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ABSTRACT
This study investigated the effects of highway geometric design and other related factors on frequency of rural highway crashes. Highway crash data from Kansas Accident Reporting System database combined with highway geometric data from Control Section Analysis System database were analyzed and modeled using two different model formats. Negative Binomial models were found to be more effective in modeling crash frequencies especially since the dataset was over-dispersed. Different models were developed based on yearly and 5 year average crash data based on 1998 – 2002 time period for rural two-lane and freeway sections. In addition to modeling total crash frequency, Equivalent Property Damage Only crash frequency was also modeled to capture any effects due to severities of crashes. Based on model fitting statistics, it was found that the models based on yearly crash data were better capable of modeling crash frequency compared to models based on average crash data. Model results showed that amount of traffic, speed limit and highway geometric characteristics such as steep sideslopes, grades and sharp curves tend to affect the occurrence of crashes on rural highways. In addition, divided two-lane highways seem to have fewer number of crashes compared to undivided sections and two-lane sections without any access control experience more crashes compared to sections on which access is partially or fully controlled.
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INTRODUCTION

Although the amount of travel on rural highways is less compared to urban highways, highway safety is a critical concern as they account for an alarmingly high number of fatal crashes. In year 2003, 60% of all highway fatalities were related to rural highways. In states like Kansas, this proportion was even higher than the national level as 74% of total fatalities occurred in rural areas in 2003 (FHWA, 2003). Thus, it is clear that identifying ways to enhance safety of rural highways is essential in improving overall highway safety. However, addressing rural highway safety issues has been hindered due to many reasons. One major reason is the lack of enough funds and resources that are allocated to use on rural highways. For example, many states are allowed to use their funds in improving safety in any public roads, but they are restricted to use them in improving certain rural highway systems (GAO, 2004). On the other hand, local municipal authorities, which are responsible for maintaining most of these rural highways, may not be capable of allocating large amounts of funds in improving rural highways. In some cases, even if enough funds are available, it might be questionable due to the concern on cost effectiveness of investing large amounts of resources as these highways account for less traffic volumes as compared to urban highways ((GAO, 2004)).


On the other hand, the amount of research that has been carried out to address rural highway safety issues is less compared to urban highways. This may be due to lack of enough funds and low traffic volumes on rural highways, which makes it a low priority. This may lead to lack of detailed information for highway agencies to work on improving safety of rural highways. Thus, identification of highway related factors, which contribute towards total number of highway crashes on rural roads, is very important in improving highway safety. Accordingly, the objective of this study was to identify the factors that would affect frequency of crashes on rural highways. In order to achieve this objective, Poisson and Negative Binomial models were developed, where the latter was identified as more appropriate for the situation under consideration. 

LITERATURE REVIEW

The empirical relationship between frequency of highway crashes and relevant contributing factors has been studied in numerous studies. As far as the methodologies are concerned, most of the studies have applied statistical modeling approaches. These methods vary from simple linear regression models to other complex models such as Poisson and Negative Binomial models. Miaou & Lum (1993) have investigated four different model structures, two linear regression models and Poisson and Negative Binomial models to study the statistical properties in terms of their ability to model highway crashes. Based on the model results they have concluded that linear regression models are not capable of adequately modeling the random, discrete and non-negative nature of highway crash events. On the other hand, Poisson regression models have been found to be more desirable in modeling crash frequencies. However, when the over-dispersion exists in crash data (i.e. variance is greater than the mean) Poisson models underestimate the model parameters. In such situations they recommend using other distributions such as Negative Binomial or double Poisson, out of which Negative Binomial model structure has been applied in many studies to successfully model crash frequency.


To study the relationship between truck accidents and geometric design of roadway sections, Miaou (1994) has employed three types of regression models, Poisson, zero-inflated Poisson and Negative Binomial. These models have been evaluated based on estimated parameters, goodness of fit, prediction power and sensitivity to the inclusion of short road sections. Based on the analysis results, it has been concluded that Poisson model can be used as the starting point in modeling crash frequency. Based on the over-dispersion parameter estimated in this step, application of other methods could be decided.


Shankar et al. (1995) have applied Negative Binomial method to study the effects of roadway geometrics and environmental factors on rural highway crashes. The highway geometrics that have been considered include horizontal curvature and vertical alignment while environmental related factors include rainfall and snowfall data. According to the findings, curves with higher design-speeds and sections with higher grades tend to increase crash occurrence.


