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ABSTRACT

In this work we present a general formulation for the deterministic traffic assignment problem, through the specification of an equivalent optimization problem, which is applicable to the case of asymmetric linear cost functions. We also present a resolution approach for this problem in such a way that in equilibrium Wardrop´s first principle is satisfied.

The formulation is based on stating a non-linear optimization problem in which objective function we define a line integral related to the network linear cost vector, and the constraints are defined by the conservation equations and non-negativity of flows. The resolution approach consists on finding an adequate integration path for the line integral (parameterizing the linear cost vector), for which it is feasible to use the flow conservations equations, as well as relationships that are obtained from some of the existing alternative routes. Based on the integration path (parameterization), the line integral can be written as a defined integral, which in turn makes it feasible to solve an equivalent optimization problem whose optimality conditions satisfy Wardrop’s first principle. 

We conclude that any deterministic traffic assignment problem with linear cost functions, unvaried or multivariate, symmetric or asymmetric, can be formulated as an optimization problem which objective is defined by a line integral related to the network cost vectors, and whose constraints correspond to the non-negativity and conservation of flows. By adequately defining the integration path, it is feasible to resolve the aforementioned problem obtaining as a result Wardrop’s equilibrium conditions.

1. INTRODUCTION

The basic problem of traffic equilibrium in congested networks, also called the traffic assignment problem, corresponds to the formulation of Beckmann et al (1956), where a problem is stated whose optimality conditions satisfy Wardrops first principle (Wardrop, 1952). Nevertheless, the problem formulated by Beckmann et al (1956) considers a series of strong suppositions that prevent a more extensive use of this formulation. Specifically, it supposes that the costs on a link depend exclusively on its own flow, and not on other flows on the network, as effectively may occur in real situations.

Some cases when the cost on a link depends, besides on its own flow, on the flow on other links (normally in an asymmetric way), are the following:

i)

Highway on-ramps: as the flow on the highway increases, the flow that enters through the on-ramp takes a longer time to enter the highway. Note that in this case the flow on the highway affects the flow on the on-ramp, but not the other way around, thus the relationship is asymmetric.
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Figure 1
ii)

Priority intersections: at intersections in which there are yield or stop signs, there is also a cost asymmetry. Note that in this case the flow on the priority access affects the flow on the secondary access, thus the relationship is asymmetric.
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Figure 2
iii)

Two-way streets: in two-way streets, and particularly in cases with one lane in each direction, the over-passing maneuver is more difficult. In this case it is also feasible that the interactions be asymmetric.
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Figure 3
iv)

Public transportation network assignment (De Cea & Fernández, 1993): when capacity constraints are considered in the bus or subway services, the traveler must wait a longer time in each stop or station. The travelers that are inside the vehicle are not affected by the travelers that are waiting at the stop, while the later are affected by the passengers that are traveling inside the vehicle, since if this vehicle is traveling at or close to capacity; some passengers at the stop will have to wait until the following vehicle to carry out their trip. As a result, the interactions in this case are asymmetric.

Given the limitation of the traffic assignment problem stated by Beckmann, that does not consider flow interactions, a series of developments appeared that intended to generalize this formulation. In the particular case that the Jacobian of the cost vector is symmetric, a line integral was formulated, in which case, since the resolution did not depend on the path of integration (since the Jacobian is symmetric, or more generally speaking, the vector field defined by the cost vector is conservative), it can be resolved directly since it has en equivalent optimization problem (Sheffi, 1985).

Nevertheless, when the cost vector is not symmetric, up to this date there has been no equivalent optimization problem reported, and the traditional approach used is to state and solve the variational inequality or apply some alternative method, as for example fixed point methods, diagonalization, decomposition methods (partitionable, transfer, simplicial and cobweb decomposition) relaxation methods or projection methods. Among the most relevant works that analyze the formulation of the equilibrium problem, the uniqueness of the solution and the resolution algorithm, we can mention  Dafermos and Sparrow (1969), Smith (1979, Dafermos (1980; 1982), Florian and Spiess (1982), Fisk and Nguyen (1982), Fisk and Boyce (1983), Nagurney (1984), Hammond (1984), Marcotte and Guelatt (1988), Auchmuty (1989), Gabriel and Bernstein (1997), Patriksson (1998).

