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Abstract
Microscopic simulation models have become widely applied tools in traffic engineering. Nevertheless, parameter identification of these models remains a difficult task. This is for one caused by the fact that parameters are generally not directly observable from common traffic data, but also due to the lack of reliable statistical estimation techniques.

This paper puts forward a new general approach to identifying parameters of car-following models. The main contribution of the paper is that the approach allows for inclusion of prior information on the parameter values (or the valid range of values) to be estimated. Furthermore, it correctly deals with the serial correlation in the trajectory data. The newly developed approach generalizes the Maximum Likelihood estimation approach pro-posed by the authors, enabling identification of driver-specific car-following parameters using vehicle trajectory data. The approach allows for statistical analysis of the model estimates, including the standard error of the parameter estimates and the correlation of the estimates. Also, we can easily test whether a specific model outperforms the other models using the likelihood-ratio test. A nice property of this test is that it takes into account the number of parameters of a model as well as the performance. To illustrate the workings, the approach is applied to two car-following models of different complexity using vehicle trajectories for a Dutch motorway collected from a helicopter.
Keywords: car-following models, calibration, prior information

Introduction

With increasing computation power, microscopic simulation models have become widely applied tools for numerous applications in traffic engineering. Parameter identification remains one of the difficult tasks when using these microscopic traffic flow models. The reasons for this are manifold, e.g. parameters are not directly observable from common traffic data, they are not transferable to other situations (different locations, periods of the day, etc.), real driving behavior is variable in time and space, etc. Several approaches to structured model calibration using macroscopic and in some cases microscopic traffic data have been proposed. 

For the sake of illustration, let us consider two examples of automated approaches to model calibration. Brockfeld et al (2004) cross-compare different microscopic traffic flow models using data from car-following experiments. The error rates of the different models in comparison to the data varied between 9 and 24 %, for validation between 12 and 30%. No single model appeared to be significantly better than the others (even the more complex ones). The authors argued that these errors could probably not be suppressed, irrespective of the model that is used, due to the different behavior of each driver, which is in line with the results that will be presented in this contribution. Shultz and Rilett (2004) proposed a methodology to introduce and calibrate a parameter distribution using measures of central tendency and dispersion (i.e., mean and variance) to generate input parameters for car-following sensitivity factors in microscopic traffic simulation models. The approach is applied to IH-10 in Houston, Texas using the CORSIM model, and subsequently calibrated utilizing an automated genetic algorithm. An overview of calibration approaches as well as parameter values is found in (Brackstone and McDonald,1999). 

The main contribution of the paper is that the approach allows for inclusion of prior information on the parameter values (or the valid range of values) to be estimated. Furthermore, it correctly deals with the serial correlation in the trajectory data. The newly developed approach generalizes the Maximum Likelihood estimation approach proposed by the authors, enabling identification of driver-specific car-following parameters using vehicle trajectory data. The approach allows for statistical analysis of the model estimates, including the standard error of the parameter estimates and the correlation of the estimates. Also, we can easily test whether a specific model outperforms the other models using the likelihood-ratio test. A nice property of this test is that it takes into account the number of parameters of a model as well as the performance.
Car-following modeling 

A microscopic model provides a description of the movements of individual vehicles. These movements are the result of the characteristics of drivers and vehicles, the interactions between drivers, and between the driver and road characteristics, external conditions and the traffic regulations and control. In general, two types of driver tasks are distinguished: longitudinal tasks (acceleration, maintaining speed, distance-keeping relative to leading vehicle) and lateral tasks (lane changing, overtaking). This contribution considers the former. 

The term car-following model is used here for the general class of dynamic microscopic models describing the longitudinal behavior of a driver in relation to the driver(s) in front. Driver i, following driver i+1, may for instance react on (changes in) the spacing si between the vehicles, or his or her relative speed. Many models have been proposed to describe this longitudinal behavior. It is beyond the scope of this contribution to provide a comprehensive overview of all models. Rather, in this contribution only a small selection of models will be considered, which are described in the ensuring of the section. The proposed parameter identification approach is however generally applicable, given that sufficient data is available. 
1.1 Linear Helly model

The linear Helly (Helly,1959) model is a so-called stimulus-response model, where the delayed response (the acceleration) is a linear function of the distance si(t) and the relative speed vi(t) of the leader and the follower:
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In Eq. (1)

, s* denotes the desired distance between the leader and the follower as a function of the current driving speed of the follower. In the remainder, we use the following linear expression:
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Thus, for the Helly model, the five parameters to be estimated are:


( :
the maximum acceleration (m/s2)


( : 
the maximum deceleration (m/s2)


Tr :
the reaction time (s)
s0 :
the stopping distance (m)

T :
minimum time headway(s)

For the Helly model, the vector 
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 is used to indicate the parameters describing the behavior of driver i.

