equation (13), and also note that for any location structure in the city (Hhi) there exists a unique vector 
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 that adjusts each type of agent utility to make sure that all users are located.

Let us call 
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Lemma 2. If 
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Proof: Analogously to Proof of Lemma 1, one can conclude that 
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4.5.- Location externalities

In this section we study the fixed point associated with the location model. In order to include the different behaviors as a result of the idiosyncrasy differences among the agents involved in a market cluster, the bids are assumed to distribute iid Gumbel. From that, the probability that one of the 
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 agents gets located at zone 
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 as a result of an auction, is given by the following the probability that an agent type h is the highest bidder (Martínez, 1992). That is,  


[image: image160.wmf]/

exp()

   

exp()

hi

ih

gi

gC

B

P

B

m

m

Î

=

å


By assuming fixed the real estate supply, we get
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Since 
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where the functions 
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Here, 
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Let us now formulate the following lemma: 

Lemma 3. If 
[image: image175.wmf]hi

hi

HSS

==

åå

 , 
[image: image176.wmf]||||

/ , 0 

CI

hihi

hi

KxxSx

ìü

=Î=³

íý

îþ

å

¡

, and the functions 
[image: image177.wmf](), , 

hi

HhCiI

k

ÎÎ

 are of class 
[image: image178.wmf]1

C

, then exists 
[image: image179.wmf]0

c

m

>

 such that 
[image: image180.wmf](

)

0,

c

mm

"Î

 there exists one and only one 
[image: image181.wmf]HK

Î

 such that 
[image: image182.wmf]()

HH

Q=

 with 
[image: image183.wmf]Q

 defined in (27).
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That is, provided that 
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Note that, because the dispersion parameter of the Gumbel 
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 distribution is proportional to the inverse of the variance of the distribution
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, then the condition for Lemma 3 to hold implies a minimum dispersion of bids.

4.6.- Existence and Uniqueness of Global Equilibrium

In this section, we will focus on identifying the conditions to be fulfilled to ensure the existence and uniqueness of equilibrium in the integrated model. Finding the equilibrium of the global system is equivalent to find a fixed point of the equations analyzed separately in Section 3. In summary,
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where the bids 
[image: image205.wmf]hi

B

are of the general form presented in equation (13). In short, the integrated problem as in (24)-(28) can be written as follows: 
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where 
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Theorem 1 [Existence of Global Equilibria].

If 
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Proof . By using lemmas 1 and 2, we obtain that functions 
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In the same context, let us analyze the uniqueness of the same equilibrium.

Theorem 2 [Uniqueness of Global Equilibria].
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Proof. The existence is ensured from Theorem 1. For proving uniqueness, from lemmas 1 and 2 we obtain, as before, that functions 
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Remarks
1) The proof of existence of a global equilibrium for the integrated model including externalities in location does not depend on the value of 
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. For the case of uniqueness, we ask the parameter 
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 to be small, or the variance of bids to be large enough.

2) Link travel times as well as the trip distribution between zones are output of the model. From the global equilibrium it is straightforward to compute these variables at the equilibrium. 

5.- SIMULATIONS
The main purpose of these simulations is to compare the performance of the model without externalities (MWE) with that of the model with externalities (ME) developed in this paper. In the first model we used a global MSA (successive averages method), which is a gradient-type method to find the equilibrium on traffic flows, with an internal fixed point algorithm to find the location equilibrium at each iteration. In the second model, we utilize a global fixed point method to solve the location equilibrium with an internal MSA procedure to obtain the transport network equilibrium at each iteration. 

Two basic scenarios are generated and the equilibria obtained from the two models are obtained. Locations externalities were represented as segregation effects between households of different types, i.e. category dislikes living next (in the same zone) to some others (representing the rich class), while the second one likes living close to the first one (representing the poor class). The function that represents these externalities is linear. Notice that these experiments are all feasible, since our ME model allow us to consider any kind of smooth externalities.

The algorithms were implemented in MATLAB over the known Siouxfalls network, which has 24 nodes and 76 arcs, with a travel time function of the form 
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. This function satisfies the conditions given before in order to assure the existence and uniqueness of the equilibrium. For arc choice in the transport network we considered a logit model with a scale parameter 
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 independent of the node, household cluster, destination or trip purpose. That is:
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The basic scenario (named 0) considers: 5 categories of households divided into two groups: the poor class includes categories 1 to 3 and the rich class includes categories 4 and 5; only 1 trip purpose available in the whole set of nodes; high attraction factors on 5 special nodes of the network which makes that almost all network trips are attracted to this neighborhood, called neighborhood A; inelastic population of consumers (Hh) and supply of locations (Si), initially spread homogeneously over the network’s nodes. Besides, through constants 
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 we simulated the preference of the poor class for living in neighborhood A, while the rich class prefer neighborhood B represented by four neighbor nodes. Thus, neighborhood A represents a poor residential area but also an employment district, while neighborhood B is a high class residential neighborhood. 
We designed simulation that shows subsequent scenarios divided into two sets. The first set, denominated k--scenarios, shows the influence of the differentiated amenities 
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, then the second set, denominated k+-scenarios, shows the influence of increasing congestion created by increasing demand Hh in all categories. In the first set, k--scenarios, 
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 in the -4 scenario is null. In the second set, k+-scenarios, demand and supply increases in successive k+-scenarios as follows: 
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In the case with externalities, any bid derived form a quasi-linear utility can be used to define a proper bid function. In the experiments, this function will be
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The term 
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 in (30) is the consumer’s valuation of access advantage –called accessibility- from zones i.  It represents the traveler’s surplus -or transport user’s benefit- obtained from the transport system considering a single trip between zones i and d, assuming that the travel demand is described by a singly constrained trip distribution entropy model; see Martínez and Araya (2000) for the derivation of accessibility in the doubly constrained model. The traveler’s surplus is obtained from the consumer’s travel demand curve and weights the benefits of visiting activities and the corresponding trip generalized cost. For the sake of simplicity, we assume a single trip purpose and a single type of housing in the location model. 
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is, like in the development,  the Lagrange multiplier of the trip’s destination choice problem constrained at the origin; they explicitly depend on travel times in the traffic network, as we shown. Here the function 
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corresponds to an attraction function of the trip destination zone 
[image: image253.wmf]d