Vogt & Bared (1997) have developed models to analyze safety of rural two-lane highways using Poisson and Negative Binomial modeling approaches. Two separate models for road segments and intersections have been developed to investigate the association between crash frequency and possible influential factors. Based on their findings, major contributing factors towards crashes on segments are traffic counts and exposure (i.e. variables related to segment length and average daily traffic) in addition to factors related to highway geometrics such as roadway alignment, width of the surface and the shoulder, and roadside conditions.


To study the effect of median treatment on urban arterial safety, Bonneson & McCoy (1997) developed accident prediction models assuming Negative Binomial distribution for crash occurrence. The study considered three different median treatment types and found that, crashes are more frequent on segments with higher traffic demands, driveway densities, or public street densities. In a study that evaluated safety of urban arterials, Sawalha & Sayed (2001) have used Negative Binomial distribution to develop accident prediction models. They investigated large number of models with different combinations of traffic and roadway related variables to determine significant variables towards crash occurrence. The study concluded that section length, traffic volume, unsignalized intersection density, driveway density, pedestrian crosswalk density, number of traffic lanes and type of median and type of land use had a significant effect on crash occurrence.


Zegeer et al. (1988) have investigated the effects of sideslope and other roadside features on crash occurrence on rural two-lane roads. They have used log-linear models to find out effects of sideslope, roadside hazard rating and clear zone distance while controlling for ADT (Average Daily Traffic), lane width, and shoulder width. They have found that the rate of single vehicle crashes decreased side slope is decreased and the expected reduction in single-vehicle crashes due to shoulder flattening ranged from 2 to 27%. 

METHODOLOGY

Selection of Data Sample
Crash data from Kansas Accident Reporting System (KARS) database and Control Section Analysis System (CANSYS) database were combined to obtain a comprehensive dataset for this analysis. KARS and CANSYS databases are maintained by the Kansas Department of Transportation (KDOT). KARS database consists of data related to all crashes that occurred on Kansas highways and reported by police officers while CANSYS database is a highway inventory system that includes most of the important details pertaining to State and national highways in Kansas. In CANSYS database, each highway has been mainly divided into master sections or control sections and subsections based on homogeneity of existing conditions. For each of these sections, details of highway geometrics and other information such as amount of traffic, existence and details of physical features such as bridges, culverts, intersections, etc. have been recorded. For this study, data from 1998 to 2002 was extracted for rural highways based on urban vs. rural categorization utilized by the KDOT, where population less than 5000 is considered as rural.  Two data sets were formed for carrying out modeling, one for two-lane roads and another for freeways. This information was then combined with corresponding crash data on each section from the KARS database to obtain the complete dataset used in modeling.


As five years of data was considered in this study, there were two options available in considering crash frequency for modeling, both of which have been utilized by researchers in previous studies. One method was to consider average crash frequency over five years for each section. The idea of taking average crash frequencies was to minimize any effects resulting from regression to the mean. Regression to the mean refers to the phenomenon that extreme results tend to sway back toward normal. For example, a particular road section, which experienced a high number of crashes in the previous year, may have fewer crashes in the following year even without any improvements to the section. Averaging the data over five years could minimize this effect and might help in obtaining more realistic results. In using this approach, all sections, which had been improved during the 5 year time period, were removed to maintain the homogeneity of sections. In addition, Average Annual Daily Traffic (AADT) values and percentage of heavy vehicles were averaged over the 5-year period.



On the other hand, by considering yearly data, it may be possible to capture the effects due to year-to-year changes in geometric design characteristics (i.e. improvements to curves and grades, lane widening, etc.), traffic conditions and other possible variations such as vehicle characteristics, land use patterns, etc (Miao, 1994). In this case, a particular section in different years was considered as separate highway sections, i.e. five different sections in this case, even if no improvement has been made to the section. After taking these two scenarios into consideration, it was decided to use both these approaches to model the data and then select the one with better predictive capabilities. Thus, two data samples were made, one based on the average crash frequencies for 5 years and the other one based on yearly data for the same 5 year time period. 