1.2 Ideal Driver Model (IDM)

The IDM (Treiber et al,2006) describes the acceleration of driver i as a function of the distance si(t), speed vi(t) and the relative speed vi(t):
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where the desired gap s* is given by:
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The five parameters to be estimated are:


a :
the maximum acceleration (m/s2)


b : 
the maximum deceleration (m/s2)


v0 :
the free speed (m/s)

T :
minimum time headway(s)

s0 :
the stopping distance (m)

For the IDM, the vector 
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 is used to indicate the parameters describing the behavior of driver i. 

Trajectory data

The vehicle trajectory data used here was collected using a new data collection approach (Hoogendoorn and Van Zuylen,2004) using an air-borne observation platform (a helicopter), mounted with a high-frequency digital camera and frame grabber. Using image processing software, the vehicles are detected and tracked as they move along the roadway. This yields trajectory data covering approximately 500 m of motorway stretch; the spatial resolution is smaller than 40 cm, while the temporal resolution is 0.1 s. Besides the trajectories of all vehicles present, the system also determines the vehicles’ lengths and widths. Vehicles driving in both roadway directions were detected and tracked. Only one driving direction is considered here. The dataset was collected at the A2 motorway near the Dutch city of Utrecht and is characterized by congested flow conditions. Figure 1 shows a sample from the dataset.
[image: image7.wmf]
Figure 1 Sample of vehicle trajectories for data collected at A2 site. The small dots represent time instants which are 2.5 second apart; data is collected at a temporal resolution of 0.1 s.

Approach to parameter identification with and without prior information
Let us assume that for each driver, we have an observed trajectory (observed position xi at time instants tk) and (consequently) observed speeds vi (e.g. collected via the approach described briefly in the previous section). These data are used to estimate the parameters (i of the car-following model for each observed driver i. 

1.3 Maximum Likelihood estimation

The unknown parameters (i of the considered car-following model are estimated by minimization of the likelihood of the observed speeds vobs(tk) of a driver at instants tk = k(t, where (t is the observation time step. More specifically, the maximum likelihood estimates can be determined by numerical optimization, i.e.:
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with the log-likelihood defined by:
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where K denotes the number of observations of the vehicle speed and position, and where 
[image: image10.wmf](|)

predki

vt

q

 denotes the one-step ahead
 prediction of the speed by the car following model (in this case, Eq. (3)

), using the set of parameters (i based on the observed vehicle positions at time instants tk, tk-1,…,t0 (and the speeds determined from these observations). 

In Eq. (6)

, f denotes the probability density function describing the distribution of the error e between observation and prediction. In this case, we have considered the difference between the predicted speed and the observed speed, but other quantities may be used as well. In the remainder, we assume that this error is a zero-mean Gaussian distribution with standard deviation (i. Note that we can jointly determine the ML-estimate for the standard deviation by noticing that for the maximum, the following necessary condition will hold (Hoogendoorn et al,2006):
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The covariance matrix of the estimated parameters can be estimated using the so-called Cramér-Rao lower bound. In fact, when considering minimum variance estimators, we can prove that:
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denotes the covariance matrix of the estimated parameters. It is important to note here that a large variance implies a small sensitivity to a certain parameter in the vector (i. 
  Furthermore, different models (with different model complexity) can be cross-compared by application of the likelihood ratio test. Furthermore, the approach can be easily adapted to correct for serial correlation in the data; see (Hoogendoorn et al.,2006) for details.
1.4 Estimation example 

For the sake of illustration, the ML estimation approach was applied to the empirical trajectory data collected on a Dutch motorway (see section 4 for details). Figure 2 shows the estimation results for one specific driver. The ‘stars’ indicate the estimated parameters j (i.e. a, b, s0, T and v0 respectively). Based on the values of the log-likelihood, the IDM seems to perform quite well (in comparison to other models; see (Hoogendoorn et al,2006)). However, convergence problems occur during estimation, in particular because the log-likelihood is insensitive to changes in some of the parameters (in particular v0 and to a lesser extent to b). Also, the parameter estimates are not always realistic (again, in particular the maximum deceleration value b). 
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Figure 2 Plots of the log-likelihood values around the optimal estimate (i* for example driver 1.

