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Abstract.
In this paper a Generalized Least Square estimator for the simultaneous path choice model parameters calibration and O-D matrix estimation is presented. We assume as available information a set of link traffic counts, a starting estimate of the unknown parameters and of the O-D travel demand vector. The problem is formulated as fixed-point model (equilibrium programming) assuming the congested network case, the variability of both O-D demand vector and the matrix of link choice probabilities. Along the paper, the theoretical aspects of the proposed estimator as well as numerical results of numerical applications are described. 
1.  Introduction
Estimation of link traffic flows provides transportation planners with important information for traffic network design and control. For this reason, many researchers have been addressing their study to define more and more sophisticated and effective traffic assignment models. 

Nevertheless, traffic assignment models reliability and effectiveness depend on other important issues to be faced such as Origin–Destination (O-D) travel demand, network supply model and Path Choice Model (PCM), that is the core of traffic assignment model. Consequently, other important related problems in traffic modelling are O-D matrix estimation and the calibration of PCM coefficients that can usually be solved by methods requiring very expensive and time consuming surveys. High costs of disaggregate surveys can be an obstacle to apply traditional and well known methodologies, especially for little or medium sized town whose budget is very modest. 

Effective and theoretically consistent methodologies have been proposed to calibrate the parameters of traffic demand models or to estimate O-D matrices by using aggregate data such as traffic counts and/or O-D demand counts. The use of aggregate information derived from traffic counts (TC) is very attractive because they are cheap, easy and immediate data to collect.
Few works presented in literature concern calibration of trip distribution and/or modal choice models.

In Cascetta, (1986), Cascetta and Russo, (1997) and in Ottomanelli (2001), the problem of calibrating systems of travel demand models (four step model) using traffic counts with Generalized Least Square (GLS) Estimators is discussed.
In Ottomanelli and Di Gangi (2002), with respect to real sized network, the statistical performance of Generalized Least Square Estimators is analysed deeply. Even less are the works dealing with path choice models calibration, especially for joint calibration with O-D matrix.
In this field, Ottomanelli and Di Gangi (2000) propose an aggregate calibration of PCM using traffic counts, but without O-D calibration with a fixed point and bi-level approach; Russo and Vitetta (2004) develop a jointly update of O-D matrix, demand model parameters and link cost functions using TC.
Cascetta and Postorino (2001) propose a fixed point approach to solve the O-D matrix estimation problem using a GLS estimator.

In Liu and Fricker (1996) a sequential iterative method to estimate the O-D matrix and the parameter of the Logit model is presented. Yang et al. (2001) improved the methods (Liu and Fricker, 1996) approach by facing the problem considering the congested network case, introducing the cost function calibration problem in the Stochastic User Equilibrium (SUE) traffic assignment. Lo and Chan (2003) present a maximum likelihood estimator for the simultaneous calibration of the O-D matrix and the parameter of the multinomial Logit path choice model. 
In this paper a Generalized Least Square (GLS) estimator to solve the simultaneous PCM calibration and O-D matrix estimation based on traffic counts is presented. The problem has been formulated as fixed-point model (equilibrium programming) assuming the assignment matrix as a variable into the optimization steps as well as the O-D matrix. A heuristic algorithm based on the method of successive averages is also presented to solve the optimization problem. 

The algorithm has been applied to a test network and the statistical performances of the proposed method (estimator) are investigated, discussed and compared with results from similar methods.
2. The proposed calibration model
In this work the calibration problem has been stated for probabilistic PCM assuming the case of  congested networks. Consequent traffic assignment model is the Stochastic User Equilibrium (SUE) (Cantarella, 1997).

User’s path choice behaviour is modelled by PCM, usually  on the basis of random utility theory (RU) (Domenicich and McFadden, 1975).
RU theory estimates the probability pk that a user i chooses the path k belonging to his/her path choice set Ii.

The simplest and more applied model to specify the probability pk that user chooses the path k is the Multinomial Logit model; this model assumes the distribution of random residual term as a Gumbel variate with parameter ( that leads to the following PCM formulation:
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where Ck is a linear function of path cost attributes Xw and parameters (w:

( Ck = ((w(wXw = ( (TkXk            (k(Ii
In general, let ( ( ((, () and assumed X fixed, the PCM is a function of  (:
p = p((, () = p (()
The vector ( has to be estimated by using a model calibration procedure.