CANSYS database consists of data related to four types of highways, freeways, arterials, collectors, and local roads. Since prevailing conditions and characteristics on these highways are different, it was decided to consider two types of facilities on which majority of rural crashes occur. Thus, models were developed only for freeways and two-lane roads. This selection was based on preliminary analysis of crash data for the selected time period.  From a total of 71,281 rural highway crashes during the five-year period, about 68% were related to two-lane highways and 18% had occurred on Freeways. The two-lane sections were related to three types of highways; arterials, collectors and local roads while freeway category comprised of sections related to interstates and other freeways.


It should be noted that in the CANSYS database, some detailed information such as data pertaining to horizontal curves and grades, have been recorded only for some special sections called HPMS (Highway Performance and Management System) sections. While all freeway sections also serve as HPMS sections, number of HPMS two-lane highways is comparatively small and does not include local roads. This created a challenge in obtaining a sufficiently large enough sample with all possible variables to cover all roadway types. On the other hand, some studies have found that the variables related to curves and grades as significant towards crash frequency. Thus, in the case of two-lane roads with yearly data, two different models were developed, one with only HPMS sections and the other with all the sections but without considering detailed data related to horizontal and vertical alignment, simply because such data was not available for all the two lane roadway segments. 

Variable Selection
The selection of candidate variables for the models was based on previous findings and engineering judgment based on available information. In this process, the objective was to select as many significant variables as possible with the available data to obtain a more realistic model. The selected variables mainly comprised of characteristics related to highway geometrics and traffic even though other variables that are related to the existence of bridges and culverts, passing restrictions, intersections, roadway type based on functional class, and other similar characteristics were also considered. The selected candidate variables for two-lane highways and freeways and details of their representation in the models are presented in Table 1. It should be noted that the initial set included a large number of variables, but some of them were eventually discarded due to high correlation among variables. Accordingly, Table 1 shows only the variables that remained as candidates after the removal of highly correlated variables. 

In the case of two-lane roadways, the variable related to horizontal curvature was included in the model in two different ways by taking design speeds and degrees of curvature into account to capture the effect of the sharpness of the curve. This was possible for two-lane sections, as the data suggested a lot of variability in the degree of horizontal curvatures and design speeds. However, in the case of freeways, this was not possible due to less variability in curve data such as design speed and degrees of curvature. Thus, in the case of freeways only the number of curves was considered as a candidate variable. 


When the response variable of the model is total number of crashes, it does not take the severity of crashes into account even though individual crash severities play an important role. In order to account for severity, many agencies consider Equivalent Property Damage Only (EPDO) crashes in the prioritization process related to roadway improvement, instead of total number of crashes. Accordingly, EPDO is a weighted crash frequency to account for severity and can be defined as,

EPDO = W1 (No. of Fatal Crashes) + W2 (No. of Injury Crashes) + No. of PDO Crashes   (1)
where, W1 and W2 adjustment factors to adjust the severity of fatal and injury crashes. In Kansas, EPDO is commonly defined as given in Equation 1 even though crashes are reported in five different severity levels in KARS database. In addition, Kansas uses only one weighing factor for both fatal and injury crashes (i.e. W1 = W2) and this value has been estimated as equal to 6 (Hallmark et al, 2002). Because of the importance of EPDO in assessing highway safety, EPDO frequency was also modeled in addition to total crash frequency to investigate relevant contributing factors towards EPDO frequency. 

Modeling Technique

Poisson distribution was first used in this study for modeling crash frequency due to the fact that it is capable of modeling count data of random, non-negative, discrete nature. Suppose, Yi is a random variable that describes the number of crashes at a given location i in a given period of time. Then Yi is assumed to possess Poisson distribution and can be expressed as,
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where, P(Yi=yi) is the probability of occurring y crashes on the roadway section i in a given period of time and 
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 is the expected number of crashes on section i (i.e. E{yi}). In addition, the mean or expected value of Yi is assumed to be equal to its variance. That is,
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where, E[Yi]  expected number of crashes on section i and Var[Yi]  is the variance of observed number of crashes. For a given set of explanatory variables (highway geometrics, traffic and other data), 
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 can be estimated using the formulation,
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where, X is a vector of explanatory variables and 
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 is a vector of parameters to be estimated.

