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Abstract

Significant statistical and epistemic uncertainty surrounds estimated conditional probabilities used in mathematical formulations of infrastructure management problems.  Previous research has mitigated the impact of this uncertainty by using either an adaptive optimization or robust optimization approach.  Adaptive optimization updates deterioration model parameters as condition survey data is collected.  Robust optimization considers ranges of possible parameter values, rather than fixed estimates, during decision-making.  This work compares the two approaches, qualitatively and quantitatively, using data obtained from a computational study relating to pavement management.  The discussion and results do not fully favor either approach, and point to the possibility of combining the two approaches in the future.

INFRASTRUCTURE MANAGEMENT AND UNCERTAINTY
Public agencies monitor infrastructure facilities and take action to slow or reverse deterioration through a process known as infrastructure management.  The selection and scheduling of Maintenance, Repair, and Rehabilitation (MR&R) actions is an important problem in infrastructure management.  The costs of performing actions, agency costs, are balanced against the user costs associated with the operation of facilities in deteriorated states.  Researchers have constructed various mathematical programming formulations of the problem of selecting and scheduling MR&R actions.

Solutions to these optimization problems can be sensitive to assumptions about how deterioration proceeds.  This is troubling since there are errors in our ability to predict deterioration.  It is difficult to characterize the condition of an infrastructure facility, to identify the independent variables that relate to the condition of that facility, and to characterize the relationship between the independent variables and the condition of the facility.  For instance, when considering pavement it is difficult to identify the complete set of environmental conditions that lead to pavement deterioration, much less to come up with precise mathematical relationships linking these conditions and pavement deterioration.  Similar fundamental difficulties arise in describing precisely how a facility was constructed or how much traffic it will carry.

Additional uncertainty stems from the limited, and at times biased, data used to calibrate deterioration models.  Even if the complex form of the mathematical relation between structural, usage, and environmental conditions and the condition of an infrastructure facility were assumed known, limited data would make it impossible to precisely parameterize the relation.

MR&R Optimization in Infrastructure Management
An example of a mathematical programming formulation of a system level infrastructure management problem is presented here.  This example is built using the classic Arizona Department of Transportation Pavement Management System as a template (Golabi et al, 1982).  In this example, it is assumed that there is a network of N facilities to be managed for a period of T years.  Begin by assuming each of the N facilities deteriorates in exactly the same manner.  Decisions have to be made regarding all facilities simultaneously because there is a management budget bt that dictates how much can be spent on MR&R activities in year t.

The infrastructure MR&R optimization problem presented here will be formulated as one of minimizing costs, both related to management expenditures and the level of service facilities provides.  Say u(i) is the user cost associated with a facility being in condition state i, while g(i,a) is the agency cost of performing maintenance action a on a facility when it is in condition rating state i.  Performing maintenance involves incurring agency costs now to lower future user costs.  To compare present and future costs, it is necessary to consider discounting.  Let α be the discount amount factor we will use.  (α = 1/(1+r) where r is the discount rate.)  Finally, it is necessary to describe the effects of performing MR&R activities.  Let p(j|i,a) be the conditional probability of a facility being in condition rating state j a year after being in state i with action a applied.

For decision variables, let xi,t(a) be the fraction of all facilities, in state i in year t, that will have action a applied.  Like the original ADOT PMS, the decision variable produces fractions of facilities to which MR&R actions should be applied.  This formulation does not offer explicit facility-by-facility guidance.  However, there are benefits to allowing engineers with immediate knowledge of the facilities in question to choose a repair plan out of a set considered equivalent by an asset management system.  Furthermore, the formulation shown here has the crucial advantage of allowing the scope of the problem to be independent of the number of facilities in the network.

Let ft(i) be the expected fraction of all facilities, in year t, that will be in condition rating state i.  Assume at the start of the management exercise, the conditions of all facilities are known.  It would then be possible to construct f0(i), the starting fractions of all facilities in different states.  Then, given a policy x and transition probability matrix p, the expected fractions of facilities in different states one year into the management exercise and throughout the planning horizon can be computed.  Thus f0 is a parameter and ft where t>0 is fixed by x and p.