The aim of this paper is to calibrate simultaneously the ( parameter of PCM and the O-D matrix using traffic counts assuming the congested network case. 

The most general form to solve the estimation of  O-D matrix using traffic counts can be formulated as an optimization problem (Cascetta, 1986; Cascetta and Nguyen, 1988; Cascetta and Postorino, 2001; Yang et al., 2001):
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where: 

· Sd is the feasible solution set to the problem; 

· F1 and F2 are, respectively, measures of the “distance” between the starting estimate 
[image: image3.wmf]d

(target demand vector) and the unknown vector d and between estimated link flows vector f and traffic counts vector 
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f

;

· H = Ap(() = (al,k pk( ={ hl,od } is the assignment matrix (l =link index, od = OD couple index);

· A = (al,k( is the link-path incidence matrix;
· f = H d   with entries fl = (odhl,oddod;

· d={ dod }  is the OD travel demand vector.
According with this approach the formulation proposed to calibrate also the distribution parameter is:
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(1)
where: 

· St is the feasible solution set for ( parameter;

· F3 is measure of the “distance” between the starting estimate
[image: image6.wmf]θ

(target Logit parameter) and the unknown value (.

The problem (1) can be represented as a bi-level programming problem or as a fixed point formulation (Ottomanelli and Di Gangi, 2000).

In this paper the calibration problem is solved using a fixed point formulation (equilibrium programming):
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(2)

The distances F1, F2 and F3 can be defined following different statistical approaches and assumptions. In this work the Generalized Least Square (GLS) estimator has been assumed because it is robust and it is the most efficient linear unbiased estimator (Cascetta and Nguyen, 1988). 

For the GLS estimator the measure of distance assume the form of a weighted Euclidean metrics; then the (2) becomes:
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 (3)
where W and V are the variance-covariance matrices of the error for the target demand vector and for the link flows, respectively;  Q is the variance of the error of ( parameter.

W , V and Q represent the weights of the available information that can be interpreted as the level of confidence (or the reliability) in the available starting data. 
In general, these optimization problems are solved with algorithms assuming the assignment matrix H as fixed into the whole procedure (Cascetta and Nguyen, 1988; Cascetta and Russo, 1997; Ottomanelli, 2001; Ottomanelli and Di Gangi, 2002). This procedure is suitable when the link cost are known or the network is not congested.

Considering a congested network, user's choice is affected by the congestion since link flows and link costs are mutually dependent. For this reason it is necessary to consider, in PCM and O-D calibration problem, the effects due to congestion on link flow estimation too. For instance,  Cascetta and Postorino (2001) solve this problem fixing a new assignment matrix for each iteration but in the optimization step matrix H is a fixed constant.
As it will be highlighted, in the proposed method, assignment matrix is assumed varying also within each optimization step.
3. Algorithm for problem solution

In this section we propose a resolution for the simultaneous calibration algorithm using GLS estimator and stochastic assignment model (SUE). We consider, as variables, O-D demand vector  and ( parameter of  Logit model. So, assignment matrix will be variable too.
Step 0
Initialization:  k = 0

Choice of the initial demand vector: d0  = 
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Choice of the initial value of theta: (0  =  
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Step 1
Update k = k + 1
Step 2
Solve the optimization problem:
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with 
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 (SUE – Logit assignment problem is solved with MSA-FA algorithm: Method of Successive Averages – Flow Averaging).
The feasible set for  is:  0. The more theta tends to zero, the more the path choice probabilities becomes equal. The more theta increases, the more the path choice model becomes deterministic.
Optimization is solved by using the SQP algorithm (Sequential Quadratic Programming).
Starting point of the optimization algorithm (SQP) : 
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For k = 1 starting point of optimization
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is fixed a priori.

Step 3
Stop test on maximum relative difference between demand vector elements obtained in Step 2 and demand vector elements of previous iteration:
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If the test is satisfied the algorithm ends otherwise go to Step 4.

Step 4
Filtering the demand vector and ( (optimization new starting point):
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go to Step 1.

4. Numerical application 
The following application aims to test numerically the performances of the algorithm proposed in the previous section. 

