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Abstract

The California High Speed Rail Authority and the Metropolitan Transportation Commission are developing an innovative statewide model to support evaluation of high-speed rail alternatives in the State of California.  This statewide model will also support future planning activities of the California Department of Transportation.  The approach to this statewide model explicitly recognizes the unique characteristics of intraregional travel demand and interregional travel demand.  As a result, interregional travel models capture behavior important to longer distance travel, such as induced trips, business and commute decisions, recreational travel, attributes of destinations, reliability of travel, party size, and access and egress modal options.  Intraregional travel models rely on local highway and transit characteristics and behavior associated with shorter distance trips (such as commuting and shopping).  

Introduction
The project objectives were to develop a new ridership forecasting model that would serve a variety of planning and operational purposes:

· To evaluate high-speed rail ridership and revenue on a statewide basis
· To evaluate potential alternative alignments for high-speed rail into and out of the San Francisco Bay Area.   
· To provide a foundation for other statewide planning purposes and for regional agencies to better understand interregional travel.  

The core model design feature is the recognition that interregional and urban area travel is distinct and should be modeled separately to capture these distinctions accurately.  This led to our approach to develop separate, but integrated, interregional and intraregional models, as demonstrated in Figure 1.   There are two primary reasons for developing separate models for interregional and urban area travel:  first, the trip purposes are different and second, the interregional travel models need to explicitly estimate induced demand.  These models are applied to both peak and off-peak conditions for an average weekday.  Weekend travel demand and annual ridership estimates are developed using annualization factors developed from observed data on high-speed rail systems around the world.  

There are fourteen regions established in the state that define interregional and intraregional travel:  
· Interregional models estimate trip frequency, destination choice, and mode choice stratified by trip purpose (business, commute, recreation, and other) as well as by distance (trips greater than or less than 100 miles) and by trip type (trips made by residents of the four largest cities in California versus other trips).   The interregional trip frequency models allow estimate induced travel based on improved accessibilities due to high speed rail options.  

· Intraregional models are based on trip tables generated from the Metropolitan Planning Organization (MPO) models and estimate mode choice of urban area trips.  These mode choice models reflect local urban area highway and transit systems as well as options for high speed rail within the region.  Urban travel is stratified by trip purpose (work, school, college, other, and non-home-based).  
The interregional and intraregional area models are based on travel survey data collected for these purposes.  
Literature Review

Although few intercity high speed ground transportation (HSGT) systems have been implemented in the United States, planners have been performing ridership forecasting analyses and benefits assessments for proposed systems for more than thirty years.  Almost all of the ridership forecasts have been in support of analyses of one of the 11 designated intercity corridors authorized by the Federal Railroad Administration in the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 and the Transportation Equity Act for the 21st Century (TEA-21) of 1998, including (Federal Railroad Administration, 2006):

· Northern New England;

· Northeast Corridor;

· Empire Corridor;

· Keystone Corridor;

· Southeast Corridor;

· Gulf Coast Corridor;

· Florida Corridor;

· Chicago Hub Network;

· South Central Corridor;

· Pacific Northwest Corridor; and

· California Corridor.
The first U.S. HSGT ridership forecasts were developed to support investments to improve the Northeast Corridor (Koppelman, Kuah, and Hirsh, 1984). Since then, a variety of forecasting techniques have been used in corridor feasibility analyses, ridership and revenue evaluations, and environmental impact studies.  The literature describing the analytical techniques employed in these various studies and the current states of forecasting practice over time have been reviewed by Koppelman, Kuah, and Hirsh (1984), Miller (1992, pp. 378-389), Forinash (1992), and Horowitz (2006).  The initial forecasting efforts relied on aggregate direct demand models, such as the Quandt and Baumol abstract mode model (1966, pp. 13-26), the Rand Corporation model developed by DeFerranti, Chesler, and Goeller (1973),  and the Peers and Bevilacqua structural intercity model (1976, pp 124-135).  

