A Model of Pavement Overlay Crack Progression
Ziad Nakat
 & Samer Madanat

University of California, Berkeley, CA, USA

Abstract: In this paper we present the development of empirical pavement overlay crack progression model using survey data for the highway system in the state of Washington.  The crack progression model uses random-effects panel data regression techniques, with correction for incidental truncation, endogeneity bias, and non-recorded maintenance activities.  Our research shows that specifications that capture the main factors responsible for the overlay crack progression processes, combined with careful analysis of the data, can produce models of sufficient realism for pavement management purposes. 
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1. Introduction

The progression of alligator cracking is a continuous process and represents the change in the percentage of cracking in time under certain structural, traffic, and climate conditions. Crack progression occurs due to the combination of the following conditions: The widening and propagation of those cracks that have already initiated, the initiation of new cracks, and the propagation of cracks from past layers up to the surface of the new overlay known as reflection cracking. The prediction of crack progression is highly important for pavement management agencies since the extent of crack progression reflects the structural condition of a pavement section and triggers maintenance and rehabilitation activities. Obtaining sound empirical progression models with reasonable prediction capabilities, and estimated with a rich and relevant set of explanatory variables, has been a main challenge for pavement engineers. In the following sections of this paper we will show that developing sound empirical progression models is possible using relatively accurate condition surveys and applying proper econometric techniques. We will start by describing the methodology used to develop a sound empirical progression model. We will then present and analyze the model that was developed using data from the Washington State DOT condition surveys. The model will be used to make predictions of the progression of alligator cracking in time.

2. Methodology

When modeling crack progression, we are interested in the change in the percentage of alligator cracking over the years for every section where cracking has already initiated. Thus, we are observing the yearly change in alligator cracking percentage over time. The data for the progression model have thus a panel structure. 

A panel, or longitudinal, data set is one that follows a given sample of individuals over time, and thus provide multiple observations on each individual in the sample. Panel data usually give the researcher a large number of data points, increasing the degrees of freedom and reducing the collinearity among explanatory variables, hence improving the efficiency of econometric estimates. More importantly, longitudinal data allow a researcher to analyze a number of important questions, such as the progression of cracking in time for different pavement sections, that cannot be addressed properly using cross-sectional or time-series data sets. Compared with cross-sectional or time-series data, panel data raise new specification issues that need to be considered during the analysis. The most important of these is heterogeneity bias. Heterogeneity refers to the differences across cross-sectional units that may not be appropriately reflected in the available explanatory variables. If heterogeneity across cross-sectional units is not accounted for in the model, estimated parameters are inefficient. Cross-sectional heterogeneity is the central focus of panel data analysis. 

Incidental truncation, or selection bias, arises in the estimation of empirical crack progression models due to the fact that crack progression is observed only after crack initiation has occurred. Crack progression is only observed in weaker sections that have already failed. The sample selection problem will result in an over representation of the weak sections in the sample, and the estimated parameters will have a downward bias (Greene 1997). This requires the introduction of a correction term in the panel regression model to correct for this bias as suggested by Heckman (1976). 

We are interested in the progression of alligator cracking, and the dependent variable, is defined as the yearly change in the percentage of alligator cracking. Naturally, overlay cracking increases with time, and the change of the percentage of cracking is positive, unless some maintenance activity was performed. We have found that for several observations in the data the change in the percentage of cracking is negative, which suggests a non-recorded routine maintenance. Given that we are interested in the change of crack progression with no routine maintenance, we have imposed left censoring (at zero) on the observations with negative change in the percentage of alligator cracking. Regression data with censored observations are estimated using the Tobit model

3. Statistical review

3.1 Panel Data Models

A panel, or longitudinal, data set is one that follows a given sample of individuals over time, and thus provide multiple observations on each individual in the sample.

There are several possible specifications for panel data depending on the nature of the data analyzed. Models can be fixed effect or random effect models depending on the specification of the term that accounts for cross-sectional heterogeneity. 

A panel data regression is written as
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Where i refers to the cross-sectional units or individuals, t refers to the time periods, β is a vector of parameters to be estimated, xit is a vector of explanatory variables, and 
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 the disturbance term. 