However, in some cases this method has limitations in applying to real world data due to the assumption of equal mean and variance. When the data is overdispersed or underdispersed (i.e. mean is not equal to the variance), use of this method would overestimate or underestimate the parameters. Many previous studies have found that crash data tend to be overdispersed in many situations with the variance being significantly higher than the mean. In such cases, any inferences made based on Poisson model estimations may lead to wrong conclusions. As a result of this, many researchers recommend using alternative methods in analyzing crash data, especially when the data is overdispersed (Miaou and Lum, 1993; Shankar, 1995).


One such method is to utilize Negative Binomial (NB) distribution because it does not require equal mean and variance assumption. In this method, the mean or expected value itself is assumed to be a random variable, which can be described by the gamma distribution. Accordingly, Equation 4 can be now written as,
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where 
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 is the unobservable error term with a gamma distribution. The variance of this distribution can be expressed as,
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where 
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 is the expected number of crashes on section i and 
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 is called the Negative Binomial dispersion parameter. The over-dispersion occurs when the value of 
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 is greater than 1 and when its value is zero, NB distribution reduces to Poisson distribution with which the variance is equal to the mean. 

MODEL RESULTS AND DISCUSSION

As previously mentioned, the modeling procedure started with Poisson distribution and the corresponding parameters were estimated. The estimated dispersion parameter was greater than 1 indicating that the datasets were over-dispersed and the equal mean and variance assumption was not valid. Additionally, goodness-of-fit statistics indicated that none of the models fitted well with the data, as the quantity, estimated value divided by the degrees of freedom, in all the cases was out of the allowable range (0.80 to 1.20). Based on these results, it was clear that Poisson distribution was not a reasonable assumption for modeling crash frequency in this case. Thus, the next step was to consider modeling the data using Negative Binomial distribution. Results from Negative Binomial models and discussion on these outcomes are presented in the following sections. 

Results for Two-lane Highways

Parameter estimations for two-lane highway sections using Negative Binomial models are shown in Table 2 for each data set. R-square values for all models seem to be reasonable as all values are greater than 0.45. However, for models that consider total number of crashes, R-square value is significantly higher as compared to EPDO models. In other words, the selected explanatory variables may be more capable of explaining the variability in total crash frequency than the variability in EPDO crash frequency. When EPDO frequency is considered as the response variable in the model, severity of crashes becomes important as they are highly correlated. Thus, one potential reason for getting low R-square values in EPDO models may be due to the fact that in addition to the factors considered in these models, there might be some other important variables as well, which contribute towards the occurrence of high severity crashes.

When comparing two sets of models based on yearly data and 5-year average data, the model based on yearly data has a larger R-square value (0.65 compared to 0.54). In other words, this model seems to be more effective in explaining total crash frequency with the given set of explanatory variables. As previously explained, this may be due to the fact that this model is capturing effects due to changes in highway geometrics and other possible variations. However, in the case of EPDO crashes, all three models seem to have similar prediction capabilities, as the R-square values do not vary significantly. On the other hand, addition of variables related to highway alignment seems to improve the prediction capability of the model as the R-square value shows slight improvement in the model for HPMS sections. However, this model does not consider any sections related to local roadways. By considering these facts, both models, which are based on yearly data, are selected for the identification of significant variables towards crash frequency. 


The following sections consist of discussion about the significant variables identified through the model results. The interpretation of model results is based on the concept that variables with positive estimated parameters tend to increase crash frequency while variables with negative estimated parameters tend to decrease crash frequency. 

Traffic Related Variables

Variable related to amount of traffic (AADT_THSNDS) seems to be highly significant with high Chi-square values and positive estimated parameters in both models. This indicates that when the amount of traffic increases while the other variables are constant, crash frequency tend to increase. Since the AADT is a measure of exposure to travel, more general interpretation would be the more exposure to travel the more chances of having crashes. However, when the proportion of heavy vehicles increases, the number of crashes tends to decrease according to the results. This may be due to the fact that under such traffic conditions drivers may be more cautious.  Additionally, each truck is equivalent to a number of passenger cars and therefore percentage of heavy vehicles is inversely related to AADT.   