As urban modelers adopted the four-step modeling process for regional forecasting, intercity models also became multi-step processes where the intercity trip tables are estimated and forecast, and separate mode choice models are used to determine modal shares under different service scenarios.  Most of the more recent U.S. HSGT ridership forecasting efforts can be characterized by the specific analyses used to develop intercity trip tables, determine modal split, and the level to which the different model steps are integrated.    

Modelers have employed many trip generation and trip distribution techniques to forecast future year intercity trip tables.  For an early analysis of the Florida high speed rail corridor, PRC Voorhees used trip purpose specific growth factor models to forecast trip tables (1983).  Other modelers, such as Thakuriah, Virmani, Yun, and Metaxatos (1999, pp. 255-269) and Cohen, Earlbaum, and Hartgen (1978, pp. 21-25), have relied on gravity models for trip table prediction.  One researcher identified by Horowitz used a time series model to forecast future intercity travel demand (Yu, 1970, pp. 203-218).  Many others have used a cross-sectional regression-based total travel demand (direct demand) formulation, including for instance, Booz-Allen & Hamilton (1989), TMS/Benesch (1991), and Brand, Parody, Hsu, and Tierney (1992, pp. 12-18).  The previous analysis of the California high speed rail corridor relied on this modeling approach (Charles River Associates, 2000).

Since the early 1980’s, several different forms of disaggregate mode choice models have been developed for forecasting U.S. HSGT ridership.  Early efforts, such as those by Grayson (1981), employed multinomial logit models, but subsequent models have expanded the technique in different directions.  Cohen, Earlbaum, and Hartgen (1978, pp. 21-25), Brand, Parody, Hsu, and Tierney (1992, pp. 12-18), and Charles River Associates (2000) formulated mode choice as separate binary diversion models where percentages of auto, air, and bus passengers are diverted to HSGT individually through binary models.  This approach seeks to eliminate the troublesome outcome of the multinomial logit model’s IIA property.  Other researchers have relied on the use of nested logit models for intercity mode choice (TMS/Benesch, 1991).  Researchers, most notably Chandra Bhat, have experimented with a wide variety of nested logit model formulations and variable combinations (1995, pp. 471-483) (1997, pp. 11-21) (1998, pp. 49-57).  With advancements in effective ways for combining revealed preference and stated preference survey data (Ben-Akiva and Morikawa, 1990, pp. 485-495) (Bradley and Daly, 1997, pp. 209-232), intercity modelers have also begun to use stated preference survey methods to a greater extent for forecasting HSGT mode choice.

Most intercity transportation demand models have treated traveler’s decisions regarding trip frequency, destination choice, mode choice, and route selection as separate sequential choices.  The model system described in this paper seeks to connect the different model components by passing information from one choice component to the others during model development.  When the multinomial logit and nested logit model components are applied, they are fully consistent with each other and are sensitive to each others changes.  Integrated modeling approaches have been proposed by and implemented by Koppelman and Hirsh (1989, pp. 1-8), Proussaloglou and Tierney (1999)  and, outside the U.S., by Algers (1993, pp. 141-149) and Gunn, Bradley and Hensher (1992).  The latter approach was developed for an Australian VFT study and uses a very similar approach to the models developed for California, including the use of both stated and revealed preference data and linking mode, destination and trip frequency models through the use of accessibility measures.
Interregional Models

The interregional models are comprised of four sets of models:  trip frequency, destination choice, main mode choice, and access/egress mode choice.  The structure and contents of the interregional modeling system is presented in Figure 2.

The trip frequency model component predicts the number of interregional trips that individuals in a household will make based on the household’s characteristics and location.  The destination choice model component predicts the destinations of the trips generated in the trip frequency component based on zonal characteristics and travel impedances.  The mode choice components predict the modes that the travelers would choose based on the mode service levels and characteristics of the travelers and trips.  The mode choice models include a main mode choice, where the primary interregional mode is selected, and access/egress components, where the modes of access and egress for the air and rail trips are selected.