When differences across units can be captured in differences in the constant term, a dummy variable is introduced to allow for the effects of omitted variables that are specific to individual cross-sectional units but stay constant over time. This type of models is know as fixed-effects models or Least Squares Dummy Variables models (LSDV) since they can be estimated using Ordinary Least Squares (OLS) techniques by multiplying the constant term by dummy variables indicating the ith unit. These models can be written as:
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Where 
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 is a scalar constant representing those variables peculiar to the ith individual and constant in time, and 
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 is a dummy variable indicating the ith individual.

The fixed effects specification suffers from an obvious shortcoming in that it requires the estimation of many parameters (mainly the dummy variables) with the associated loss of the degrees of freedom. This can be avoided by introducing the random effects models. Unlike the fixed effect model where inference is conditional on the particular cross-sectional units sampled, the random effects model is an appropriate specification if n cross-sectional units are randomly drawn from a large population. This is reflected in the formulation of the disturbance term
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Where 
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 is the random disturbance characterizing the ith observation and is constant in time, and 
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 are random disturbances.

By rewriting equation (1) using equation (3), the random effects model is given by:
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The parameters β of the random effects are estimated using the Generalized Least Squares (GLS) technique.

3.2 Selection Bias (Incidental Truncation)

The incidental truncation problem, or selection bias, can be explained mathematically as follows. Suppose that y and z have a bivariate distribution with correlation ρ. We are interested in the distribution of y given than z exceeds a particular value. In our case, y is observed and represents the yearly change in the percentage of alligator cracking, z is not observed (latent) and represent what we will define as the propensity to crack.  If y and z are positively correlated, we should expect that the truncation of z should push the distribution of y to the right. The truncated joint density of y and z is given by:
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Where a is the point at which the truncation of z occurs. Let the equation that determines the latent variable z be


[image: image12.wmf]i

i

i

z

m

+

=

w

γ'








                         











(6)

And let the equation of primary interest be
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Where yit is the dependent variable of interest (change in the percentage of alligator cracking), zi is the latent variable (representing the propensity of a pavement section to crack), β and γ are vectors of parameters to be estimated, wi and xit are vectors of explanatory variables, uit and μi are error terms. 

yit is only observed for those sections that have cracked. Since zi represents the propensity to crack, then a section i has cracked only if zi exceeds a certain threshold a. Without loss of generality let a = 0, then yit is observed only when zi > 0.

Define σu and σμ as the standard deviation of uit and μi  respectively. If uit and μi are assumed to have a bivariate normal distribution with zero means and correlation ρ, then:
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So
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Where 
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And 
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Where 
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is the standard normal distribution, and
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is the standard cumulative normal distribution, and 
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 is a random error term. 

Thus, our panel data model with incidental truncation occurring on the distribution of the cross-sectional observations is given by equation (9). The parameters β, βλ, γ, and λi of the sample selection model are estimated using the two-step Heckman’s procedure:

In the first step, we estimate the probit equation (11) by maximum likelihood to obtain estimates of γ. Then for each observation in the selected sample compute
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Where 
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In the second step of Heckman’s procedure, we estimate the parameters β and βλ of equation (9) by regressing the dependent variable 
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3.3 Endogeneity of Explanatory Variables

An explanatory variable X is said to be endogenous in a model to predict Y, if a vector of covariates Z used in the model of Y, was first used for the model of X. Mathematically, the endogeneity of an explanatory variable can be formulated as:
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Where X is the endogenous variable; Z is a vector of explanatory variables used for the prediction of X and Y, U is a vector of explanatory variables used only for the prediction of X; V is a vector of explanatory variables used only for the prediction of Y; α and β are vectors of parameters to be estimated; and ε1 and ε2 are random error terms accounting for unobserved effects. 

Econometrically, the endogeneity problem arises because dependency is likely to exist between the disturbance terms ε1 and ε2, which violates the main assumption of the random distribution of error terms. This leads to biased and inconsistent estimates of the vector of parameters α. 

In order to correct for the endogeneity of a continuous explanatory variable, the method of instrumental variables (IV) is used (Madanat et al. 1995). Basically, the IV method consists of regressing the endogenous variable X on Z and U, and then using the predicted value of X as substitute for the measured value for the estimation of the parameters of model (14). 

