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1. Introduction

This article addresses the optimization of bridge maintenance and replacement (M&R) decisions for a system of heterogeneous facilities. Evaluating the cost effectiveness of maintenance and repair decisions requires the prediction of the future condition of the facilities. This prediction is performed through the use of deterioration models. Given the inherent stochasticity associated with the deterioration, the purpose of a deterioration model is to explain part of the uncertainty in the prediction of future conditions. There exists a wide range of deterioration models, differing in their required inputs and their prediction capabilities. This article concentrates on the use of deterioration models that take into account aspects of the history of maintenance and deterioration. The use of these history-dependent models is presented in computationally efficient formulations of the problem of optimizing maintenance and replacement decisions for a system of several facilities.

The determination of optimal policies for a system of facilities cannot be reduced to the determination of optimal facility-level policies, repeated independently for each facility. At the system level, the facility-level decisions are interdependent due to the presence of a budget constraint, which introduces trade-offs between facilities.

The system-level problem can be formulated using two different approaches: top-down or bottom-up. In a top-down approach, M&R optimization is first performed at the system level. Actions are recommended for fractions of the system population. Actual facilities on which actions are performed are then selected to match the system-level recommendations as closely as possible. This final selection may differ from the optimization performed previously at the network level. The top-down approach is only possible if the system consists of relatively homogeneous facilities. In a bottom-up approach, M&R optimization is performed at the facility level, and actions are recommended for individual facilities. These recommendations are then aggregated and certain actions are selected to take into account system-level constraints, such as the budget constraint mentioned above. The final selection of actions may differ from the optimization done earlier at the facility level. The bottom-up approach is appropriate when the system consists of heterogeneous facilities.

The formulation presented in this paper follows a bottom-up approach, in order to account for facility-specific details and to be suitable for systems of heterogeneous facilities.

2. Review of bridge management optimization models
The objective of bridge management optimization models is to determine optimal M&R decisions, based on the knowledge of the current condition of the system through inspections and on the prediction of future condition through the use of deterioration models.

The optimization can be formulated as a Markov decision process (Madanat, 1993; Jiang et al., 2000). In these methods, the deterioration is described by a Markov chain, with the state representing the condition of the facility. The main advantage of these models is that they enable the use of standard and efficient optimization techniques. As a consequence, these models have been used to solve the system-level problem, i.e. to determine optimal M&R decisions for a system of facilities (Hawk, 1994; Golabi & Shepard, 1997; Smilowitz & Madanat, 2000). The system-level optimization can be solved using linear programming.

The limitation of the Markovian models is the memoryless assumption, according to which the probability for the condition of a facility to transition from an initial state A to a lower state B does not depend on the time spent in state A or on the history of deterioration and maintenance. Although the assumption of history independence may be valid for certain bridge states, namely those where the deterioration is primarily governed by mechanical processes, it has been shown empirically that it is unrealistic for bridge states where the deterioration is primarily governed by chemical processes (Mishalani & Madanat, 2002). Moreover, these optimization models are based on a top-down approach, which is only feasible for systems of relatively homogeneous facilities.

Deterioration models in which the history of deterioration is taken into account exist and have been used in bridge M&R decisions optimization, considering one facility (Mori & Ellingwood, 1994), or a system of homogeneous facilities (Kong & Frangopol, 2003). However, due to the complexity of their underlying deterioration models, these optimization methods use a very limited number of decision variables in order to remain tractable. To the knowledge of the authors, there does not exist a system-level bridge management optimization method that has more than a few decision variables and that is based on a deterioration model that takes into account the history of deterioration and maintenance.

The purpose of the present paper is to determine optimal bridge M&R decisions for a system of heterogeneous facilities, while using a deterioration model that takes into account important aspects of the history of deterioration and maintenance.

3. Problem definition and formulation
The system considered in the present article is a system of facilities managed by a single agency, such as a state Department of Transportation in the United States. Although the condition of each bridge in the system changes over time, the system remains constant over the planning horizon: bridges are neither added to the system nor decommissioned. The system can be composed of heterogeneous bridges.