The objective function is then:

minx ∑t αt [∑i ∑a (g(i,a) + u(i)) ft(i) xi,t(a) N ]




(1)
The objective function shown in equation 1 minimizes the discounted sum of user and agency costs over the planning horizon.  A constraint is required to ensure that the expected agency spending does not run over the allowable budget in any given year.

∑i ∑a g(i,a) ft(i) xi,t(a) N ≤ bt

for all t



(2)
Another constraint is the key to how deterioration is considered in decision-making.  Decisions made in a given year must be based on the expected conditions of facilities, which are obtained from conditions and decisions made the previous year and the transition probability matrix.

∑i ∑a ft(i) xi,t(a) p(j|i,a) = ft+1(j)
for all j,t



(3)
It is worth noting here that the constraint above and the pre-specified f0, taken together, ensure that all facilities are accounted for and make a constraint like ∑i f0(i) = 1 unnecessary. Finally, a third constraint ensures negative fractions of facilities are never considered.

xi,t(a) ≥ 0



for all i,a,t



(4)
If a heterogeneous set of facilities were to be managed, this formulation could be modified.  Imagine facilities are separated into classes with each facility within a class considered to be homogeneous.  Each class could then be associated with a different set of user and agency costs, transition probabilities, and decision variables.  The objective function could be modified to sum costs across all facility classes.  Similarly, the sum of agency costs across all facility classes could be kept below some maximum budget.

ADAPTIVE OPTIMIZATION

The developers of modern infrastructure management systems have recognized the presence of uncertainty in the deterioration models used in practice.  Therefore, they have included a model-updating step in these management systems, where data collected as part of condition surveys are used to update deterioration model parameters.  For example, Bayesian methods have been used to update the parameters of deterioration models (Harper et al, 1990).  The popular bridge management system Pontis updates transition probability matrices over time (Golabi and Shepherd, 1997).  Relatively recently, a decision support system was proposed where the uncertainty in the deterioration model is represented by a probability mass function of deterioration rates (Durango and Madanat, 2002).  Rather than updating the parameters of the deterioration model, it is this probability mass function of deterioration rates that is updated in light of inspection data in their system.  Irrespective of these differences, the common element in these three systems is that they are adaptive, in that they combine model updating and optimization.

One serious limitation to the effectiveness of the adaptive approach is that while managing a network of infrastructure facilities, data on condition, deterioration, and the effectiveness of different MR&R actions accumulates slowly.  Thus, adaptive optimization approaches require a long time to improve the precision of deterioration model parameter estimates and, during this time, will incur high costs associated with uncertainty.  Additional difficulties arise if the form of the deterioration model assumed by an adaptive optimization mechanism is flawed.

An Example Adaptive Optimization Approach

An adaptive approach is here presented using a formulation built from the mathematical problem presented earlier in this paper.  New condition information is used to recalculate estimates of conditional probabilities (call these π(j|i,a) terms).  New condition information takes the form of a multinomial random variable; facilities are being observed as being in one of a discrete and mutually exclusive set of condition rating states.  It is assumed that probability estimates follow the fairly general Dirichlet distribution, the conjugate distribution to the multinomial, as in (Madanat et al, 2006).  Then, updating these transition probabilities becomes straightforward.

Let n(j|i,a) represent the number of facilities that have been observed transitioning from state i to state j in the time step after having action a applied.  Further, let N(i,a) represent the number of facilities that have been observed in state i with action a applied (N(i,a) = ∑j n(j|i,a)).  Every time step, it would be possible to update the counts, the n(j|i,a) and N(i,a) terms.  Given these counts, the maximum likelihood estimates of transition probabilities are quite simple to calculate. Simply divide the N(i,a) terms by the n(j|i,a) terms to get π(j|i,a) terms, the maximum likelihood estimates of p(j|i,a) terms.  These transition probability estimates can then be used in infrastructure management decision-making.  For example, plug the π(j|i,a) terms as the p(j|i,a) terms in the sample infrastructure management problem presented earlier.  As information becomes available, n(j|i,a) and N(i,a) counts can be updated and new estimates calculated for π(j|i,a) terms.