Data for Estimation

There were three types of data compiled for the study:  travel surveys, networks, and socioeconomic data.  Some of the travel surveys were collected specifically for this study, three were available from MPOs around the state (SCAG, MTC, and SACOG), and there was a Caltrans statewide survey available.  The interregional models were based on revealed and stated preference surveys, collected specifically for this study, of air and rail travelers, as well as additional households in the state to capture auto travelers.  These new data were collected in fourteen regions in California. These were combined with revealed preference surveys of households across the state collected by Caltrans and interregional travel extracted from the MPO regional travel surveys (San Francisco, Sacramento, and Los Angeles).   Intraregional mode choice models were based on urban area travel surveys in combination with a stated preference survey for high speed rail conducted in Los Angeles.  By combining the various available data sources, we were able to provide more robust data sets for model estimation than was otherwise possible.  After combining these surveys, 6,882 completed surveys were available to use for model estimation, as shown in Table 1.  There were different estimation datasets used for each model component, depending on the requirements for the model.  This is described in more detail in the Interregional Model System Development Report (Cambridge Systematics, 2006).  
There are highway, air, rail, and local transit networks to support both the urban area and interregional travel models.  The socioeconomic data includes household data in four classifications (household size, income groups, number of workers, and vehicle ownership) and employment data by type.  

Trip Frequency

We used a simple multinomial logit (MNL) model to predict interregional trip frequency.   Eight trip frequency models predict interregional person-trips per day, segmented by trip purpose (business, commute, recreation, and other) and length (over or under 100 miles).  The MNL formulation allows important explanatory variables such as accessibility measures to affect the propensity to make interregional trips.  In this case, the composite log-sums from the destination choice model are fed back to the trip frequency model to account for “induced trip making” behavior.  The trip frequency models are segmented by length to allow different model specifications and parameters for short and long trips.  For each model, the choice set for each person is zero, one, or two or more interregional trips per day.  The final model specification constrains the variable coefficients of one-trip and two-trip choices to be equal, while allowing the alternative-specific constants for one- and two- trip choices to be estimated individually.  This overcomes some illogical individual variable coefficients for each market segment, but allows us to retain separate choices for interregional travel.  Table 2 presents the estimation results for long interregional trips (short trips are not included for brevity).  

Three types of variables were tested in the trip frequency models: socioeconomic, accessibility, and geographic region of residence.  Even though the trip frequency models are estimated at the person-level, estimation variables were constrained to be at the household-level to be consistent with existing future year socioeconomic predictions.  Socioeconomic variables that were tested in model specifications include: household size, household size greater than two dummy variable, number of household workers, zero-worker household dummy variable, number of household vehicles, number of household vehicles is less than the number of household workers dummy variable, zero-vehicle household dummy variable, high household income (greater than $75,000), medium household income (Between $35,0000 and $75,000), low household income (less than or equal to $35,000), and a missing income dummy variable for survey records with no income collected.  The missing income dummy variable is used during model estimation, but is not included in the final model specification for application.  

The estimation results follow an intuitive pattern.  More household workers increase one’s propensity to make interregional business and commute trips, but decrease one’s propensity to make interregional recreation and other trips.  The income coefficients indicate that as income increases, more interregional trips are taken.  Households with fewer cars than workers are less likely to have the resources to undertake interregional travel.  Three-person households are less likely to undertake interregional recreation and other trips, perhaps substituting this type activity closer to home.

As discussed above, the trip frequency models include measures that capture the accessibility of all relevant travel opportunities from travelers’ home zones.  For each resi​dence, we calculated three peak/work and three off-peak/non-work accessibility measures for destinations in (1) their home region, (2) outside their region, within 100 miles of home, and (3) over 100 miles from home.  The final model specifications rely on synthesized accessibility measures for the within home region destinations and on logsums calculated from the destination choice models for the remaining accessibility measures.  The synthesized accessibility measure is necessary within the home region since the urban area models are not destination choice models (they are gravity models) and are therefore not able to produce logsums for the destination choices within the region.  Logsums are a means to produce a weighted average of all potential destinations.    