Of the three main bridge components (deck, substructure, superstructure), the deck experiences the fastest deterioration. Therefore, the deck is the only component considered in this study. The condition of a bridge deck is measured by its reliability index 
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 is the cumulative standard normal distribution. The deterioration of each facility is modeled using a Markov chain whose state includes aspects of the history of deterioration and maintenance, and whose transition probabilities are estimated using a mechanistic model of deterioration.

The planning horizon is broken down into periods of one year. Maintenance and replacement decisions are made every year for every facility.

The condition of each facility is assumed to be known perfectly, which in practice means that inspections are carried out frequently and are error free.

3.1. Facility-level problem and solution

The system-level optimization presented in this article is based on the results of the optimization of maintenance and replacement decisions for one facility summarized below (Robelin & Madanat, 2006).

The facility-level problem uses a Markovian deterioration model that accounts for aspects of the history of deterioration and maintenance. These aspects are: the time since the performance of the latest maintenance action and the type of that action. Such a model represents a compromise between simple Markovian deterioration models that allow the use of standard optimization techniques, and detailed mechanistic deterioration models whose complexity prevents efficient optimization of maintenance and replacement decisions. The state of the Markov chain that represents deterioration is composed of the following variables:

· 
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: current reliability index of the facility;

· 
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: integer indicating the type of the latest action (maintenance or replacement) performed on the deck (or 0 if no action has been performed since the deck was new);

· 
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: time since the latest action (or time since the deck was new, if no action has been performed yet);

The transition probabilities of the Markov chain are estimated from a mechanistic deterioration model (Frangopol et al., 2001), using Monte Carlo simulation.

The M&R optimization problem can be formulated as a finite-state Markov decision process, with a finite horizon (Bertsekas, 2001). It consists of minimizing the expected cost of maintenance and replacement, subject to the following reliability constraint: the reliability index of the facility must remain above a user-defined threshold.

The following notation is used:

· 
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: state space of the Markov chain representing the deterioration of the deck. 
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· 
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: set of all possible M&R actions, i.e. all types of maintenance actions, replacement, or do-nothing.

· 
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: cost of action 
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 is the discount rate.
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: minimum cost-to-go for the agency to manage a bridge deck from year 
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: set of optimal decisions. 
[image: image23.wmf]  

m

t

x

(

)

 is the optimal decision when the bridge deck is in state 
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The problem formulation is as follows, for any 
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where 
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 captures the usefulness of the bridge deck past the planning horizon. For practical purposes, the influence of the actual value of 
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 is used to implement the reliability constraint: for each state 
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The problem can be solved using backward recursion (Bertsekas, 2001), which provides, for all time steps 
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 is referred to as a policy, and is defined mathematically as a mapping from the set composed of the state space and the time space (
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 of actions. The optimal expected cost of maintaining the bridge deck over the entire planning horizon is also provided by the backward recursion algorithm: 
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 is the initial state of the facility.

3.2. Formulation of the system-level problem

In the facility-level problem, the reliability threshold was expressed in terms of reliability index 
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. In the system-level problem, it is expressed in terms of probability of failure and is denoted by 
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At the facility level, the optimization consists of minimizing the cost of maintenance and replacement, subject to a reliability constraint. A direct extension of this formulation at the system level would consist of minimizing the cost of maintenance and replacement for all facilities, subject to a reliability constraint for each facility. This would require the user of the optimization method to provide a value for the threshold of the probability of failure for each facility. An intuitive choice could be to take the same value of the threshold for all facilities. With a slightly different formulation, it can be proven that this choice is actually optimal in the context of reliability-based optimization.  An advantage of this formulation is that it avoids having to prioritize bridges on the basis of the amount of traffic they carry, which eliminates the difficulty of having to assign a monetary value to human life.
Let us define the set of decision variables as the set 
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 of thresholds of probability of failure for each facility, where 
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 is the number of facilities. Let us formulate the optimization as a minimization of a quantity 
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, expressing the performance in terms of probability of failure or risk, subject to a cost constraint. In the context of reliability, it is relevant to choose 
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Another expression of the performance in terms of risk could be the average probability of failure over all facilities. However, this expression is not suitable in the context of reliability-based optimization, because the following unsafe situation would be possible: the majority of the facilities with low probabilities of failure and a few facilities with probabilities of failure close to 1.