The network and data considered by Yang et al. (2001) are used as our test network and data, since the problem formulation is similar to the one they propose. The considered network has 9 nodes (3 origin centroids  and 3 destination centroids), and 14 links as depicted  in Figure 1. 
Figure 1 – here

A set of 5 traffic counts has been considered (links: 6, 9, 10, 11 and 13). The (4) is an expression of cost function (namely, the BPR function) where free flow travel time (tr) and capacity (ca) vary link by link as shown in Table 1. 
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(4)
The “true” value of the Logit parameter is fixed to 1.5. The “true” O-D matrix has been rearranged with demand vector in Table 2. 

The “true” value of link flows has been generated by SUE-Logit traffic network assignment of the assumed true O-D matrix and with the true value of  . 
Target vector of demand 
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, measured flows vector 
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f

 and theta target value
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 were obtained, starting from true values 
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, through random extractions from a normal distribution.
As many authors suggest, (Cascetta, 1986, Cascetta and Russo, 1997, Russo and Vitetta, 2004) the variance-covariance matrices W (for demand) and V (for flows) can be assumed diagonal. For the link flows it could be possible to obtain the variances through the expression proposed by Cascetta (2001).

Let d, f and be the true values of the demand vector, flows vector and Logit parameter respectively; the relevant values of variances have been computed through the following expressions:
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The traffic assignment model used is a SUE–Logit and the relevant Logit PCM is given by the well known formula: 
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where Ck  represents relevant costs to the path k  and θ the model parameter to be calibrated..
The paths choice set Iod is constituted of all the possible paths of the considered network.
The algorithm was applied on test network with  = 0.001 as stop test for calibration algorithm and for MSA-FA. 
We analyze the convexity of objective function with respect to theta, simplifying the problem putting 
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 and 
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 in (3) (distance function in relation to the demand and to theta become equal to zero). 
To evaluate the incidence of variation coefficients  (or reliability of starting data) on estimated values, numeric application has been led considering all the combinations between the values of variation coefficients in relation to the demand and theta parameter (see Table 3). For the flows, instead, we consider only one value of variation coefficient equal to cvf = 0.05. We consider a low value for flows variation coefficient because we give high reliability to traffic counts.

Similarly to what Cascetta and Postorino (2001) proposed, numeric analysis has been made considering 30 demand target vectors, 30 measured flows vectors and 30 target values of Logit parameter for each combination of variation coefficients. 
For all the combination of variation coefficients the starting point for SQP optimization algorithm (Step 2) for the first iteration (k = 1) is fixed far from true values (see Table 4).

In order to verify  the sensitiveness of the method we have also carried out : 
· calibrations with different starting point algorithm; 
· calibrations with theta target value very different from true value;
· calibrations with different demand levels (starting from the true demand (Table 2)) multiplying it for 2, for 5 and for 10.
To evaluate the statistical performances of the proposed method the following indicators have been used:
1) Mean Square Error (MSE) of target demand 
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in comparison to true demand 
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 that we named MSE target demand:
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with NO-D equal to the number of O-D couples.

2) MSE of demand obtained at the first iteration 
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 in comparison to true demand 
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 that we named MSE first iteration demand:
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3) MSE of estimated demand 
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4) Relative Root Mean Square Error (RRMSE) 
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The closer to zero the value of RRMSE is, the closer the values are to the true one.

5) Improvement of estimated vector in comparison to the target in relation to MSE and to RRMSE (percentage of reduction):
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The closer to 100 the value of  %red is, the closer the values are to the target one.
6) In the same way we have obtained the same indicators for link flows where we did counts (fc) and for link flows where we did not do any counts (that is hold-out sample) (fhos).
7) Reduction of Objective Function (OF) value in percentage :
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8) The percentage differences between the values of MSE obtained assuming the reference starting point and the MSE values obtained assuming all the other starting points.  With respect to the demand vector estimation this indicator is specified as follows:
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5. Comparison with other methods
The proposed method is here compared with the methods by Yang et al. (2001) and by Lo and Chan  (2003) since they have the same aim  and data set. 