A high calculated “regional accessibility” to jobs, goods, and services within one’s region of residence indicates less need to travel outside of the region.  Therefore, as expected, this variable has a negative effect on all interregional travel.  Separate short (within 100 miles of residence and outside the residence region) and long (outside 100 miles of residence and outside the residence region) logsums were calculated to represent accessibility to goods and services outside of one’s home region.  A higher logsum outside a home region increases the likelihood that an interregional trip will be undertaken.  

Regional dummy variables for the MTC, SANDAG, SACOG, and SCAG regions are included to account for the different interregional trip making patterns observed for residents of large, metropolitan areas compared to residents in the rest of California.  These were calibrated to match observed trips in these regions.  
Destination Choice

The destination choice models were estimated with a simple multinomial logit model structure using ALOGIT software.  The dataset used for the trip frequency models was combined with the stated-preference (SP) survey (used in the mode choice models) to produce a combined estimation dataset for the destination choice estimation models. The addition of the SP dataset significantly increased the number of “long” (more than 100 miles) trips in the dataset (by nature, the household surveys are generally better at capturing the more typical “short” trips).   Since the trip frequency models already differentiate between the two, we can use this information as a valuable input to the destination choice models.  This not only constrains an individual’s choice set based on destinations being greater or less than 100 miles, but it recognizes that an individual may value different trip characteristics for different distance-categories of travel.

The short trip destination choice models used all four trip purposes modeled in the trip frequency step: business, commute, recreation, and other.  Due to sample size considerations, only two aggregate trip purposes were estimated for the long trip destination choice models: business/commute and recreation/other. 

The models use multimodal composite impedance from the mode choice model (logsum).  This variable measures the combined utility of all available modal choices and level of service characteristics.  The coefficient turned out to be positive and significant at the 95 percent confidence level in the destination choice models, indicating that the destination zone is more attractive if it is better accessible.

In all of the destination choice models, we have used a distance power series including distance, distance-squared, and distance-cubed. While common sense would say that all distance coefficients should be negative, one cannot analyze the distance coefficients individually, but as their collective impact.  In addition, a great deal of the impedance between origin-destination pairs is captured within the travel impedance term and coefficient.  Therefore it is not wrong for the collective effect of distance to be either positive or negative.  It should be noted that since we are estimating separate models for “short” and “long” trips, that the “short” trips are automatically capped at 100 miles from the origin.  All short trip distance functions show a decreasing function up to 100 miles, which is consistent with our expectations. Both long trip distance functions show a decreasing function from 100 to 250 miles and then an increasing function for trips greater than 250 miles.  

Each possible destination zone could have one of three basic area-types assigned to it: rural, suburban, or urban. In the destination choice models we chose “suburban” to be the base. Additionally, we created several interaction terms to capture whether travelers were starting and ending in the same area type: rural to rural, suburban to suburban, urban to urban.  We expect that the sign on urban to urban to be positive, and the sign on rural to rural and suburban to suburban to be negative or close to zero.

Similar to the area type interaction variables, the location type interaction variables allow us to relate where you want to go, to where you currently are, based on the location of the origin and destination. We tested four origin-destination location type interaction variables for all the “long” destination choice models: Los Angeles to/from San Francisco, Sacramento to/from San Francisco, San Francisco to/from San Diego, and Sacramento to/from Los Angeles.   These were adjusted during model calibration to match observed travel.  Since all of these locations are major population centers and destinations in the state we generally expect them to have a synergistic quality between them that these variables represent, and thus have positive coefficients (although it makes sense that this may not occur for all trip purposes).