In all the works reported in the specialized literature, when the cost vector is asymmetric, the formulation of an equivalent optimization problem has not been considered. This last point represents the main contribution of the present work, since we show that any deterministic traffic assignment problem, even in the case with an asymmetric cot vector, can be formulated as an optimization problem in which objective a line integral is specified related to the network cost vector, and the constraints correspond to the classic continuity and non-negativity of flows. The resolution of the line integral is carried out through the definition of the appropriate integration path, to then parameterize the problem and solve it as an ordinary equivalent optimization problem, maintaining the same conservation and non-negativity flow constraints.

In section 2 we present the formulation of the generalized traffic assignment problem with linear cost functions as an optimization problem, and we explain in detail how to determine the integration path that will allow the resolution of the line integral in order to obtain Wardrop´s conditions; this explanation is accompanied by a series of examples that allow us to clearly understand the methodology. In section 3 we present the complete formulation and resolution process for the general traffic assignment problem with linear cost functions, and we report a series of vectorial calculation properties in order to understand the previous methodology. In section 4 we apply the methodology to non linear costs example, obtaining interesting results. Finally in section 5 we present the main conclusions that are obtained from this work and mention the further developments that could be investigated as extensions to the present work.

2. FORMULATION AND RESOLUTION OF AN EQUIVALENT OPTIMIZATION PROBLEM

2.1 Formulation of an Equivalent Optimization Problem
In order to understand the proposed methodological approach used to solve the general deterministic traffic assignment problem, this section has been structured in the following way: first, we present the general representation related to the formulation of the problem; after this, we include a series of propositions with their respective demonstrations, which allow us to contextualize the initial representation. Finally, we develop a series of example networks with asymmetric cost functions in which we apply the defined methodology, corroborating Wardrop’s equilibrium conditions.

Representation:
“Any deterministic traffic assignment problem can be formulated as a non-linear optimization problem in which objective a line integral is defined related to the network cost vector, and whose constraints correspond to the conservation and non-negativity of flows”. The general formulation is thus the following:


[image: image4.wmf]{

}

(

)

(

)

(

)

112112

min   ,,...,....,,...,

mmmm

PP

Zcxxxdxcxxxdx

=×=++

éù

ëû

òò

F

Cxdx

ii


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1)

s.t.:


( F((


















 MACROBUTTON MTPlaceRef \* MERGEFORMAT (2)

x: vector of integration variables, x = (x1, x2,...., xm-1, xm).
C: vector of network link costs, C = (c1, c2,...., cm-1, cm).
ca: cost function of link a, such that ca = ca(f1, f2,...., fm-1, fm).
F: vector of network link flows, F = (f1, f2,...., fm-1, fm).
P: integration path defined by space (f1, f2,...., fm-1, fm).
(: set of constraints of continuity and non-negativity of flows.
Proposition 1: 
An integration path P exists for the line integral presented in 
(2)

 can be formulated as an ordinary parameterized equivalent optimization problem, in which objective a defined integral is specified, and the conservation and non-negativity of flow constraints are maintained. Note that F0 (( is constant but unknown, and that (1)

-(1)

 between F0 (( and F((, such that the general traffic assignment problem  GOTOBUTTON ZEqnNum686282  \* MERGEFORMAT .  

Proof: 



To know the integration path is equivalent to parameterizing the problem as a function of the new variable, for example t. Then, each variable xa can be expressed as  function of t in the following way: xa  = xa (t); note that 
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As a result, the parameterized cost vector is 
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On the other hand, given that 
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 is constant, its value does not affect the resolution of the optimization problem, and thus to minimize 
[image: image11.wmf](

)

(

)

(

)

0

1

a

a

ft

m

a

a

a

f

dxt

ctdt

dt

=

å

ò

 is equivalent to minimizing
[image: image12.wmf](

)

(

)

(

)

1

0

a

ft

m

a

a

a

dxt

ctdt

dt

=

å

ò

. As a result, problem (2)

 can be finally represented in the following way:
(1)

-
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Proposition 2: 
The classic assignment problem of Beckmann can be formulated as a parameterized problem.