The causes for these problems are manifold. First of all, the data used must contain the correct information to estimate the model parameter. In illustration, if the trajectory data contains no deceleration, it is unlikely that the maximum deceleration can be estimated from these data. Second of all, the model itself may be very insensitive for changes in the parameters. For the IDM, this is especially the case for the free speed v0. In the remainder, we will focus on resolving this issue by including prior information of the parameter. 
1.5 Including prior information
As mentioned in the preceding section, unrealistic estimation results are in part due to the fact that too little information is present within a single trajectory to enable correct estimation of all parameters. In particular, the estimates for the free speed are impaired by the fact that all drivers are in car-following model during the entire observation period. In fact, only a lower-estimate for the free speed could be derived. To resolve this problem, it is possible to include prior information on the parameter estimates. To this end, we asssume that the parameters ( are stemming from some probability distribution G that describes the inter-driver differences in car-following behavior. Let
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describe the joint probability density function of the parameters. Using this information, we can then extend the log-likelihood function Eq. (6)

 as follows:
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where 
[image: image16.wmf]q

 is the prior mean and  is the prior covariance matrix of the random parameters (. 
Let us note that is the standard deviation for a particular parameter is very high, this essentially means that the prior information will not be used at all. To show this, let us assume that g is a multivariate normal distribution:
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where N denotes the number of elements in the parameter vector. We then have:
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and thus for the gradient of the parameter vector (
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For the unconstrained optimization problem Eq. (5)

, we have the necessary conditions:
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Eq. 
(14)

 shows nicely how the prior information drives the estimate toward the prior mean value  GOTOBUTTON ZEqnNum834495  \* MERGEFORMAT . The extent to which this happens is determined directly by the values of the covariance matrix : the larger the elements, the smaller the influence of the corresponding prior estimate. 

Furthermore, we emphasize that in principle any kind of joint distribution can be used for g (uniform, normal, log-normal, etc.). These include distributions that describe prior knowledge of specific functions of the parameters. This allows for guarantying certain properties of the model (such as stability of the car-following model, or the resulting fundamental diagram). If we consider for instance the model of (Gazis et al,1961):
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For which local stability is guaranteed if the product of the sensitivity and the reaction time satisfies 
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In the remainder, we will provide an heuristic approach to gain insight into the prior distribution using estimates determined without prior information and the standard errors in these estimates. 

1.6 Estimation example revisited

Including prior information turns out to improve the numerical optimization substantially. Figure 3 below shows an overview of the estimation results. Note that the overall performance (in terms of the log-likelihood value) is only reduced slightly for this particular driver. 
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Figure 3 Plots of the adjusted log-likelihood values around the optimal estimate (i* for example driver 1, using prior information of b and v0. The figure shows both L and L1.

Heuristic approach to acquiring prior information

In the approach presented in the previous section, prior information plays an important role. This information can have various origins. It can be determined by the user based on expert knowledge, from alternate data sources, or by including restrictions such that the resulting microscopic model has specific desired properties (e.g. model stability, correct shape of the fundamental diagram, etc.).  

In this section, we propose a heuristic way to get insight into this prior distribution based on the microscopic trajectory data we have collected. The approach is based on using the standard error of the estimated parameters for a particular driver i in case no prior information is used: when the standard error is small, the parameter could be established from the available data with sufficient statistical accuracy. If the standard error is large, however, the estimate is not reliable and hence contains little information about the prior distribution of this parameter. 

1.7 Approach outline

More specifically, for each driver i we assume that parameter estimates (i have been determined based on the available microscopic data. The statistics of these estimates are provided as a byproduct of the MLE presented in section 4.1, including the standard deviation (ij for each parameter j for driver i. These in turn will be used to determine the importance weights of the parameter estimates: the weight wij is chosen equal to the inverse of (ij of the parameter estimate j of driver i. As a result of the approach, for each parameter in the vector (i (e.g. (, (, or s0 – depending on the model used) we have a i=1,...,N pairs {(ij,wij}. If we then consider parameter j, then the heuristic estimate for its distribution is determined by the following distribution function:
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1.8 Prior parameter distributions for Helly and IDM models
Figure 4 shows the results of this exercise applied to the Helly model. The figure shows the distribution of the parameters (, (, s0 and T respectively. The figure shows clearly that the nature of the distribution function of the different parameters are quite distinct: ( seems to have a symmetric distributions (with mean 0.37 and a standard deviation of 0.15), where the distribution of ( is clearly not symmetric (with mean 0.07 and standard deviation of 0.08). Note that the coefficient of variation is much larger for the distribution of (  than for the other parameters. 
[image: image27.wmf]0

0.5

1

0

0.5

1

Parameters 1

F(x)

Mean: 0.37273, Std:  0.14938

0

0.2

0.4

0.6

0.8

0

0.5

1

Parameters 2

F(x)

Mean: 0.069613, Std:  0.078328

0

5

10

15

0

0.5

1

Parameters 3

F(x)

Mean: 8.0724, Std:  5.2847

0

1

2

3

0

0.5

1

Parameters 4

F(x)

Mean: 1.3282, Std:  0.51849

Mean = 0.37, std = 0.15

Mean = 0.07, std = 0.08

Mean = 8.07, std = 5.28

Mean = 1.33, std = 0.52

a

(1/s)

b

(1/s

2

)

s

0 

(m)