When the endogenous variable X is a discrete variable generated by a choice process, the endogeneity correction can be done by computing the probability of X being selected (Madanat and Mishalani 1998). This is feasible assuming that the discrete selection of X can be represented by a Multinomial Logit (MNL) model. In order to obtain non biased estimates of α, the probability of choosing X, obtained from the MNL model, will be used as substitute for the measured value for the estimation of the parameters of model (14). 
4. Data description

The sample used for the estimation of the progression model was selected from the Washington PMS database. Below is a description of the relevant explanatory variables:

· Yit: Percentage of alligator cracking in pavement section i at time t, where t is the number of years since the last overlay was built. 
· Yi(t-1): Percentage of alligator cracking in pavement section i at time (t-1).

· ∆it: Represents the yearly change in the percentage of alligator cracking for pavement section i between time t and (t-1) and is given by:
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· Cens_∆it: It is the progression model dependent variable and represents the left censored yearly change in the percentage of alligator cracking for pavement section i between time t and (t-1). It is defined by as:


[image: image34.wmf]it

it

Cens

D

=

D

_


If  
[image: image35.wmf]0

³

D

it

         



    
  











  (16)


[image: image36.wmf]0

_

=

D

it

Cens


If  
[image: image37.wmf]0

<

D

it

              



       











  (17)

· E_Long, and E_Alli: Existing longitudinal and alligator crack before rehabilitation respectively.

· Trafficit: Traffic in ESALs for pavement section i at time t. 

· Y_ESAL: Traffic in ESALs in year 1999.

· SURFTHK: Layer thickness of the last overlay (in ft).

· ULT: Sum of the thickness of the underlying asphalt concrete pavement layers (in ft).

· Untrthick: the thickness of the non treated base (in ft).

· Actbthick: the thickness of asphalt concrete treated base (in ft).

· Pctbthick: the thickness of portland cement treated base (in ft).

· BA, AA: Dummy variables that take the value of one if the material type of the overlay is “BA” or “AA” respectively, and 0 otherwise. The material types “BA” and “AA” are defined in the Washington PMS (1999) as Asphalt Concrete Cement (ACP) which have the same binder type (AR4000W), but with different mix classes: “BA” is a class B mix and has a maximum aggregate size of 5/8” and is described as a standard mix, while “AA” is a type A mix which also has a maximum aggregate size of 5/8”, but that is a higher grade mix with more fractured rocks.

· Tmin: Average monthly minimum temperature of the coldest month in oC

· FTprep: Product of annual precipitation and freeze thaw cycles.

·  Prob_ba, Prob_aa, Prob_other: The probability of choosing material types BA, AA, or some other type respectively.

· Newoverlay1: Instrumented overlay thickness (in ft).

· Mintempcit: Average monthly minimum temperature of the coldest month (Dec) in oC. 

· Precipit: annual precipitation (in mm). 

· Overlayaai: The product of Newoverlay1 and Prob_aa. 

· Overlaybai: The product of Newoverlay1 and Prob_ba. 

· λi: The correction term for incidental truncation. 
5. Endogeneity bias correction

When dealing with overlay crack progression of in-service pavement sections, the main two explanatory variables that are likely to be endogenous are the overlay thickness and the pavement material type, since they are the main design variables. In order to correct for the endogeneity in the observed thickness of the overlay, we predicted the overlay thickness, and named this predicted value Newoverlay1. This variable will be used as a substitute for the measured value of the overlay thickness in the crack progression model.

Ln(SURFTHK) = (0 + (1 ln(E_Alli) + (2 ln(Actbthick) + (3 ln(Pctbthick) + (4 ln(Untrthick) + (5  ln(Y_ESAL) + (6 ln(ULT) + (7 ln(Tmin) + (8 ln(FTprep)+(          (18)
Where ln(x) is the natural logarithm of x, (0  to (8 are parameters to be estimated, and ( is the error term. SURFTHK, E_Alli, Actbthick, Pctbthick, Untrthick, Y_ESAL, ULT, Tmin and FTprep were all defined in section 4.