Proof: 



Defining an adequate parameterization xa  = xa (t) (a = 1, 2, ..., m, where 
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We observe that problem (6)

. As a result, to know the adequate integration path is equivalent to formulating a parameterized Beckman problem.
(5)

-(8)

 is equivalent to problem (7)

-
Proposition 3: 
By defining an adequate integration path, the resolution of the optimization problem defined in (2)

 provides an equilibrium consistent with Wardrop’s first principle.
(1)

-
Proof: 



Based on propositions 1 and 2 we observe that a parameterization exists (or some integration path) that allows problem (2)

 to be formulated as a classic Beckmann problem that satisfies Wardrop. In the following sections we show how to find the integration path that allows us to obtain the expected results (Wardrop).(1)

-
Nevertheless, instead of representing each variable as a function of t, as a result of the parameterization, it is also feasible to represent the cost function of each link ca as a function of its own flow fa, since the existence of an integration path provides (m - 1) relationships that allow this. In this case, the line integral can be represented in the following way:
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As a result, by knowing the adequate integration path P, problem (2)

 can also be represented in the following way:(1)

-
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2.2 Specification of the Integration Path and Resolution of the Parameterized Problem

As has already been mentioned, in order to determine the equilibrium flow vectors F* related to problem (2)

, it is necessary to know the “integration path” related to P between F0 (( and F(( that allows this problem to be parameterized. To do this, we must consider 2 suppositions:
(1)

-
i)

that the flow continuity and conservation constraints in the network are satisfied during the whole integration path.

ii)

if the flow conservation constraints do not allow the complete definition of the integration path (previous point i)), as will occur in almost all real cases, we will additionally suppose that the costs of specific routes (used or not) between different O/D pairs are constant (but unknown) during the whole integration path. The number of routes for which we will consider this supposition is such that we can completely define the integration path (added to the flow conservation equations). This supposition is thus considered for only a set of routes, and not for all.

Based on these two suppositions, it is feasible to define an integration path (which in our case corresponds to a curve in the m-dimensional space defined by m-1 variables) related to the field of flows P, to then directly resolve problem (2)

.
(1)

-
The suppositions presented in points (i) and (ii) generate a new region in the m-dimensional space which is more restrictive than (, since ( considers only the flow conservation equations. This new m dimensional space we will denominated as (.
It is important to consider that in a network with m one-way physical links and n nodes (considering that m  n), there will exist (n - 1) linear independent flow conservations equations. If all the links are two-way, there will actually exist 2m links and 2((n - 1) linear independent flow conservations equations. Nevertheless, if in a network there are simultaneously one-way and two-way links, the exact number of linear independent conservation equations will depend on the network topology.

As a result, we will define S as the number of linearly independent flow conservation equations in the network, m the total number of links (one-way and two-way) and n the total number of nodes.

In order to define the integration path in the m-dimensional space, we need (m - 1) flow relationships. Based on the flow conservations equations, it is feasible to define S relationships (S  m – 1), so we would still need [(m - 1) - S] relationships to parametrically define the integration path P between F0 (( and F((.

Nevertheless, it is known that in equilibrium, all routes (minimum or note) have constant costs; as a result and according to previous point (ii) it is feasible to explicitly consider this result in order to analytically determine the [(m - 1) - S] missing relationships to determine the integration path, and solve an equivalent optimization problem whose optimality conditions provide Wardrop’s first principle. Note that know we must satisfy that P (( between F0 (( and F((, where ( ( (.

We know show some examples to understand how this approach works.

Example 1: Consider the following network with asymmetric cost functions:
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Figure 4
In this example, 
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, and thus asymmetric interactions exist.