The formulation of the system-level optimization is as follows:
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where 
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 is the maximum total cost (budget), and 
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 is the optimal cost of maintenance and replacement for facility 
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, determined using the facility-level optimization method described in section 3.2.

It is assumed that 
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. This assumption cannot be achieved in practice, since it would require solving an infinite number of facility-level problems; however, section 5 shows that the discrete case implementation of this optimization problem can confidently be considered a good approximation of the continuous case. Moreover, the functions 
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 are assumed to be continuous. Even if these functions are likely to be only piecewise continuous in practice, section 5 shows that the sum of these functions is smooth enough so that approximating it by a continuous function is unlikely to lead to large errors.

For each facility, the function 
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 is nonincreasing. Intuitively, if larger probabilities of failure are allowed for a facility (i.e. larger values of 
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4. Continuous-case solution

The solution is first determined in the case where the facility-level optimal cost, 
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4.1. Optimal solution

If the following two conditions are met:
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then the set 
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 of thresholds of probabilities of failure of 
[image: image76.wmf]  

n

 heterogeneous facilities is an optimal solution of (3).

The optimal solution 
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If the functions 
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 are strictly decreasing, the conditions (4) are also necessary. In that case, the function 
[image: image80.wmf]  

  

F

:

 

p

a

F

p

(

)

=

f

i

p

(

)

i

=

1

n

å

 can be inverted, and the optimal solution 
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where 
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A corner solution also exists when the budget is very low, but it is very unlikely to happen in practice. If the budget 
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 is so low that it does not allow the threshold of probability of failure of all 
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 facilities to be strictly less than 1, then the optimal solution is to use the entire budget. In that case, some facilities will have a threshold of probability of failure strictly less than 1, while at least one facility will have this threshold at 1.

Given the nature of the problem, it is impossible to maintain the threshold of probabilities of failure of all facilities at 0 with a finite budget 
[image: image87.wmf]  

B

. Therefore, there is no corner solution for large values of the budget 
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4.2. Intuition for the proof of optimality

The second condition in (4), which indicates that the entire budget is used at optimality, is intuitive. In order to obtain an intuitive explanation for the first condition, which indicates that all 
[image: image89.wmf]  

p

i

's are equal at optimality, let us consider a system of two facilities, and the following situation: the threshold of probability of failure of facility 1, 
[image: image90.wmf]  

p

1

, is strictly lower than that of facility 2, 
[image: image91.wmf]  

p

2

, as shown in figure 1, and the combination of decision variables 
[image: image92.wmf]  

p

1

,

,

p

2

(

)

 is feasible (i.e. 
[image: image93.wmf]  

f

1

p

1

(

)

+

f

2

p

2

(

)

£

B

). It is easy to show that this combination cannot be optimal. Since 
[image: image94.wmf]  

f

1

p

1

(

)

 decreases as 
[image: image95.wmf]  

p

1

 is increased, and 
[image: image96.wmf]  

f

2

p

2

(

)

 increases as 
[image: image97.wmf]  

p

2

 is decreased, it is possible to decrease 
[image: image98.wmf]  

p

2

 by a small amount 
[image: image99.wmf]  

d

2

 and to increase 
[image: image100.wmf]  

p

1

 by 
[image: image101.wmf]  

d

1

 so as to keep 
[image: image102.wmf]  

f

1

p

1

(

)

+

f

2

p

2

(

)

=

f

1

p

1

+

d

1

(

)

+

f

2

p

2

+

d

2

(

)

. Thus, the new combination 
[image: image103.wmf]  

p

1

,

+

d

1

,

p

2

+

d

2

(

)

 is feasible, and the objective function is improved. This gives an intuitive explanation as to why 
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 must be equal at optimality. Formal proofs of the existence and optimality of the solution are provided in Robelin (2006).