In order to correct for the endogeneity in the asphalt overlay material type, the probability of the agency choosing a certain material type given certain structural conditions, climate variables, and yearly traffic was computed using a MNL model. In the Washington PMS Data, there were two dominant material types: BA and AA, which were described in section 4. The other material types seem to have been used less often, and thus formed smaller fractions of the data.  Thus, they were all grouped together in the “others” group, which was used as the reference or the base group, for the MNL model. Under this specification, the parameters of the base group “others” were set to zero. The MNL model is given by:
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Where Prob(i) is the probability of selecting material type i, exp(x) is the exponential of x, i and j are indexes for the material types, where the material types are BA, AA, and others, as defined in section 4. ( is defined by Nakat & Madanat (2006) as:
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where (0 to (3 and (0 to (3 are parameters to be estimated, and Newoverlay1, Y_ESAL, and Ftprerp were all defined in section 4.  Table 1 shows the estimated values of the parameters of equation (18). Table 2 shows the estimation results of the parameters. 

6. Estimation of the incidental truncation bias correction term

Heckman’s procedure, defined in section procedure 3.2, is used to correct for incidental truncation. Define the latent variable explaining the propensity to crack 
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 of equation (6) as 
zi = γ0 + γ1Actbthick + γ2Pctbthick + γ3Untrthick + γ4ULT + γ5Prob_aa + γ6Prob_ba + γ7Cum_ESAL + γ8FTprep + γ9Newoverlay1             



                                    (23)
Then the Probit model representing the probability that a section cracks (z>0) is specified as follows

P(z>0) = Φ(γ0 + γ1Actbthick + γ2Pctbthick + γ3Untrthick + γ4ULT + γ5Prob_aa + γ6Prob_ba + γ7Cum_ESAL + γ8FTprep + γ9Newoverlay1)

                                    (24)                                         

Where γ0 to γ9 are parameters to be estimated. Table 3 presents the results of the Probit model estimation.

7. The progression model

7.1. Tobit Model Specification

In order to estimate the progression model, a sample consisting of 5441 pavement sections observed over 1 to 12 years for each different section was used. It constitutes a panel with 36194 observations.

A panel data Tobit model was selected, and the dependent variable, Cens_∆it described in section 5., was regressed on explanatory variables also defined in section 5., using the following model specification:

Cens_∆it= β0 + β1Yi(t-1) + β2E_Allii + β3 Actbthicki + β4 Pctbthicki + β5 Untrthicki + β6ULTi + β7Overlayaai + β8Overlaybai + β9Trafficit+ β10Precipit + β11Mintempcit 

+ βλλi 
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7.2. Parametric Discussion of the Effect of Cracking in the Previous Year on Crack Progression

Given the model specification of equation (25), the percentage of alligator cracking in the previous year Yi(t-1) plays a central role in the progression model, because all the history of a pavement overlay, such as previous traffic, and climate conditions, affect the current rate of percentage cracking through Yi(t-1). Thus a careful analysis of Yi(t-1), and its coefficient β1, is important. As will be shown mathematically below, the sign and magnitude of β1 determine the convergence, sign, value, and the rate of convergence of the percentage of alligator cracking in time. 

We know that yearly traffic increases with time, and climate variables change every year. However since we have a short panel and we are looking in a relatively short period of time for every section (Average of 6.7 years per section), traffic will only vary a little over the years, and so will climate variables, since extreme climate conditions occur rarely and require long cycles. If we make the approximation that Trafficit, Precipit, and Mintempcit are constant in time for a given pavement section (i.e. Trafficit = Traffici, Precipit = Precipi, Mintempcit = Mintempci), all the explanatory variables in the model, except for Yi(t-1), are constant in time. The yearly change in alligator cracking for sections with no routine maintenance is thus given by: 
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Where
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Given the approximations made earlier, 
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 is only a function of the pavement sections i and independent of time. Thus given a vector of explanatory variables xi, 
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Thus we have a geometric series and 
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Equations (29) and (30) illustrate the importance of β1: A positive β1 implies that cracking is negative and decreasing in time (Ki is positive for the range of values of the explanatory variables in the estimation data) which is not possible. If 
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, then the percentage of alligator cracking is increasing in time and its function is convex, which implies that at some t, 
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 is positive and convergent, however it decreases with time which is not correct either. If 
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, then alligator cracking is positive, increases with time, and converges according to equation (29),  which is the expected behavior. The rate of convergence of β1 is important in that it determines the rate of progression of alligator cracking, or the time it takes 
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 to reach a particular value. The results of this discussion are summarized in table 4. These results are based on a positive value of Ki.
7.3 Model Results and Their Interpretations

Table 5 shows the results of the estimation of the parameters of equation (25). The t-statistics show that each variable is a significant explanatory variable of the progression of alligator cracking at the five percent significance level. 