The traffic equilibrium in this case is given by the following equations (equal costs and flow conservation):

20 +f1 + f2 = 2 + 2f1 + 3f2
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f1 + f2 = 10
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The equilibrium values are:

 f1* = 2, f2* = 8, c1* = c2* = 30.
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According to the methodological approach proposed, the problem in the previous example can also be written in the following form:
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s.t.:

f1 + f2 = 10



()
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fi 
( 0
(i = 1, 2

(i)
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s.t.:

f1 + f2 = 10



()
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fi 
( 0
(i = 1, 2

(i)
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In this particular case, the integration path is completely defined by the flow conservation equation: f1 + f2 = 10, and as a result the integration path is a straight line in (2  defined by x1 + x2 = 10.  Then, problem (20)

 can be re-written as:
(19)

-
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s.t.:

f1 + f2 = 10



()
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fi 
( 0
(i = 1, 2

(i)
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The corresponding Lagrangean for problem (23)

 is:
(22)

-
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The first order conditions of (25)

 are:
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ifi = 0


(i = 1, 2
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fi ( 0



(i = 1, 2
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Solving the system of equations defined by (29)

 we obtain:
(28)

 and (27)

, (26)

, 
 f1* = 2, f2* = 8, * = 30, 1* = 0,
2* = 0
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Note that result (15)

. As a result, we obtain Wardrop’s traffic equilibrium.
(31)

 is identical to result 
Example 2a: Consider the following network with asymmetric cost functions:
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Figure 5
In this example, the Jacobian of the cost vector is asymmetric, as is shown next:
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The traffic equilibrium in this case is given by the following equations (equal costs and flow conservation):

(8 + 4f1 + f4) + (4 + 3f2 + 2f3) = 31 + 2f1 + f4
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(8 + 4f1 + f4) + (8 + 2f2 + f3) = 31 + 2f1 + f4
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f1 + f4 = 10
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f2 + f3 = f1
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The equilibrium values are:

 f1* = 4, f2* = 3, f3* = 1, f4* = 6, (c1* + c2*) = (c1* + c3*) = c4*  = 45
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The previous problem can also be written in the following way:
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s.t.:

f1 + f4 = 10




(1)
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f2 + f3 = f1




(2)
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fi 
( 0
(i = 1, 2
, 3

(i)
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In this particular case, the integration path is NOT completely defined by the flow conservation equation. A feasible route to be considered is the one composed by link 1 and link 2. As has been explained, any of the other routes can also be used, being careful enough not to generate linearly dependent relationships and that allow the problem to be effectively parameterized.
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Figure 6
As a result considering that c1 + c2 = c*, the following will be true

(8 + 4f1 + f4) + (4 + 3f2 + 2f3) = c*
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12 + 4f1 + 3f2 + 2f3 + f4 = c*
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As a result, the integration path in (4 is determined by the following relationships:

x1 + x4 = 10
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x2 + x3 = x1
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12 + 4x1 + 3x2 + 2x3 + x4 = c*
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Since by flow conservation the following must be satisfied f1 + f4 = 10 and f2 + f3 = f1, expression la (43)

 can be re-written as:

22 + 6f2 + 5f3 = c*
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From (47)

 we directly deduce that:

f2 = (c* - 22 - 5f3)/6

(


x2 = (c* - 22 – 5x3)/6
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f3 = (c* - 22 - 6f2)/5

(


x3 = (c* - 22 – 6x2)/5
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Finally, considering the flow conservation equations (40)

 can be re-written as:
(39)

 and (38)

, (49)

, problem (48)

 and (36)

, in addition to equations (35)

 and 
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s.t.:

f1 + f4 = 10





(1)
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f2 + f3 = f1





(2)
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fi 
( 0
(i = 1, 2
, 3, 4

(i)
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Simplifying (50)

, we obtain:
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s.t.:

f1 + f4 = 10





(1)
















 MACROBUTTON MTPlaceRef \* MERGEFORMAT (55)

f2 + f3 = f1





(2)
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fi 
( 0
(i = 1, 2
, 3, 4

(i)
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The first order conditions of this last problem are:
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ifi = 0