Size functions are used measure the amount of activity that occurs at each destination zone and incorporate this into the utility of alternative variables. This type of variable is frequently used in destination choice models to account for differences in zone sizes and employment levels. Four size variables are used in these models: retail employment, service employment, other employment, and households. Other employment is used as the base size variable for business and commute trips and is constrained to 1.0 while retail and service are further segmented by household income levels – low, medium, high, and missing.  Households are used as the base size variable for recreation and other trips.  Income is used as a per person variable as an interaction between employment and income to show that different income levels of the destination choices will affect the attractiveness of the zone for particular travelers.  For commute trips, short and long, as income increases, retail employment has a bigger impact on destination choice than service employment.

Table 3 presents the model estimation results of the destination choice models for long trips by trip purpose: business/commute, and recreation/other (the short trip models are not shown for brevity). The distance power series of coefficients for these models are both decreasing functions as expected. All other variables have the sign and size we expect, except for the coefficient of rural-to-rural for recreation/other trips, which is positive when we expect it to be negative, but it is not significantly different than zero.
Mode Choice

There were two types of mode choice models developed for this study:  access and egress models and main mode choice models.  Models were estimated to predict the access and egress modes to and from airports and rail stations. The models were based on actual reported and hypothetical stated data.  For people who were intercepted making actual air or rail journeys, the access and egress mode choices are the actual reported ones.  For people whose actual journey was by car, the air and conventional rail access/egress mode choices are hypothetical.  Obviously, the HSR access and egress mode choices are hypothetical for all respondents.  
For access, the majority of respondents reported either driving and parking at the station/airport or else getting dropped off.  For egress, the reported mode shares varied more by purpose and distance, with transit more popular for short trips, and rental car and taxi more popular for long trips and business trips.  In all, there were six modes considered for each. A nested structure was adopted, as shown in Figure 2. The auto modes—drive and (un)park, pick up/drop off, and rental car—are all in separate nests, while taxi, transit (bus or light rail), and walk are nested together. This nesting structure gave the most reasonable results for all purposes.

The access and egress mode choice results for the Long Distance segments are shown in Table 4.  A reasonable value of time was asserted for each segment based upon a review of other research.  As the survey was not designed primarily to estimate access and egress choice models, and the zone size is in a statewide model is quite large for this type of local choice, the fact that access and egress time and cost parameters had to be constrained is perhaps not surprising.  Also note that the costs of options such as taxi and rental car and airport/station parking are not readily obtained from network data. Other results of note are:

· The out-of-vehicle time coefficients were estimated for most segments, and result in ratios of out-of-vehicle time to in-vehicle time that are in the range of 2.0 to 2.9.

· The Drop Off and Pick Up alternatives have an additional negative in-vehicle time effect, capturing the disutility of the driver that has to make the round trip to the airport.

· We did not include taxi cost explicitly, but did include an additional distance coefficient for taxi, which is significant and negative for most segments, typically with an equivalent value of over $1.00 per mile.

· For most segments, transit is less likely to be chosen if there is no reasonable walk access to transit, meaning that a drive to transit path was included instead. 

· For most segments, transit, which can include rail and/or bus, is more likely to be chosen if rail is included in the best transit path.

· For the long segments, taxi, parking, and rental cars are generally less desirable to rail stations than to airports, while transit is more desirable from rail stations.  Walking is very rare to or from airports, capturing accessibility affects that are not captured well in the zone system.

· Drive and park access is less likely at the busiest airports – SFO, LAX, and SAN – and somewhat at SJC as well.  This may capture both cost and inconvenience effects at those airports.

· For most segments, those in larger households are more likely to be dropped off.

· In general, high income favors rental car, taxi and drive and park, and low income slightly favors transit in some segments.

· There is a logsum coefficient less than 1.0 on the nest that includes transit, walk, and taxi.  Each of the other three alternatives is in its own “nest,” and scaled by the same logsum parameter to preserve equal scaling at the elemental level.  