The work by Yang et al. (2001) is also based on the problem formulation we give in the section 3:
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where  the distance functions F1 and F2 can be specified in different ways, such as by a weighted Euclidean distance function (Cascetta, 2001).
In the work by Yang et al., (2001) the weighted Euclidean distance function is used assuming a unit weighting matrices:
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In order to carry on the comparison we have specified our estimator according to the their assumptions, that is by assuming a unit weighting matrices.
Starting from the same input data (i.e. network, link costs, target demand vector and observed link flows) we assume a target value for the path choice model 
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 = 1.3.
Lo and Chan (2003) assume a maximum likelihood objective function, that is: 
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For the application of our method, we considered the same input data (see Table 5), that are  “true” value of the Logit parameter, the demand vectors (true and target) as well as the starting point of the optimization algorithm. The network is depicted in Figure 2 where the link cost cl are computed through the following expression:
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where fl is the flow on the link l . 
Figure 2 – here

As it regards the target value of the parameter, we assume 
[image: image49.wmf]θ

 = 0.3 with  cvtheta = 0.4 (actually, such data are not necessary in the method by Lo and Chan, 2003 ). As far as the link flows are concerned, Lo and Chan  in their numerical application assume the observed flows equal to the true ones; in our case we determined a set of traffic counts assuming a coefficient of variation cvf = 0.05 (Table 5). 
In order to evaluate the statistical performances of their method, Lo and Chan use Root Mean Square Error (RMSE) as reported below: 
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6. Results analysis

As far as the convexity of objective function respect to theta is concerned, in simplified case, we made the analysis for four different levels of target demand (Table 6). We noticed that in a local way the minimum of objective function is obtained for theta values near true value (Figure 3). 
Figure 3 – here

Calibration algorithm converges to results very similar to final results since the first iteration. So, statistic indicators relative to first iteration are very close to indicators relative to estimated values; for this reason, later we will not relate indicators relative to the first iteration.

Optimization algorithm convergence (Step 2) is shown with respect to the objective function value (Figure 4) and to the parameter theta (Figure 5). These graphs are relevant to the variation coefficient values: cvd=0.6, cvtheta=0.3 and cvf = 0.05.
Figure 4 and Figure 5 – here
For each combination of variation coefficients we obtain 30 different estimates. Only for this analysis (different combination of variation coefficients) the considerations and results related are relative to the obtained mean values. 
In general, we observe that the worst values of MSE and RRMSE indicators are obtained for higher values of the variation coefficient. Conversely, the best results are obtained for lower values of the variation coefficients.

The demand estimation performances depend on the quality of the target demand vector while the starting value of the target value of theta does not affect the demand estimation performances. In fact, as shown in Figure 6 and Figure 7, the value of MSE(d*,d) increases as function as cvd. Conversely, for a fixed value of the cvd, the variation of cvtheta produces negligible variation of MSE(d*,d).
Figure 6 and Figure 7 – here

On the contrary, the estimation performances relevant to link flows decrease as cvd and/or cvtheta increase. The estimation result relevant to the validation link set (hold-out sample) is reported in Figure 8. 
Figure 8 – here

The estimation performances relevant to the traffic counts used in the calibration procedure are naturally better and do not depend on the values of cv.
As far as the estimation of the parameter ( (i.e. (*) is concerned, we obtained values that always tend to the true (see Figure 9). As reported in Figure 10, it has to be highlighted that for low values of  cvtheta with the proposed method we obtain estimated values very close to the true value of ( (say, between 1.51 and 1.54). Actually, even if cvtheta increases, the value of the estimated parameter is close to the true one, that is the average value of the estimated ( is between 1.38 and 1.62 (Figure 10).
Figure 9 and Figure 10 – here
Also the percentage of reduction for the objective function is always high, in fact it is always more than 64% and it tends to 100% as cvd increases.
We have also investigated the effect of the SQP algorithm (Step 2) starting point (
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) on the final estimation performances. To this purpose, we carried on many calibrations assuming ten different (
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) starting points (see Table 7). The first used starting point is the same from the previous analysis; it has been assumed as reference starting point. The target values and traffic counts were obtained assuming cvd=0.6, cvtheta=0.3 and  cvf=0.05. The results of this investigation show that the starting point affects just slightly the estimation performance (0.1% - 0.8%). 
In addition, we have also analysed the robustness of the method by assuming target values of theta (
[image: image54.wmf]θ

) very far from the true value. We considered three values of theta target:   
[image: image55.wmf](1)(2)(3)

θ = 4 ,  θ = 5 ,   θ = 6

. Thus, we defined a target demand vector and a traffic counts set by assuming cvd=0.6 and cvf =0.05, respectively; according to the assumption (unreliable value of the parameter) we considered a cvtheta=1.0 for computing the weight. Some of the obtained results are summarized in Figure 11. 
Figure 11 – here