(i = 1, 2, 3, 4
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fi ( 0


 (i = 1, 2, 3, 4
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Optimality conditions (47)

, in order to obtain 11 equations and 11 unknowns. The resolution of this 11x11 system of equations provides the following 3 solutions (they all satisfy Wardrop):
(64)

 represent a system of 10 equations and 11 unknowns, since c* is still not defined. Nevertheless, it is feasible to include equation (58)

 to 
Table 1
Solutions to the System 

	f1
	f2
	f3
	f4
	1
	2
	c*
	1
	2
	3
	4
	Solución N°


	4
	3
	1
	6
	45
	15
	45
	0
	0
	0
	0
	1

	5
	0
	5
	5
	46
	13
	47
	0
	1
	0
	0
	2

	3.8
	3.8
	0
	6.2
	44.8
	15.4
	44.8
	0
	0
	0.2
	0
	3


Cost in links and routes for solution 1 (3 routes are used)

	Cost link 1
	30,0
	
	Route 1
	Link 1 + Link 3
	Cost
	45,0

	Cost link 2
	15,0
	
	Route 2
	Link 1 + Link 2
	Cost
	45,0

	Cost link 3
	15,0
	
	Route 3
	Link 4
	Cost
	45,0

	Cost link 4
	45,0
	
	
	
	
	
	


Cost in links and routes for solution 2 (only routes 1 and 3 are used)

	Cost link 1
	33,0
	
	Route 1
	Link 1 + Link 3
	Cost
	46,0

	Cost link 2
	14,0
	
	Route 2
	Link 1 + Link 2
	Cost
	47,0

	Cost link 3
	13,0
	
	Route 3
	Link 4
	Cost
	46,0

	Cost link 4
	46,0
	
	
	
	
	
	


Cost in links and routes for solution 3 (only routes 2 and 3 are used)

	Cost link 1
	29,4
	
	Route 1
	Link 1 + Link 3
	Cost
	45,0

	Cost link 2
	15,4
	
	Route 2
	Link 1 + Link 2
	Cost
	44,8

	Cost link 3
	15,6
	
	Route 3
	Link 4
	Cost
	44,8

	Cost link 4
	44,8
	
	
	
	
	
	


Note that the results of solution 1 correspond to those presented in expression (37)

. In this last example, although we obtain 3 different solutions, they all satisfy Wardrop.

Example 2b: considering the same network as in example 3a, but selecting another route to define the integration path (for example the route composed by link 4), it is feasible to obtain the same equilibrium conditions as in example 3a.
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Figure 7
As a result, considering that c4 = c* this will satisfy that:

31 + 2f1 + f4 = c*
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Thus, the integration path in (4 is determined by the following relationships:

x1 + x4 = 10
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x2 + x3 = x1


























 MACROBUTTON MTPlaceRef \* MERGEFORMAT (68)

31 + 2x1 + x4 = c*
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Considering equations (69)

, the equivalent optimization problem to be solved is the following:
(68)

 and (67)

, 
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s.t.:

f1 + f4 = 10





(1)
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f2 + f3 = f1





(2)
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fi 
( 0
(i = 1, 2
, 3, 4

(i)
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Applying the KKT conditions on this last problem, and also considering equation Table 1(66)

, we obtain the same solutions as those presented in  GOTOBUTTON ZEqnNum943252  \* MERGEFORMAT . On the other hand, if in order to define the integration path we would have chosen the route composed by links 1 and 3, the results would have been the same as those presented in Table 1.

As a result, different specifications for the integration path will exist that provide the same Wardrop equilibrium. Then, defining P1 (( as an integration path and P2 (( another integration path (between F0 (( and F((), and if the following is satisfied:
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then, we could say that P1 (( is a reparameterization
 of P2 ((, and thus P1 and P2 are different descriptions of the same geometric curve. This means that P2(t) = P1(h(t)), where h is a bisection with continuous first derivatives in the interval F0 (( and F((. Another way of stating this is that h changes the speed with which the point moves along its trajectory. In fact, note that P2’(t) = P1’ (h(t))·h’(t), and thus the speed vector of P2 is the same as P1 but multiplied by a scalar. In our case, the reparameterization conserves the orientations and trajectory of the integration (between F0 y F).