Variables Related to Highway Geometric Characteristics

Model results show that steep shoulder slopes tend to increase the frequency of crashes on a particular section. Zegeer et al. (1988) have also found higher single-vehicle and rollover crash rates on road sections with steeper side slopes. When the shoulder is steeper, it would be difficult for a driver, who runs-off the road to control the vehicle and get the vehicle back to the road eventually resulting in either a rollover crash or hit by a fixed object. 


Horizontal curvature also seems to have significant effects towards crash frequency. The variable related to degrees of curvature (DOC) shows that when the number of curves with DOC> 3.5 increases, the chance of having more crashes increases. On the other hand, number of curves with design speeds greater than 45mph also has a direct effect towards crash severity.  Vertical alignment of the roadway section has significant effects towards the crash frequency. When the number of steeper grades (gradient >2.5) in a section increases, it is more likely to experience a higher number of crashes. It should be noted that, these results are only based on arterial and collector roadways (based on HPMS sections) and thus, may or may not be valid for local roadways.

Other Variables
Posted speed limit seems to have significant direct effects on crash frequency as both models provide positive estimated parameters for the related variable. The variable related to median type (DIVIDED) shows inverse relationship with total number of crashes. In other words, compared to undivided sections, divided sections experience fewer crashes. This may be due to the reduction in unsafe passing and head on crashes with the opposing lane traffic. In addition, arterial roadways seem to have higher crash frequencies compared to collector road sections.


The variable related to width of the shoulder is significant only in the model where the response variable is EPDO crash frequency. The negative estimated parameter for this variable indicates that increase in the shoulder width would result in a decrease in EPDO frequency. This indicates that the variable is more sensitive towards the occurrence of high severe crashes, which occur in smaller frequencies compared to less severe crashes. When these high severity crashes are treated equally with less severity crashes in the total crash frequency model, the effect of this variable did not become significant. However, when the severity of the crash is considered in the response variable as EPDO frequency, the model captured the effect of this variable became significant. Another fact about these model results is that the variable related to surface width is not significant in any of the models. The reason may be due to insufficient variability in surface width among the sections considered in the models to capture the effect of this variable. 

Results for Freeway Sections

The estimated parameters using Negative Binomial models for freeway sections are shown in Tables 3. The following sections provide details about model goodness-of-fit and discussion on identified significant variables.Model results are discussed in the next paragraphs. 

Traffic Related Variables

The positive estimated parameter for the variable related to traffic volume (AADT_THSNDS) indicates that when the traffic volumes increase the number of crashes also increases. As in the case of two-lane highways, proportion of heavy vehicles has an inverse relationship on crash frequency on rural freeway sections.

Highway Geometric Characteristics

A roadway profile with higher number of steep gradients experience more crashes as compared to flatter sections, as the variable related to vertical alignment has a positive parameter. On the other hand, sections with steep shoulders experience more crashes compared to less steep or flatter shoulders. The variable related to inside shoulder width has a negative estimated parameter indicating that when there are wider inside shoulders, fewer crashes could be expected. On the other hand, when the EPDO crash frequency is considered as the response variable, the model shows that outside shoulder width as having negative effects, but it is not significant in the total frequency model. Once again, this variable may be more sensitive towards high severity crashes as compared to low severity crashes and thereby not becoming significant in the total frequency model. 


Other variable, which is significant in all models, is the posted speed. Results indicate that higher speed limits result in higher number of crashes, as the estimated parameter is positive.

SUMMARY AND CONCLUSIONS

Statistical models were developed to identify critical contributing factors that are likely to affect total number of crashes on rural highway sections in Kansas. Crash data from KARS database combined with highway geometric data from CANSYS database was used in the modeling process. Different models were developed using yearly crash data and average crash data for a period of 5 years from 1998 to 2002. Two types of highways were considered, namely two-lane highways and freeways, and separate models were developed for each. In addition, crash frequency was considered in two different ways; total crash frequency and EPDO crash frequency. Based on the model goodness-of-fit statistics the best model was selected for each type of facility. 

According to the estimated statistics, Poisson distribution was not found to be suitable for modeling crash frequency in this case. Negative Binomial distribution models showed better fit for the data and accordingly used in identifying critical factors. Based on the estimated goodness-of-fit statistics, models based on yearly data were more effective compared to models based on 5-year average data in explaining the variation in crash frequency with the selected set of explanatory variables. Thus, inferences were made based on models based on yearly data. In addition, models based on both the total number of crashes and EPDO crashes provided similar results except for a few variables. According to model results, factors related to traffic conditions (AADT), posted speed limit, and highway geometric characteristics such as horizontal and vertical alignment, shoulder width and slope are significant towards crash frequency on both two-lane roads and freeways. In addition, divided two-lane highways seem to have fewer number of crashes compared to undivided sections and two-lane sections without any access control experience more crashes compared to sections on which access is partially or fully controlled. 