It can be observed that also in this case the obtained results are in line with the ones attained assuming a target value of theta closer to the true one. As Figure 12 shows, for all the assumed target values of theta the corresponding final estimated values are anyway close to the true one.
Figure 12 – here
Finally, we have studied the robustness/sensitivity of the calibration method with respect to the variation of O-D demand level. Thus, we have carried on various simulations assuming three different true travel demand vectors (O-D tables) that have been obtained by increasing two, five and ten times  the true demand vector used in the previous analysis. Also in this case the target vectors have been generated assuming cvd = 0.6 , cvtheta = 0.3  and cvf = 0.05. Because of the capacity of the links we considered the linear approximation of the BPR cost function (4) starting from the 95% of the link capacity value. The statistical performances of the proposed estimator are very similar to the ones obtained with lower demand level (see Figure 13 and Figure 14). The estimated value of theta varies between 1.37 and  1.40.
Figure 13 and Figure 14 - here

As far as the comparison with the other methods is concerned, both in our and in Yang's methods a worsening for the estimated demand with respect to the starting one occurs, while there is an improvement with respect to the estimation of the link flow as reported in Table 8. It has to be mentioned that the proposed method as well as the solution algorithm leads to better results.
 The proposed method leads to more relevant improvement if compared with the method by Lo and Chan, 2003 as summarized in Table 9. In particular, the proposed gives for the link flows estimation (Table 9) a value of the estimated theta closer to the true one even if, in our method, we assume traffic counts different from the true ones. 
7. Conclusion and further research
In many professional applications, O-D matrix estimation and link flow simulation are carried out without giving the proper importance to the traffic model parameters. In fact, usually, such parameters are assumed “a priori” on the basis of subjective knowledge or assuming calibration results obtained in different study areas.

In this work, a GLS estimator with fixed-point formulation is proposed with two solving algorithms that allow to estimate simultaneously and consistently the SUE-Logit assignment model parameters and the O-D matrix by using a set of available traffic counts. 

The application of the proposed estimator to a test network has shown the effectiveness and robustness of the approach that is able to reduce the bias induced on the considered traffic variables. Such  results have been obtained without using expensive and time consuming data and computing effort, providing a method that should be helpful for practical application when limited resources for data collecting are available.

With respect to other similar methods, the formulation here proposed allows to use, as input data, existing estimates of model parameters as well as of demand and traffic counts. It also allows to explicitly take into account the analyst's level of confidence (say data reliability) in the assumed starting data by weighting the distances between starting and final estimates using variance - covariance matrices. 
Further investigation are needed and are actually on going in order to take into account the different  magnitude of the GLS theta term with respect to the other two (demand and link flows). We have found out in current analysis that introducing in the GLS formulation a magnitude-weight coefficient for the theta term an additional improvement of the calibration performances can be achieved. Such a coefficient is not a fixed number but it has to vary as the differences between target and estimated values tend to be small for all the three GLS terms

The numerical analysis has shown that the method is effective and robust with respect to different tests and working assumptions. Small networks have been chosen in order to compare our results with other authors’ (Yang et al., 2001); however, the robustness/sensitivity of the calibration method has been tested for different and growing O-D demand level. The results obtained on real networks by other authors (Ottomanelli, 2001; Ottomanelli and Di Gangi, 2002) for similar problem induce to be confident in achieving good results also with the proposed approach. So that, application to more extended network will be a further step. In addition, the effect of the selection of traffic counts to be used in calibration is under investigation, as well as the improvement of the proposed algorithms.
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Table 1. Free-flow travel times and capacity of links 
	link l
	Free flow travel time (tr)
	Capacity (ca)

	1
	2.00
	280

	2
	1.50
	290

	3
	3.00
	280

	4
	1.00
	280

	5
	1.00
	600

	6
	2.00
	300

	7
	2.00
	500

	8
	1.00
	400

	9
	1.50
	500

	10
	1.00
	700

	11
	2.00
	250

	12
	1.00
	300

	13
	1.00
	350

	14
	1.00
	220


Table 2. “True” O-D vector
	O-D
	d (true)

	1-6
	120

	1-8
	150

	1-9
	100

	2-6
	130

	2-8
	200

	2-9
	90

	4-6
	80

	4-8
	180

	4-9
	110


Table 3. Coefficients of variation assumed in the study
	cvd
	0.1
	0.2
	0.3
	0.4
	0.5
	0.6
	0.7
	0.8

	cvtheta
	0.1
	0.2
	0.3
	0.4
	0.5


Table 4. Starting point of the first optimization 

	O-D
	
[image: image56.wmf]1

d

%


	
	