The description of the previous paragraph is relevant since if the image of a trajectory P can be represented in many ways, we want to be sure that the integrals over the vector field (as is our case) depend only on the curve of the image and not the parameterization used.

On the other hand, it is interesting to note that the integration path P (( defined in our case by the flow conservation constraints and constant costs on some routes, is a simple curve (that is, it does not cut itself), which eases the resolution of the line integral, since it allows us to select the most convenient reparameterization. In our case, it would correspond to selecting the routes with constant costs that are most easily manipulated algebraically. Additionally, it can be easily proven that:
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where P is a simple curve composed by various curves pi (i = 1, ..., k). One reason why to write this curve as the sum of components, is that it could be easier to parameterize each component pi individually than to parameterize P as a whole. As a result, if there are links in the network that depend on their own flow, the specification of the line integral and its respective parameterization can be carried out only for those links whose costs depend on their own flow and of other links.  

In Appendix 1 we show a similar network as in Figure 5, but with more complex cost functions, that depend on the flow of all links, obtaining once again a Wardrop solution by applying this methodology.  

3. SOLUTION METHOD AND PRACTICAL CONSIDERATIONS 

In section 3.1 we summarize the solution method already presented to solve the general traffic assignment problem with linear costs. In section 3.2, we present a series of aspects that must be taken into consideration in order to implement this method, that are of great use since they increase the efficiency and conceptualization of the process.

3.1 Solution Method

Step 0:

Define the network topology and the linear cost functions on each link. If there are m links and n nodes there will exist m flow variables (m  n). For the defined network, find the S flow conservation equations (m  S).

Step 1:

Formulate the general traffic assignment problem with multivariate functions as an optimization problem whose objective is represented by a line integral of the linear cost vector and the constraints correspond to the conservation and non-negativity of flows:
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s.t.:


( F((
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Step 2:

If F(( does not allow the problem to be parameterized, determine c = [(m – 1) – S] routes with constant costs in such a way that, added to the S  flow conservation equations defined by the network topology, we obtain (m – 1) flow relationships that allow the problem to be parameterized (P(() as a function of a unique reference variable and thus define the integration path; now this will satisfy that F((, where( ( (. 

Note that the [(m – 1) – S] relationships that are obtained from the routes can not be linearly dependent amongst each other, nor with the flow conservation equations; this is requirement so that the relationships that determine the integration path are specified correctly, avoiding that “parallel” functional forms exist. A practical alternative is to select the shortest paths between each O-D pair at free flow in such a way to define the [(m – 1) – S] necessary relationships, checking that there is no linear dependency and the problem is parameterized. Of the total c routes selected, each route i among each origin-destination pair w can be defined with its own cost (cwi)* as constant but unknown. Since the cost functions are linear, the problem can be parameterized easily using the rule of Kramer to clear and to solve linear systems of equations.
Step 3:

Based on the integration path determined in Step 2, define an equivalent optimization problem modifying the objective function that corresponds to the line integral 
(75)

. To accomplish this, the cost functions of each link must be defined as a function of its own flow, that is:  GOTOBUTTON ZEqnNum917544  \* MERGEFORMAT  ( a. Note that the relationships 
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s.t.:


( F ((
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Step 4:

Solve the parameterized optimization problem from Step 3 that includes as unknowns, in addition to variables fi ((i = 1, 2, ..., m), the costs cw* of the routes among different origin-destination pairs w as unknown but constant parameters. To do this, the optimality conditions of the equivalent problem must be stated (78)

, and add the c = [(m – 1) – S] additional relationships to determine the values fi*  ((i = 1, 2, ..., m) which provide the Wardrop equilibrium; then solve the system of (m + c) unknowns and (m + c) equations (we then obtain m flows and c costs).(77)

-
Step 5:

Normally we will obtain more than one solution that satisfies Wardrop, and thus a selection process must be defined.
3.2 Some Practical Considerations

i)