The value for β1 falls in the 
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, thus alligator cracking is positive, increases with time, and converges according to equation (29) as expected and discussed in the previous section.  The higher the existing alligator cracking in previous layers, the higher the progression of alligator cracking in the overlay, confirming the hypothesis that overlay cracking is partly due to reflection cracking. The thicker the structural variables (base thickness, previous layers thickness, overlay thickness), the least the rate of the crack progression is. AC or PC treated bases do not seem to differ much in reducing the rate of crack progression, however they are both significantly better (almost by a multiple of 5) in resisting crack progression than untreated bases. Overlay thickness appears to have the largest effect on resisting crack progression as one would expect, and AA overlays reduce by more than half the rate of alligator crack progression compared to BA overlays. Traffic also appears to have a significant effect on the rate of progression of alligator cracking and the higher the traffic at a given year the larger the rate of crack progression. Climate variables, particularly yearly precipitation and minimum temperature play also a significant role: the higher the yearly precipitation, the higher the rate of crack progression, while higher minimum temperatures reduce the rate of crack progression. The coefficient βλ is significant suggesting that the correction for the incidental truncation is appropriate.

Moreover, since
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 is reduced when the incidental truncation correction term is included compared to a regression with no incidental truncation correction term, which means that the rate of increase of alligator cracking is reduced when the correction term is introduced in the regression. This result is expected since the correction term corrects for the over-representation of weaker pavement overlays in our sample.

The values and significance of sigma_u, sigma_e, and rho require discussion.  Sigma_u represents the standard deviation of the random disturbance characterizing the ith observation and accounting for cross sectional heterogeneity in a random effect panel data model, sigma_e represents the standard deviation of the random disturbances 
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 in equation (16), and accounts for random error terms in time and across sections.  Rho represents the portion of the total error term that is due to unobserved heterogeneity, and is given by:
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The model coefficients of equation (31) were estimated using a random effect model; however the very low value of Rho suggests that unobserved heterogeneity is non-existent in the model. This can be explained by the fact that the incidental truncation correction terms, which only vary across cross-sectional observations, act as dummy variables for the different pavement sections. This is equivalent to a fixed effect model specification. This model differs slightly from a fixed effect panel data model since some, but rare, pavement sections can have the same correction term λi and thus share the same identifier, so that λi is not an exact dummy variable.  

7.4. Model Predictions

In this section we will use the progression model to perform some predictions of the increase in the percentage of alligator cracking in time using the following formula:
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A typical pavement section was considered and each explanatory variable was varied within the range of its values in the data. Note that we have assumed that Trafficit, Precipit, and Mintempcit are constant in time for a given pavement section. This assumption is only made for simplicity and the model can be used to perform predictions without this assumption. 

Figure 1 shows the effect of different overlay thickness of material type BA on the increase of the percentage of alligator cracking in time. Overlay thickness has a large influence on the propagation of cracking, and choosing an appropriate thickness can reduce cracking substantially.  Figure 2 shows the effect of different values of alligator cracking in the previous layers on crack progression. This variable is highly important. This highlights the fact that reflection cracking is an important element in overlay crack propagation, and that the choice of relatively low thresholds for alligator cracking as a trigger for maintenance activities is important for the life of future overlays. Figure 3 highlights the effect of yearly traffic on the crack propagation. Note that in this analysis, we have assumed a constant yearly traffic, and if an increasing yearly traffic was used instead, higher values for the percentage of alligator cracking would have been reached.  Figure 4 shows the effect of the change of the average minimum temperature, which appears to have the least effect on the progression of alligator cracking compared to the effect of the other explanatory variables discussed above.

8. Conclusions

This paper described the development of an alligator cracking progression model using empirical data from WSPMS. The development of alligator cracking progression models is important for highway agencies because the extent of crack progression reflects the structural condition of pavement sections and can trigger maintenance and rehabilitation activities. 