Figure 1 shows the responsibilities, over time, of a planning agency using an adaptive approach to infrastructure management.  Note that the possibility of setting N(i,a) and n(j|i,a) terms using ‘expert judgment’ was raised.  Expert judgment has been identified as a valuable source of information for setting transition probabilities of formulations of infrastructure management problems (Harper et al, 1990).  As data becomes available, it makes perfect sense to seek some mechanism for combining expert judgment and empirical data.  The adaptive optimization approach shown above leaves open this possibility.  Consider initially setting N(i,a) terms to reflect how much weight is given to the initial assumptions of expert engineers.  Larger values for these terms will mean a set amount of new data will have less impact on estimated transition probabilities.  Next, set n(j|i,a) terms so that initial estimates of transition probabilities reflect expert judgment regarding the likelihood of different transitions occurring.

Systematic Probing

The approach described above learns about infrastructure deterioration by observing facility condition information and relating this to maintenance actions performed the previous time step.  No information is gathered related to maintenance actions perceived to be sub-optimal during decision-making, and estimates of the costs and benefits of these actions will remain unchanged.  This, in turn, will keep these alternate maintenance actions unattractive during decision-making.

In order to learn about alternate policies not initially favored, it is necessary to ‘probe’ the system.  This implies taking actions believed to be sub-optimal given current information in order to learn more about the system in question.  For example, it may be beneficial to make decisions using a ε-greedy policy in combination with the adaptive approach presented previously.  This involves taking actions consistent with the results of a management problem 100 - ε percent of the time and selecting a random action (all possible actions equally likely to be selected) ε percent of the time where ε is some small number called the ‘probing fraction.’  Alternate strategies are also possible; ε-greedy represents only one (simple) strategy of systematic probing.  Systematic probing involves balancing exploitation, the desire to perform actions currently believed to be best, with exploration, the desire to test the efficacy of various actions and determine which actions truly are best.

ROBUST OPTIMIZATION
One alternative to adaptive optimization strategies for infrastructure management involves using robust optimization to guide decision-making. Robust optimization is a modeling methodology to solve optimization problems in which parameters are not known precisely but known to be in certain ranges, or to belong to certain sets called uncertainty sets. The goal is to seek solutions that are not overly sensitive to any realization of uncertainty.

In the field of infrastructure management and elsewhere, stochastic optimization techniques have been used to deal with situations where there is significant uncertainty regarding how a (possibly deterministic) system behaves.  Robust stochastic optimization is the more appropriate methodology to use when there is a stochastic system to be managed and that system cannot be precisely modeled.  In robust stochastic programming, no true underlying stochastic model of the data is assumed.

Consider applying robust optimization to the infrastructure management problem, assuming the transition probability terms are not known precisely.  Define an uncertainty set P, containing matrices of transition probabilities considered realistic.   As a set containing transition probability matrices, it must be that any element p in P must satisfy ∑j p(j|i,a) = 1 for all i, a and p(j|i,a) ≥ 0 for all i, j, a.  Additional constraints need to be added to ensure that any matrix p in the set P is a plausible description of deterioration.

In the sample formulation that will be used here, an “uncertainty level” δ will be employed.  δ will be a parameter set ahead of time to a value between 0 and 1. with a higher value corresponding to a higher degree of uncertainty.  Setting the uncertainty level to 0 implies no uncertainty, meaning an uncertainty set is defined that includes only the transition probability matrix given by some initial set of assumptions, called q.  Increasing the uncertainty level adds new transition probability matrices to the set.  The uncertainty level can be thought of as a measure of level of conservatism, to be adjusted by decision-makers according to their beliefs and preferences.