Finally, it could be said that Negative Binomial distribution provided a reasonably satisfactory method for modeling crash frequency on rural highway segments in this case and relevant contributing factors were identified accordingly. 
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TABLE 1 Candidate Variables Considered in the Modeling Process 
	Variables for Two-lane Models

	Variable
	Description
	Mean
	Max.
	Min.

	AADT_THSNDS
	Annual Average Daily Traffic in thousands
	2.24
	13.02
	0.060

	DIVIDED
	=1 if the roadway is divided, =0 otherwise
	0.01
	1
	0

	NO_ACC_CTRL
	=1 if there is no access control, = 0 otherwise (fully or partially controlled)
	0.87
	1
	0

	NUM_CTRL_INT
	Number of intersections with STOP control signs or Traffic signals
	-
	2
	0

	NUM_CUL_BR_LSW
	Number of culverts and bridges of which the width is less than the roadway surface width
	-
	6
	0

	NUM_HC_DOC_3.5
	Number of horizontal curves with degrees of curvature > 3.5 in the section considered
	-
	12
	0

	NUM_HC_GT_45MPH
	Number of horizontal curves with design speed greater than 45mph 
	-
	6
	0

	NUM_NO_CTRL_INT
	Number of intersections with Yield control signs or no control
	-
	5
	0

	NUM_VG_GRAD_2.5
	Number of vertical grades with gradient >2.5
	-
	32
	0

	PCT_HV
	% of heavy vehicles in the traffic stream
	17.32
	80
	2

	PCT_NO_PASS
	Proportion of roadway length with No Passing zones to the total section length in %
	-
	100
	0

	POSTED_SPEED
	Posted speed limit in mph
	60.27
	65
	20



	RURAL_ARTERIAL
	=1 if the roadway is an arterial, =0 otherwise
	0.81
	1
	0

	RURAL_COLLECTOR
	=1 if the roadway is a collector, =0 otherwise
	0.18
	1
	0

	SEC_LENGTH
	Length of the section in miles
	4.68
	0.1
	21.74

	SH_OUT_SLOPE
	Slope of the outside shoulder in %

(% elevation change per foot)
	28.2
	100
	0

	SH_OUT_UNPAVED
	=1 if the outside shoulder is paved,  =0 otherwise
	0.25
	1
	0

	SH_OUT_WIDTH
	Outside shoulder width in ft
	6.88
	11
	0

	SURF_WIDTH
	Width of the road surface in ft
	23.66
	24
	16

	
	
	
	
	

	Variables for Freeway Models

	AADT_THNDS
	Annual Average Daily Traffic in thousands
	7.33
	22.25
	2.76

	MED_DEPRESSION
	=1 if the median is a depressed median,  =0 otherwise
	0.72
	1
	0

	MED_WIDTH
	Average width of the median
	24.03
	30
	10

	NUM_HC_DOC_3.5
	Number of horizontal curves with degrees of curvature > 3.5
	-
	3
	0

	NUM_VG_GRAD_2.5
	Number of vertical grades with gradient >2.5
	-
	30
	0

	PCT_HV
	% of heavy vehicles in the traffic stream
	23.89
	41
	7

	POSTED_SPEED
	Posted speed limit in mph
	69.76
	70
	65

	SEC_LENGTH
	Length of the section in miles
	3.92
	16.67
	0.10

	SH_OUT_SLOPE
	Slope of the outside shoulder in % (% elevation change per foot)
	22.24
	25
	16.67

	SH_WIDTH_IN
	Inside shoulder width in ft
	6.89
	10
	6

	SH_WIDTH_OUT
	Outside shoulder width in ft
	10.01
	12
	10

	SURF_PCC
	=1 if the surface type is Portland cement concrete,  =0 otherwise
	0.30
	1
	0