5. Discrete-case implementation

5.1. Empirical evidence of the validity of the discrete-case results
In practice, the values 
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The numerical application considers a system of 742 heterogenous bridges. The deterioration of each bridge deck is modeled according to Frangopol et al. (2001), and maintenance and replacement cost information is adapted from Kong & Frangopol (2003). A system of heterogenous bridges is created by changing the parameters provided in these papers within reasonable ranges. The facility-level optimization problem is solved for each facility, for various values of the threshold of probability of failure. The condition of each facility, measured by its reliability index 
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The results for the system of 742 bridges are shown in figure 2. For each of the three discretization step sizes, the optimization problem is solved for different values of the threshold 
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 of probability of failure (two different values with step size 2, four different values with step size 1, and seven different values with step size 0.5). For a given discretization step size, it can be noted that the sum of the facility-level optimal costs decreases as the threshold 
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The graph also shows that, for a given value of 
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, the sum of the facility-level optimal costs decreases as the discretization step size decreases. This is intuitive, because the model becomes finer as the step size decreases, thus allowing for improvements in the optimization. It can also be noted that, for any given value of 
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, the difference in cost between step size 1 and step size 0.5 is much smaller than the difference between step size 2 and step size 1, which suggests that the results ``converge'' as the step size decreases to 0.

These arguments, derived on a system of significant size, provide empirical evidence that the results found in the discrete-case implementation can confidently be considered valid approximations of the results in the continuous case.

5.2. Implementation and derivation of facility-level policies

The facility-level optimization problem is first solved for each facility, for different values of the threshold 
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 of probability of failure (or equivalently, for different values of the reliability index). This provides the optimal cost 
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Given a user-defined value 
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For each facility, solving the facility-level optimization with the threshold of probability of failure taken as 
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 provides a set of maintenance and replacement policies. This set of policies is optimal at the system level. The implementation procedure is described in figure 3.

Note that the optimization described in section 3.2 utilizes a threshold of reliability index instead of a threshold of probability of failure. The threshold of reliability index corresponding to the threshold 
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5.3. Computational complexity

The solution is such that the computational complexity of the system-level problem is low. Namely, the fact that the threshold of probability of failure is the same for all facilities at system-level optimum reduces the optimization problem for 
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 independent facility-level problems. Therefore, the complexity is proportional to the number of facilities in the system, i.e. 
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. For each facility, the facility-level optimization problem is solved a small number of times, as seen earlier. Since the time to solve one facility-level problem is of the order of a few seconds on a personal computer, typical values of computation times for the system-level problem are five hours per thousand facilities. These computation times indicate that the present system-level optimization method can be applied to systems of the size of that managed by a state Department of Transportation in the United States. For example, if applied to the system managed by Caltrans, composed of 24,000 bridges (California Department of Transportation, 2006), the optimization would require a computation time of approximately five days, which is very short compared with the time scale of maintenance and replacement decisions.

6. Conclusion

This paper addresses the determination of the optimal maintenance and replacement policies for a system of bridge decks. The results of the facility-level optimization are incorporated in a new reliability-based, system-level formulation, with the following characteristics:

· the system can be composed of heterogeneous facilities, and recommendations are provided for each individual facility;

· the optimization uses deterioration models that take into account aspects of the history of deterioration and maintenance. Such deterioration models have not been widely used in optimization methods present in the literature, although their benefits in reducing the uncertainty in the prediction of facility condition are substantial;

· the computational efficiency of the system-level solution makes the formulation suitable for systems of realistic sizes;

· the solution is proven to be optimal in the continuous case, and a parametric study shows that the results obtained in the discrete-case implementation of the solution seem to be valid approximations of the continuous-case results.

The reliability-based formulation for a system of facilities presented in this article is likely to be applicable to other systems: fleets of vehicles, other civil infrastructure systems, supply chain of time-critical goods, assembly lines, etc.
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Figure 1: System of two facilities with thresholds of probability of failure such that 
[image: image133.wmf]  

p

1

<

p

2

.
[image: image134.png]Optimal cost (from facility level problem, $10%

== Step size: 2
—m = Step size: 1
—+— Stepsize: 05

1e10 1e09 1e03

le7  1e0s  1e0S  1eOd
Threshold of probability of failure (p)

1e03

5e.03




Figure 2: Aggregation of results of facility-level optimization for 742 bridges.
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Figure 3: Determination of facility-level policies that achieve system-level optimality.
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