The objective function here becomes:

minx maxp  ∑t αt [∑i ∑a (g(i,a) + u(i)) ft(i) xi,t(a) N ]



(5)
The same constraints hold, plus a few additional constraints.

| p(j|i,a) - q(j|i,a) | ≤ δ


for all i, j, a



(6)
∑j p(j|i,a) = 1 



for all i, a



(7)
p(j|i,a) ≥ 0 



for all i, j, a



(8)
In the example shown above, a transition matrix will be included in the uncertainty set if and only if the difference between any element of the transition matrix and the corresponding element of the matrix q is less than the uncertainty level.  Seen in this light, the uncertainty level represents how large an error in estimated transition probabilities is considered possible.

The formulation of this example is admittedly very simple.  The same amount of uncertainty is assumed to surround all probability estimates.  The form of this uncertainty is always the same, real probabilities are assumed to fall within a symmetric box around initially assumed probability estimates.  It is definitely possible to imagine more complex definitions of uncertainty sets.  The aim here is only to show a sample robust infrastructure management problem, and then to test to see if this formulation yields substantially different results as compared to non-robust formulations.  Furthermore, it is worth noting that the formulation shown here requires only the specification of an uncertainty level with a clear intuitive meaning.  For practicing engineers and political policy makers, the simplicity of this approach may be a strength rather than a weakness.

COMPUTATIONAL STUDIES
Adaptive and robust optimization both represent strategies for mitigating the impacts of deterioration model uncertainty during infrastructure management.  It therefore makes sense to study and compare the performance of each in computational studies simulating infrastructure management.

In the computational studies that are presented here, robust optimization strategies with various assumed levels of uncertainty, none fully correct, are studied.  Since a lack of data and/or understanding is the problem to be addressed, it would make little sense to assume a complete awareness of how much error surrounds initial estimates of deterioration model parameters.  Similarly, adaptive methodologies based upon the example methodology discussed previously in conjunction with various e-greedy systematic probing strategies are studied.

The computational studies presented here involve pavement maintenance.  Tables 1 and 2 identify the costs of pavement maintenance activities and pavement deterioration, based upon empirical data (Durango and Madanat, 2002).  Table 3 outlines three rates of pavement deterioration, described only as being fast, medium, and slow, and taken from the literature (Durango and Madanat, 2002).  For the computational studies done here, four scenarios are considered.  In the first scenario, the deterioration rate used to simulate decay is fast, but the initial assumptions of the decision-maker are that deterioration will be slow.  Similarly, scenario two involves a real deterioration rate characterized as slow and an assumption that deterioration will be fast.  Scenarios three and four involve initial assumptions that deterioration will be medium coupled with real deterioration that is fast and slow, respectively.  The different scenarios are chosen because they represent a mix of over and under estimation of deterioration rates, as well as of different degrees of error in initial assumptions.

In all cases, a pavement network is managed and user + agency costs are minimized in the absence of any strict agency budgets.  60% of the network is assumed to start the planning exercise in (best) condition state 8, 20% in state 7, 10% in state 6, 5% in state 5, 3% in state 4, and 2% in state 3.  Simulations of management are run, for each of several adaptive and robust optimization methodologies.  Simulations are necessary because different realizations of deterioration lead to different assumptions used in, and results of, decision-making algorithms, which in turn impact future observations of deterioration.  The overall process is complex and stochastic and the true expected costs of different management strategies cannot be calculated using a closed-form expression.

Results
The results, in terms of costs of infrastructure management, of the computational studies are presented in Figures 2-9.  Graphs of the costs of adaptive optimization management mechanisms, with various values for e, the probing fraction, are presented above graphs of the costs of robust optimization management, with various assumed uncertainty levels.  These sets of graphs are presented for the four scenarios outlined in the preceding section.  Solid lines on each the graphs indicate the (low) expected cost of maintenance given perfect information.