	SURF_WIDTH
	Width of the road surface
	24.02
	36
	24


TABLE 2  Estimated Parameters for Two-lane Sections 

	Goodness-of-fit Statistics
	Yearly Data
	Yearly Data (Only HPMS Sections)
	5 Year Average Data

	
	Total Frequency
	EPDO
	Total Frequency
	EPDO
	Total Frequency
	EPDO

	
	Estimated Value (DF)
	
[image: image13.wmf](DF)
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	Estimated Value (DF)
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	Estimated Value (DF)
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	Estimated Value (DF)
	
[image: image16.wmf](DF)

(Value)


	Estimated Value (DF)
	
[image: image17.wmf](DF)

(Value)


	Estimated Value (DF)
	
[image: image18.wmf](DF)

(Value)



	Deviance (D)
	7605.32 (8359)
	0.910
	8718.92 (8348)
	1.044
	982.7242 (1033)
	0.951
	1105.8409 (1035)
	1.068
	776.42 (776)
	1.001
	855.63

(777)
	1.101

	Pearson Chi-Square (
[image: image19.wmf]2

Χ

)
	7969.14 (8359)
	0.953
	8590.76 (8348)
	1.029
	1011.5037 (1033)
	0.979
	1056.5946 (1035)
	1.021
	828.25 (776)
	1.067
	837.57 (777)
	1.078

	
	
	
	
	
	
	
	
	
	
	
	
	

	Factor
	Estimated Parameter
	Chi-Square
	Estimated Parameter
	Chi-Square
	Estimated Parameter
	Chi-Square
	Estimated Parameter
	Chi-Square
	Estimated Parameter
	Chi-Square
	Estimated Parameter
	Chi-Square