[image: image57.wmf]1

θ

%



	1-6
	30
	
	14

	1-8
	10
	
	

	1-9
	20
	
	

	2-6
	30
	
	

	2-8
	30
	
	

	2-9
	30
	
	

	4-6
	30
	
	

	4-8
	40
	
	

	4-9
	20
	
	


Table 5. Input data for the comparison with Lo and Chan’s Method
	
	d true
	d target
	
[image: image58.wmf]1

d

%

 
(starting point)

	d1-3
	500
	530
	250

	d1-4
	250
	280
	125

	d1-6
	250
	260
	125

	d3-1
	500
	530
	250

	d3-4
	250
	260
	125

	d3-6
	250
	180
	125

	d4-1
	250
	250
	125

	d4-3
	500
	420
	250

	d4-6
	250
	260
	125

	d6-1
	500
	540
	250

	d6-3
	250
	220
	125

	d6-4
	250
	270
	125

	

	( true
	0.2

	( starting point
	1.5

	cvd
	0.1

	

	link
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	1
	752,67

	4
	710,53

	6
	565,14

	7
	712,96

	10
	719,3

	11
	652,16

	14
	612,12


	d
	(25)
	(50)
	(100)
	(200)

	1-6
	25
	50
	100
	200

	1-8
	25
	50
	100
	200

	1-9
	25
	50
	100
	200

	2-6
	25
	50
	100
	200

	2-8
	25
	50
	100
	200

	2-9
	25
	50
	100
	200

	4-6
	25
	50
	100
	200

	4-8
	25
	50
	100
	200

	4-9
	25
	50
	100
	200


Table 6. Demand vectors with different demand level
Table 7. Initial points for the SQP algorithm

	
	Value for initial point 1
	Value for initial point 2
	Value for initial point 3
	Value for initial point 4
	Value for initial point 5
	Value for initial point 6
	Value for initial point 7
	Value for initial point 8
	Value for initial point 9
	Value for initial point 10

	d1-6
	30
	25
	50
	75
	100
	125
	150
	175
	200
	225

	d1-8
	10
	25
	50
	75
	100
	125
	150
	175
	200
	225

	d1-9
	20
	25
	50
	75
	100
	125
	150
	175
	200
	225

	d2-6
	30
	25
	50
	75
	100
	125
	150
	175
	200
	225

	d2-8
	30
	25
	50
	75
	100
	125
	150
	175
	200
	225

	d2-9
	30
	25
	50
	75
	100
	125
	150
	175
	200
	225

	d4-6
	30
	25
	50
	75
	100
	125
	150
	175
	200
	225

	d4-8
	40
	25
	50
	75
	100
	125
	150
	175
	200
	225

	d4-9
	20
	25
	50
	75
	100
	125
	150
	175
	200
	225

	

	theta
	14
	1
	10
	5
	20
	15
	7
	18
	2
	0.50


Table 8. Statistical indicators comparison (Yang et al. Method)
	
	Demand
	Flows - hold-out sample

	
	MSE target
	MSE estimated
	MSE target
	MSE estimated

	Yang et al.
	636.11
	755.19
	223.34
	161.46

	Our results
	636.11
	715.63
	223.34
	153.61


Table 9. Statistical indicators  comparison and results for Lo and Chan’s Method
	
	RMSE estimated (demand)
	RMSE estimated (flows)
	Theta target
	Theta estimated

	Lo and Chan
	~ 30
	~ 32
	-
	0.223

	Our results
	32.3
	22.2
	0.3
	0.191


Figure 1. Test network (Yang et al., 2001).
Figure 2. Network used by Lo and Chan (2003). 
Figure 3. Curves of the objective function versus Theta at four alternative levels of demand.
Figure 4. Convergence of the optimization algorithm (objective function).

Figure 5. Convergence of the optimization algorithm (theta).
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Figure 9. Theta estimated 
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Figure 10. Theta estimated 
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Figure 11. RRMSE (demand) for different theta target values.

Figure 12. Theta target – theta first iteration – theta estimated.
Figure 13. RRMSE (demand) for different true demand levels.

Figure 14. RRMSE (flows – hold-out sample) for different true demand levels.
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