The integration path (parameterization) must include all the flow conservation equations that are linearly independent.

ii)

The selection of the different routes for the parameterization of the linear cost vector (specification of the integration path) must be carried out in a smart way, considering that no linear dependent relationships exist (neither among routes nor with the flow conservation equations) and that the cost vector be effectively parameterized. A practical recommendation is to select the relationships that are obtained from the shortest paths at free flow among different O-D pairs.

iii)

Only the linear cost functions that depend on their own flow as well as of flow on other links must be parameterized. The functions that depend on their own flow do not need to be parameterized. Thus, the selection of the c routes with constant costs must be consistent with the cost functions that require to be parameterized.

iv)

It is feasible that, when solving the problem, more than one solution exists that satisfies Wardrop. In such case, and as an example, a criterion could be to select the solution that provides the least total system cost.

4. THE NON LINEAR CASE

If the cost functions are non-linear, obtaining the integration path could be very difficult, or impossible. As an example, cost functions like 
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 make significantly difficult specifying an integration path according to the proposed methodology. In these cases, the application of the method described in section 3 might not be possible.

Nevertheless, specifying an integration path for some non linear cases is feasible possible as in the linear case.
Example 3: Consider the following network with non-linear and asymmetric costs:
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Figure 8
In this second example, the Jacobian of the cost vector is asymmetric, as is shown next:
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The traffic equilibrium in this case is given by the following equations (equal costs and flow conservation):

10 + (f1)2 + f2 = 34 + (f2)2 + f3
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10 + (f1)2 + f2 = 50 + (f3)2 + f1
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f1 + f2 + f3 = 10
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The equilibrium values are:

 f1* = 6, f2* = 4, f3* = 0, c1* = c2* = 50, c3* = 56















 MACROBUTTON MTPlaceRef \* MERGEFORMAT (83)

The previous problem can also be written in the following way:
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s.t.:

f1 + f2 + f3 = 10




()
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fi 
( 0
(i = 1, 2
, 3



(i)
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In this particular case, there exist m = 3 variables (f1, f2 y f3) and only one flow conservation equation (S = 1): f1 + f2 + f3 = 10, as a result the integration path is NOT directly defined by the flow conservation equation. As a result, in this case it is necessary to specify an (3-1) - 1 = 1 additional relationship to determine the integration path. As has been mentioned, this relationship is obtained considering the supposition presented in point (ii) above, based on the concept that in equilibrium the costs on all routes are constant (used or not used). For example, it is feasible to define the cost of the route composed by link 3 as constant:

50 + (f3)2 + f1
= c*
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where c* is constant but unknown. Note that it is feasible to define any route with a constant cost specific for said route (ci*), as long as it allows the problem to be parameterized. Then, based on (87)

 it is feasible to define the following integration path in (3:
(85)

 and 
x1 + x2 + x3 = 10


(


x2 + x3 = 10 - x1
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50 + (x3)2 + x1
= c*
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Based on relationships (89)

 we can easily deduce that: 
(88)

 and 
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Since f1 + f2 + f3 = 10, this satisfies that 
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. Then, from equation 
(91)

 we are interested only in relationship  GOTOBUTTON ZEqnNum786979  \* MERGEFORMAT , since it guarantees that 
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(90)

 also satisfies  GOTOBUTTON ZEqnNum395432  \* MERGEFORMAT , since the flows are always positive (xi ( 0). As a result, problem (85)

 can be written as: 
(84)

 and 
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s.t.:

f1 + f2 + f3 = 10




()
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fi 
( 0
(i = 1, 2
, 3



(i)
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The first order conditions for the previous problem are:


[image: image61.wmf]2*

1111

1

20500

L

ffcf

f

lb

¶

=+------=

¶


















 MACROBUTTON MTPlaceRef \* MERGEFORMAT (95)


[image: image62.wmf](

)

*

2

2

22

2

1460

34,50

2

xc

L

f

f

lb

---

¶

=+---=

¶
















 MACROBUTTON MTPlaceRef \* MERGEFORMAT (96)