	Intercept
	-1.9483
	12.39


	-1.1122
	4.09
	-3.704
	8.41
	-3.5916
	5.95
	-1.818
	2.12
	-0.217
	0.03

	AADT_THSNDS
	0.1867
	1347.68


	0.2361
	1310.14
	0.1378
	117.33
	0.1718
	111.21
	0.123
	27.77
	0.175
	43.03

	DIVIDED
	-1.0967
	10.33


	-1.3903
	15.84
	-1.14
	8.1
	-1.766
	14.63
	NS
	NS
	NS
	NS



	NO_ACC_CTRL
	0.0796
	11.89


	NS
	NS
	NS
	NS
	NS
	NS
	0.301
	7.30
	NS
	NS



	NUM_CTRL_INT
	-0.7353
	7.97


	-0.5132
	4.36
	NS
	NS
	NS
	NS
	NS
	NS
	NS
	NS



	NUM_CUL_BR_LSW
	NS
	NS


	NS
	NS
	NS
	NS
	NS
	NS
	NS
	NS
	0.692
	4.69

	NUM_HC_DOC_3.5
	NA
	NA


	NA
	NA
	0.0703
	17.12
	0.0762
	9.95
	NA
	NA
	NA
	NA

	NUM_HC_GT_45MPH
	NA
	NA


	NA
	NA
	0.1154
	9.16
	0.1343
	6.31
	NA
	NA
	NA
	NA

	NUM_NO_CTRL_INT
	NS
	NS


	NS
	NS
	NS
	NS
	NS
	NS
	NS
	NS
	NS
	NS



	NUM_VG_GRAD_2.5
	NA
	NA


	NA
	NA
	0.0121
	4.09
	NS
	NS
	NA
	NA
	NA
	NA

	PCT_HV
	-0.0199
	445.94


	-0.0166
	246.11
	-0.0139
	33.73
	-0.0143
	24.63
	0.022


	3.93
	NS
	NS



	PCT_NO_PASS
	NS
	NS


	NS
	NS
	NS
	NS
	0.0024
	5.19
	-0.014
	10.71
	-0.013
	7.75

	POSTED_SPEED
	0.0167
	128.15


	0.0146
	79.41
	0.0245
	24.43
	0.0192
	11.22
	0.022
	28.38
	0.025
	33.62

	RURAL_ARTERIAL
	NS
	NS


	NS
	NS
	0.2675
	5.24
	0.4705
	13.14
	NS
	NS
	NS
	NS

	RURAL_COLLECTOR
	NS
	NS


	NS
	NS
	NA
	NA
	NA
	NA
	-0.908
	3.62
	NS
	NS

	SEC_LENGTH
	0.1448
	3951.78


	0.1533
	3054.24
	0.1484
	284.02
	0.1603
	338.64
	0.258
	249.39
	0.263
	182.79

	SH_OUT_UNPAVED
	NS
	NS


	NS
	NS
	NS
	NS
	NS
	NS
	NS


	NS


	NS


	NS



	SH_SLOPE
	0.0081
	80.31


	0.0098
	78.30
	0.0084
	7.3
	0.0119
	9.93
	0.015
	11.60
	0.019
	15.11

	SH_WIDTH_OUT
	NS
	NS


	-0.0223
	24.14
	NS
	NS
	NS
	NS
	NS
	NS
	NS
	NS

	SURF_WIDTH
	NS
	NS


	NS
	NS
	NS
	NS
	NS
	NS
	NS
	NS
	NS
	NS

	Dispersion 
	0.207


	0.4988
	0.1787
	0.4884
	0.6903
	0.9663

	R2
	0.65
	0.47
	0.68
	0.46
	0.54
	0.45


NS – Variable is not significant      NA – Variable is not applicable to the given model

TABLE 3 Estimated Parameters for Freeways 
	Goodness-of-fit Statistics
	Yearly Data (HPMS Sections)
	5 year Average Data

	
	Total Frequency
	EPDO
	Total Frequency
	EPDO

	
	Estimated Value  (DF)
	
[image: image20.wmf](DF)

(Value)


	Estimated Value (DF)
	
[image: image21.wmf](DF)

(Value)


	Estimated Value (DF)
	
[image: image22.wmf](DF)

(Value)


	Estimated Value (DF)
	
[image: image23.wmf](DF)

(Value)



	Deviance (D)
	676.5662

(680)
	0.995


	742.4542

(682)
	1.0886


	371.7999 (346)
	1.0746
	400.0709 (346)
	1.1563

	Pearson Chi-Square (
[image: image24.wmf]2

Χ

)
	750.4396

(680)
	1.1036


	734.6341

(682)
	1.0772


	344.9019

(346)
	0.9968
	355.8001 (346)
	1.0283

	
	
	
	
	
	
	
	
	

	Factor
	Estimated Parameter
	Chi-Square
	Estimated Parameter
	Chi-Square
	Estimated Parameter
	Chi-Square
	Estimated Parameter
	Chi-Square

	Intercept
	0.2076
	0


	-2.1639
	0.35


	-9.2696
	3.11
	-7.5139
	2.6

	AADT_THSNDS
	0.0275
	5.87
	0.0479
	12.78


	0.0559
	5.34
	0.0677
	7.04

	MED_BARRIER
	NS
	NS
	NS
	NS


	0.9428
	4.75
	2.1616
	4.42

	MED_WIDTH
	NS
	NS
	NS
	NS


	0.1428
	8.34
	0.0997
	6.76

	NUM_HC_DOC_3.5
	NS
	NS
	NS
	NS


	NA
	NA
	NA
	NA

	NUM_VG_GRAD_2.5
	0.0134
	4.21
	0.0149
	3.41


	NA
	NA
	NA
	NA

	PCT_HV
	-0.0417
	54.55
	-0.0316
	22.87


	-0.0391
	8.61
	-0.0252
	3.53

	POSTED_SPEED
	0.0637
	3.85
	0.1098
	8.08


	0.1482
	4.95
	0.1406
	4.92

	SEC_LENGTH
	0.1852
	214.15
	0.1979
	162.95


	0.2702
	206.37
	0.2887
	195.55

	SH_SLOPE
	0.0223
	4.56
	0.0312
	6.5


	NS
	NS
	NS
	NS

	SH_WIDTH_IN
	-0.1245
	24.55
	-0.1022
	11.94


	NS
	NS
	NS
	NS

	SH_WIDTH_OUT
	NS
	NS
	-0.4988
	4.18


	0.0282
	2.34
	0.0319
	3.13

	SURF_PCC
	NS
	NS
	-0.2447
	4.23


	NS
	NS
	NS
	NS

	Dispersion
	0.3018
	0.5559


	0.6395
	0.7841

	R2
	0.65
	0.50
	0.54
	0.46


NS – Variable is not significant      NA – Variable is not applicable to the given model
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