It is not immediately clear which probing fractions produce the best results in adaptive optimization methodologies.  Setting the probing fraction, and indeed the systematic probing strategy, is an art and not a science.  On the other hand, some clear trends are observable in relating the performance of robust optimization methodologies to the values for uncertainty level.  In cases where deterioration proceeds faster than anticipated, Figures 3 and 7, strategies involving larger uncertainty levels outperform those involving smaller uncertainty levels.  On the other hand, in cases where deterioration is slower than anticipated, Figures 5 and 9, the opposite is true.

Note that the costs of robust optimization, using a fairly large uncertainty level, are significantly less than those of adaptive optimization in Figures 2-3 and 6-7 when real deterioration is characterized as fast but initial assumptions were that deterioration would be slow or medium.  Robust optimization leads to fairly conservative management strategies that involve significantly more regular maintenance of facilities than non-robust optimization might recommend.  This approach is beneficial when deterioration is faster than initially anticipated.

The flip side to this argument is that robust optimization wastes money in excess agency costs when deterioration is slower than initially anticipated.  Note how robust optimization, particularly when using a fairly large uncertainty level, can cost significantly more than adaptive optimization as in Figures 4-5.

It is interesting to note that acting under the naive assumption that initial assumptions are correct often produces lower management costs as compared to adaptive optimization.  Acting naively is here shown as using robust optimization with a 0% uncertainty level. In Figures 8-9 the best strategy tested was to simply believe the incorrect initial assumption that deterioration would proceed at a medium rate.  In the case studies shown here, initial assumptions were discarded once data was obtained regarding deterioration.  It may be better to incorporate initial assumptions and weight them as equivalent to a certain number of empirical observations, in a manner similar to that discussed after Figure 1.

Taken together, the graphs presented on the preceding few pages do not uniformly favor adaptive over robust optimization or vice-versa.  Apart from the costs incurred, there are important differences between the two approaches.

QUALITATIVE COMPARISONS
Adaptive optimization is explicitly learning about the system it is managing, while robust optimization is not.  Thus, at the end of the simulated management exercises presented above adaptive optimization will have a more accurate representation of the underlying true transition probability matrix than will robust optimization.

However, it is important to recognize that in the computational studies there was always a true underlying transition probability matrix that defined deterioration.  Adaptive optimization methodologies necessarily assume a functional form to define deterioration, and then assume another functional form for the distribution of estimates of parameters of deterioration models.  One of the benefits of robust optimization based approaches is that it is typically not necessary to make assumptions regarding the distribution of estimates of deterioration model parameters.  Furthermore, the assumed functional form of the deterioration model itself becomes less important since parameters are not considered fixed but rather as belonging to uncertainty sets.

TOWARDS A HYBRID MANAGEMENT SYSTEM
The best approach to dealing with situations where there is significant uncertainty regarding facility deterioration may be to combine adaptive deterioration modeling with robust decision-making.  In this way, new data is used to re-evaluate deterioration model parameters and limit the future magnitude of uncertainty while decision-making is done recognizing the current extent of uncertainty.  Such a hybrid approach is possible given that robust methodologies focus on changing decision-making algorithms, while adaptive approaches are concerned with updating deterioration models after decisions have been made.

The basic idea of the hybrid approach is simple.  Whenever information regarding the deterioration of infrastructure facilities is collected, update the statistical models of deterioration used in decision-making.  Particular attention must be paid to quantifying the uncertainty surrounding the terms of the deterioration models.  Then this information can be passed to a robust optimization routine, which will provide infrastructure management strategies that are optimal given current levels of uncertainty.


Recall that in the adaptive approach used in this paper it was assumed that estimated rows of a transition probability matrix follow the Dirichlet distribution.  Given this assumption, standard errors associated with transition probability estimates may be calculated.