 (assumed to be constant for simplicity).  The parameter 
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q

 describes how a user of type 
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 values the access. 
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 describes the consumer’s value of exogenous features of the zone.
Additionally, the term 
[image: image257.wmf]()

hi

H

×

W

 represents the consumer’s value of the set of location attributes, which describe location externalities at zone i, where 
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W

 is linear. Intuitively, 
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 represents the function of like (or dislike) of the agents of cluster of type 
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 for other agents located at zone 
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. Unlike the model in Section 3 without externalities, here two types of externalities adjust in the equilibrium: location attributes 
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 and destination attractions 
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; also in the previous model 
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q

=1 for all users.
Figure 3 assumes no externalities effects, i.e. 
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, which makes the two models comparable (MWE and ME). It depicts the share of households’ classes (rich in red and poor in blue) in neighborhood A at equilibrium, and its evolution along different scenarios. This figure shows that the behavior of both models is similar despite their theoretical differences. It can be seen that as the preference for the neighborhood A increases, represented by the increase in the respective
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 in successive scenarios, the poor class tends to concentrate in this neighborhood while the rich class concentrates in neighborhood B. This shows the different preference for neighborhoods between socioeconomic classes. In the second set of scenarios, the increase in congestion make more attractive for the rich class to live next to their jobs, which explains the tendency of this class to outbid the poor in neighborhood B. In this case, the rich class faces two opposite preference: the preference for neighborhood B and the reduced travel costs by living in A. The figure also shows that the ME models adjust changes faster than the MWE model.  
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Figure 3: The case without externalities

Figure 4 depicts the case with externalities 
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, considering the evolution of the population as in the previous figure, but keeping the attraction factors fixed at the levels of scenario 0 in Figure 3. Thus this figure only represents the k+_scenarios modelled with the ME model. It shows that the outbidding process is lees intensive than in Figure 3, because the segregation effects plays the role of inducing a higher preference for neighbourhood B. Thus, in this case the rich class face more intensive opposite preferences.

Another comparison between the two models is regarding their computing performance. The MWE model attains equilibrium in 24 seconds and the ME in 113 seconds, both for the same precision running on a 3.2GHz PC. The difference is explained principally by the number of times each algorithm solves the MTE problem. 
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Figure 4: The case with externalities

6.- CONCLUSIONS AND FURTHER RESEARCH
The models developed here allow the full integration of the land use and the transportation systems, for two cases of interest. 

The case without externalities builds the bases for an integrated model based on hyper-networks, i.e. an extension of the classical transport network to represent the land use market equilibrium. The model follows the classical Beckmans’ approach of defining an equivalent optimization problem that reproduces Wardrop’s traffic equilibrium conditions. The contribution of our model is to extend the approach to simultaneously reproduce the transport and land use equilibria under a unique optimization problem. The main theoretical result is the proof of a unique solution for the LU&T system. The model can be used in real contexts by assuming that externalities are lagged in one or more periods, i.e. consumers make choices using information of the land use system that takes time to be acquired. In this sense, this model is regarded as a partial equilibrium model.
The second model includes externalities, which makes no longer valid the optimization method. In this case the LU&T problem is decomposed into four fixed point sub-problems: Trip Generation, Distribution/Network Assignment, Land Use and Location. Despite the increase in complexity induces by externalities, our method proved to yield a unique solution for the global equilibrium, under the mild condition of minimum level of dispersion on consumers’ bids. The model can also be applied in real contexts, assuming in this case a longer term where all externalities adjust to a LU&T’s equilibrium. Unlike the previous model, this one attains a general equilibrium in the LU&T system. Although the analogy with the transport network classical optimization model is lost in this case, the analogy of a hyper- network representation remains.  
One limitation of both models is the treatment of the transport system as only private transport modes. However, the extension to public transport assignment can be readily included by using a shortest path approach with congestions in bus stops, following for example, De Cea and Fernández, 1993), which is completely compatible with the proposed model.

The hyper-network model of the urban system can be seen as a platform for modeling other dimensions of the urban system. Further developments may include the information and the goods markets, as additional layers in the hyper-network. 

Finally, the hyper-network approach can be used to specify dynamic urban processes on the hyper-network, including equilibrium stages along time on each submarket, in line with Martínez and Hurtubia (2006).  This would allow considering delays in infrastructure development and the introduction of lack of information on key variables of decision makers, like on expected future prices. The equilibrium problem so far developed provides the basic structure for such further extensions. 
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