[image: image63.wmf]*

3

3

0

L

c

f

lb

¶

=--=

¶


























 MACROBUTTON MTPlaceRef \* MERGEFORMAT (97)


[image: image64.wmf]123

100

L

fff

l

¶

=++-=

¶
























 MACROBUTTON MTPlaceRef \* MERGEFORMAT (98)

ifi = 0


(i = 1, 2, 3






















 MACROBUTTON MTPlaceRef \* MERGEFORMAT (99)

 fi
( 0


(i = 1, 2, 3
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The optimality conditions (87)

 define a system of 8 with 8 unknowns that provide the following results:
(98)

 and equation (95)

 to (87)

, we obtain the missing equation required to solve the system. Then, equations (99)

 define a system of 7 equations and 8 unknowns (f1, f2, f3, ,1, 2, 3, and c*). Nevertheless, by incorporating equation (98)

 and (97)

, (96)

, (95)

, 
 f1* = 6,  f2* = 4,  f3* = 0, c* = 56, * = 50, 1* = 0, 2* = 0, 3* =  6
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Note that solution Figure 8(83)

. As a result, we obtain the traffic equilibrium. We must note that any of the 3 alternative routes in the network of (101)

 is the same as  GOTOBUTTON ZEqnNum906697  \* MERGEFORMAT  (links 1, 2 or 3) is feasible to be used to resolve the problem, always providing the same Wardrop equilibrium (see the following examples 3a and 3b); the only fact that must be considered is that the (m – 1) relationships that define the integration path should be linearly independent.

5. CONCLUSIONS

In this paper we presented a generalized approach to formulate and solve any type of deterministic traffic assignment problem with linear cost functions. Among these problems, we also include the multivariate and asymmetric cost function cases. This approach can be considered an alternative to the diagonalization method.
The first conclusion that can be obtained is that any deterministic traffic assignment problem with linear cost functions can be stated as an optimization problem in which the objective function can be stated as a line integral defined by the cost vector, and whose constraints correspond to the flow conservation equations and flow non-negativity.

A second conclusion is that, by adequately specifying the integration path, the line integral of the objective function of the generalized traffic equilibrium problem can be transformed into a defined integral, whose optimality conditions satisfy Wardrop’s first principle. As was shown in this paper, the proposed approach was implemented in hundreds of different cases (See examples in Appendices), always obtaining satisfactory results.

The authors are currently working on the following extensions to this paper:

i. Validating this method for a large size network with multiple O-D pairs.

ii. Comparing the proposed method with the diagonalizacion method for large networks.

iii. Extending this methodology to the generalized traffic assignment problem with multiple user classes.

iv. Integrating this methodology with combined models including Distribution, Mode Choice and Assignment.
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APPENDIX
Analysis of Example 3 Modifying the Parameters

The network analyzed in this case is the following:
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The general formulation of this problem is as follows:
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The integration path will be defined in this case by the route composed by link 4 and the flow conservation equations:
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Then, the equivalent optimization problem would be:
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Considering the KKT conditions on this last problem, and adding the equations of constant costs of the route composed by link number four, provides the following system of equations:
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In this case the solution is unique, and effectively satisfies Wardrop:

Solutions of the System

	f1
	f2
	f3
	f4
	1
	2
	c*
	1
	2
	3
	4
	Solution N°

	1,11
	1,083
	0,027
	8,88
	44,94
	22,5
	44,94
	0
	0
	0
	0
	1


Cost on links and routes for solution 1 (the 3 routes are used)

	Cost link 1
	22,44
	
	Route 1
	Link 1 + Link 3
	Cost
	44,94

	Cost link 2
	22,50
	
	Route 2
	Link 1 + Link 2
	Cost
	44,94

	Cost link 3
	22,50
	
	Route 3
	Link 4
	Cost
	44,94

	Cost link 4
	44,94
	
	
	
	
	
	


We observe in this example that, in equilibrium, the 3 routes are used.


































































































































































































































































































































� 	The definition of reparametrization can be referenced in many vector calculus books. 
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