In this paper, appropriate econometric methods were used to correct for empirical data problems such as sample selection, endogeneity bias, non-recorded maintenance activities, and measurement errors. The resulting model is rich in relevant explanatory variables and produces good predictions, overcoming several shortcomings that characterize current empirical crack progression models.
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Table 1. Parameters Estimates of the Overlay Thickness Regression.

	Variable
	Coefficient
	t-statistics

	Constant
	4.24E-02
	3.19E+00

	ln(E_Alli)
	3.28E-03
	6.71E+00

	ln(Actbthick)
	-2.86E-02
	-3.24E+00

	ln(Pctbthick)
	-7.64E-03
	-1.74E+00

	ln(Untrthick)
	-1.16E-02
	-5.00E+00

	ln(Y_ESAL)
	7.12E-03
	1.05E+01

	ln(ULT)
	-1.66E-02
	-4.55E+00

	ln(Tmin)
	-1.46E-02
	-6.63E+00

	ln(FTprep)
	5.66E-03
	9.63E+00


	Number of Observations
	R-Squared
	Adjusted R-Squared
	Root MSE

	7162
	0.0659
	0.0648
	0.044


Table 2. Results of the Multinomial Logit Model. 

	Category
	Variable
	Coefficient
	t- statistics

	Material
	Constant
	3.35E+00
	7.62

	Type
	Newoverlay1
	-1.03E+01
	-3.14

	BA
	Y_ESAL
	-1.09E-06
	-6.25

	
	FTprep
	-3.03E-05
	-17

	Material
	Constant
	4.04E+00
	7.93

	Type
	Newoverlay1
	-2.77E+01
	-7.34

	AA
	Y_ESAL
	1.11E-06
	6.98

	
	FTprep
	-1.21E-05
	-6.16


	Number of Observations
	Pseudo R-Squared
	Likelihood Ratio

	7162
	0.065
	945


Table 3. Results of the Probit model for the probability that a section cracks, P(z>0).
	P(z>0)

	Variable
	Coefficient
	t-statistics

	Constant
	6.53E+00
	9.55

	Actbthick
	-1.60E+00
	-6.49

	Pctbthick
	-7.95E-01
	-6.26

	Untrthick
	-5.44E-01
	-11.28

	ULT
	-9.00E-01
	-10.96

	Prob_aa
	-4.25E+00
	-5.26

	Prob_ba
	-9.99E-01
	-1.87

	Cum_ESAL
	2.27E-06
	29.28

	Ftprep
	1.22E-05
	4.64

	Newoverlay1
	-4.02E+01
	-15.95


	Number of observations
	Likelihood Ratio
	Pseudo R2  

	7162
	1149.5
	0.153


Table 4. Parametric analysis of the effect of β1 on the percentage of alligator cracking given a positive Ki.

	Range of β1
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Table 5. Results of the Tobit model regression.

	Variable
	Coefficient
	t-statistics

	Constant
	1.18E+00
	3.39

	Yi(t-1)
	-5.86E-01
	-39.1

	E_Allii
	8.07E-02
	20.01

	Actbthicki
	-1.75E+00
	-4.89

	Pctbthicki
	-1.71E+00
	-8.91

	Untrthicki
	-3.57E-01
	-5.09

	ULTi
	-1.26E+00
	-8.77

	Overlayaai
	-3.78E+01
	-4.32

	Overlaybai
	-1.54E+01
	-6.56

	Trafficit
	4.06E-06
	4.57

	Precipit
	4.40E-04
	10.18

	Mintempcit
	-5.42E-02
	-5.74

	λi
	1.20E+00
	15.97


	Distribution of the error terms

	Error term
	Value
	t-statistics

	sigma_u
	0.84
	14.7

	sigma_e
	4.41
	230.79

	Rho
	0.035
	N/A


	Goodness of fit measures

	Number of observations
	Wald Test

	36194
	2230.52


FIGURE 1. Effect of overlay thickness on the progression of alligator cracking

FIGURE 2. Effect of existing alligator cracking in previous layers on the progression of alligator cracking 

FIGURE 3. Effect of yearly traffic on the progression of alligator cracking 

FIGURE 4. Effect of the average minimum temperature on the progression of alligator cracking
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