σ(j|i,a) = √ [( n(j|i,a) (N(i,a) - n(j|i.a)) ) / ( N(i,a)2 (N(i,a)+1) ) ]

(9)
Standard error terms can be used to describe statistical or parametric uncertainty.  If it is believed that epistemic uncertainty is sizable, it would be wise to sum terms representing this more fundamental, underlying uncertainty with terms related to standard errors.  Then robust optimization can be used considering uncertainty sets based on estimated error terms.

A hybrid approach to infrastructure management, like the one outlined in Figure 10, appears to provide an excellent way to deal with situations where there is significant deterioration rate uncertainty.  As an adaptive approach, this methodology will allow an infrastructure management system to learn about deterioration and how fast it progresses.  As a robust approach, this methodology will be less sensitive to errors in initial assumptions regarding deterioration processes and to errors in assumptions related to the distribution of estimates of deterioration model parameters.  The extent of uncertainty will be reduced over time, while decision-making is always done recognizing current levels of uncertainty.

This is not to say that no concerns arise in combining adaptive and robust optimization.  Recall that in adaptive optimization information is only gathered on the effectiveness of actions that have actually been performed.  This may be a problem in cases where robust optimization is combined with adaptive optimization.  Worst-case costs are used to guide management decisions.  The sizes of uncertainty sets used to come up with worst-case scenarios relate directly to how much information is available.  Thus, the impacts of actions not taken will be highly uncertain, leading to high estimates of worst-case costs, and sub-optimality in the eyes of a robust decision-maker.  One effect of using robust decision-making in the context of adaptive optimization may be to strengthen the chain involving the (possibly incorrect) assumption that an action is sub-optimal, the failure to take that action, the failure to gather more information about that action, and the continued assumed sub-optimality of that action.

It's not clear if the concern raised above represents a serious detriment to the ability to combine adaptive optimization and robust optimization based methodologies for infrastructure management.  It may be that the interaction between the two methodologies is insignificant compared to the basic problem of balancing exploitation and exploration in an adaptive problem.  Further study in this area would be worthwhile.  It may be that a hybrid approach is the best way to manage infrastructure in situations where there is significant deterioration model uncertainty.

CONCLUSION

Uncertainty in deterioration modeling presents a serious problem for practitioners aiming to solve infrastructure management problems.  Two approaches for dealing with this uncertainty were presented here, one involving updating deterioration model parameters and one involving estimating the uncertainty associated with these parameters and considering this uncertainty during decision-making.  These two approaches were contrasted, both qualitatively and quantitatively using a pavement management example based upon previous research related to pavement deterioration.  Neither approach was found to consistently outperform the other.  Finally, the possibility of combing the two approaches into a hybrid approach was discussed.  Further research is necessary to see whether this hybrid approach represents an optimal framework for infrastructure management in the presence of significant deterioration model uncertainty.
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Table 1: Agency costs (dollars per lane-yard) of performing different MR&R actions on pavement with different condition ratings.
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Table 2: User costs (dollars per lane-yard) associated with pavement characterized by different condition ratings.
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Table 3: Mean and standard deviation of effects of actions on the condition rating of a pavement section.
CAPTION ILLUSTRATIONS

Figure 1: Timeline of the infrastructure management process using adaptive optimization.
Figure 2: Cost ranges of adaptive optimization, deterioration = fast, assumed deterioration = slow.
Figure 3: Cost ranges of robust optimization, deterioration = fast, assumed deterioration = slow.
Figure 4: Cost ranges of adaptive optimization, deterioration = slow, assumed deterioration = fast.
Figure 5: Cost ranges of robust optimization, deterioration = slow, assumed deterioration = fast.
Figure 6: Cost ranges of adaptive optimization, deterioration = fast, assumed deterioration = medium.
Figure 7: Cost ranges of robust optimization, deterioration = fast, assumed deterioration = medium.
Figure 8: Cost ranges of adaptive optimization, deterioration = slow, assumed deterioration = medium.
Figure 9: Cost ranges of robust optimization, deterioration = slow, assumed deterioration = medium.
Figure 10: Combining adaptive and robust infrastructure optimization.
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