T (s)


Figure 4 Heusristic distribution of estimated parameters for Linear Helly model. 
Figure 5 shows the estimated distribution for the parameters of the IDM model. Note that compared to the expected parameter values, we see that a is relatively large (expected value of 0.3 m/s2), while b is relativel small (expected value of 3.0 m/s2). 
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Figure 5 Heusristic distribution of estimated parameters for IDM.
Application results

For the sake of illustrating the approach, the prior information showed in the previous section was used to re-estimate the parameters of the Helly model and the IDM. Table 1 shows an overview of the estimation results without and with using prior information. 
First of all, the table shows that the IDM outperforms the model of Helly in many cases. Second of all, we see that the performance of the IDM reduces slightly while including prior information: the average log-likelihood  
[image: image29.wmf]L
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 reduces from -262.2 to -309.4. This is due to the fact that for some drivers, the statistical optimal parameters (in terms of the log-likelihood) are changed to comply more with the prior information.  
Third of all, we see that the overall performance of the Helly model improves when prior information is used. The counter-intuitive improvement is quite substantial. An explanation for this could be that without using prior information, the globally optimal estimates cannot be determined by the numerical optimization approach. 
Table 1 Overview of estimation results with and without prior information. 

	
	 
	no prior information
	prior information


	Model
	m
	
[image: image30.wmf]L

%


	
[image: image31.wmf]0

LL

-

%%


	# best
	% best
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	# best
	% best

	Ideal Driver Model
	5
	-262.2
	-256.9
	43
	86%
	-309.4
	-294.8
	36
	72%

	Helly
	5
	-531.6
	-242.6
	7
	14%
	-491.3
	-283.8
	14
	28%


As we will see in the remainder of this section, the estimated parameters are realistic for nearly all drivers. Nevertheless, the log-likelihood values did no increase dramatically. This is due to the fact that the prior information will be used mostly to adapt the estimates for which the log-likelihood is insensitive to changes (large standard error in the parameter estimate). Table 2 shows the estimation results for the Helly model. The table shows that the values of the estimates are very reasonable. Furthermore, the average values are quite close to the average values in the case no prior information was used (see Figure 4). The table also shows the inter-driver correlations between the parameter estimates. Large correlation values are indicated in boldface.
Table 2 Estimation results for model of Helly. 

	
	Tr
	
	
	s0
	T

	mean
	1.45
	0.39
	0.04
	8.09
	1.33

	standard dev.
	0.53
	0.09
	0.05
	0.03
	0.05

	correlation
	Tr
	
	
	s0
	T

	Tr
	1.00
	-0.45
	0.21
	0.20
	-0.02

	
	
	1.00
	-0.04
	-0.07
	0.12

	
	
	
	1.00
	0.59
	-0.03

	s0
	
	
	
	1.00
	0.57

	T
	
	
	
	
	1.00


Table 3 shows the statistics of the parameter estimates for the IDM model. Similar conclusions can be drawn as in case of the Helly model. Note that the values for the maximum deceleration b are still relatively small. 
Table 3 Estimation results for IDM.

	
	a
	b
	s0
	T
	v0

	mean
	0.76
	0.69
	6.87
	1.36
	27.32

	standard dev.
	0.16
	0.26
	0.02
	0.08
	0.12

	correlation
	a
	b
	s0
	T
	v0

	a
	1.00
	-0.37
	-0.70
	0.17
	-0.06

	b
	-0.37
	1.00
	0.44
	-0.18
	0.15

	s0
	-0.70
	0.44
	1.00
	0.44
	-0.32

	T
	0.17
	-0.18
	0.44
	1.00
	-0.70

	v0
	-0.06
	0.15
	-0.32
	-0.70
	1.00


Conclusions and future work

This paper has presented a new approach to estimate parameters of car-following models using prior information of the likelihood of the parameters or combinations thereof. It is illustrated in the paper how this information can be used to ensure that the parameter estimates are realistic and to that the car-following model has specific important characteristics (e.g. local or asymptotic stability, correct fundamental diagram, etc.). The approach is generic and can be applied to basically any car-following model. In the paper, the approach has been successfully applied to estimate the parameters of two car-following models: the linear mode of Helly and the Ideal Driver Model. 

In the paper we have also presented a heuristic approach to gain insight into the prior distributions of the parameters based on estimation results acquired from empirical car-following data. The approach clearly illustrated the large inter-driver variation in driving characteristics. These distributions where subsequently used to re-estimate the parameters of the considered car-following models. 
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� Note that multi-step ahead predictions can also be used. 


� The log-likelihood was computed after setting the weights of the prior information back to zero after the optimization process had been performed.  
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