· The scale (the inverse of the residual error variance) for the hypothetical choices relative to the actual choices was significantly lower than 1.0 for most of the Egress model segments. This result indicates that many respondents have difficulty making an accurate assessment of mode choice options in less familiar surroundings at the non-home end of their trip, so that hypothetical choices should be weighted less in estimation than actual ones.

The main mode choice models produce probabilities that each trip will choose one of the main modes (auto, air, conventional rail, and high-speed rail).  Several nesting structures were tested for the main mode choice models and the final nesting structure chosen is shown in Figure 2, with all the non-auto modes in a single nest. This structure provided the most logical and statistically sound nesting structure for the mode choice models. 

The main mode choice models were based on stated preference (SP) survey data. The overall choice shares in the SP data were around 50% for high speed rail, with most of the other choices for the respondents’ actual chosen modes.  The HSR choice share was highest for business trips and long trips, giving a first indication that HSR substitutes more closely with air than with car.
To prepare the data for estimation, the access and egress mode choice models were first applied to calculate access and egress mode logsums for each alternative.  Then, a nested logit model was estimated across the four main modes for each of the segments (only three alternatives for the Short segments, as air was not available for those segments).

The estimation results for the Long Segments are shown in Table 5.  Some results of note include the following:

· The residual mode-specific constants for HSR are generally not very much higher than for the other modes.  This result indicates that the high choice shares found for HSR are mainly due to the attractiveness of the time and cost, by the mode, rather than to SP-related survey effects or biases.

· The cost and in-vehicle time parameters were estimated non-constrained and give very reasonable values of time.  In general, VOT for the longer, more expensive trips is higher than for the shorter, more frequent trips.  This is a typical result.

· The value of frequency (headway) is significant for all segments, but is only about 20 percent as large as the in-vehicle time coefficient.  If wait time were half the headway and valued twice as highly as in-vehicle time, then we would expect the same coefficient on headway and in-vehicle time.  For these modes, and particularly air, headway is less related to wait time than it is to scheduling convenience.  Because none of the levels used in the SP had headways higher than a few hours, the implications for scheduling may not have been large enough to greatly influence mode choice.

· The value of reliability is fairly low for all segments, although with the correct sign.  It is very difficult to measure the effect of reliability in a large-scale mailout SP survey, so we decided to use a somewhat higher effect of reliability in application, based on any evidence from elsewhere.  

· Those traveling with others are more likely to use car and less likely to use air.  This effect was also tested on the cost coefficients and not found to be significant, so this relative mode preference appears to be related to more than just cost – such as the fact that people can share driving for long trips.  Party size models were estimated to generate these data, but are not included here for brevity.
· People in larger households are more likely to use car.  Even though we already have the group/alone segmentation, people in larger households are likely to be in larger groups.

· Higher income generally favors air and high-speed rail versus auto.

· Low auto availability within the household is related to less chance of choosing the auto.

· A nest with air, rail, and HSR, (with car in its own “nest”) produced a logsum coefficient below 1.0 for all segments, indicating that this was a reasonable nesting structure for interregional trips.  

· The access mode choice logsums were estimated with positive coefficients in the range of 0.11 to 0.46 for all segments.  

· For the long trips, the egress mode accessibility seems to have somewhat more influence on mode choice than does the access mode.  Travelers may be less constrained at the home end, where they know the options and can use their own auto, than they are at the destination end.
Intraregional Models
Intraregional models will be used to forecast high speed rail trips with both ends within an urban area that has more than one proposed high-speed rail (HSR) station.  These areas are the San Francisco Bay Area, Greater Los Angeles, and San Diego regions. Regional travel forecasting models in these areas will be modified to forecast urban high-speed rail trips for the San Francisco and Los Angeles areas. The market segments for intraregional travel include typical trip purposes such as home-based work, school, university, shopping, social-recreational, and other trips as well as work- and non-work-related non-home-based trips.  Due to the small amount of potential for high-speed rail trips in the San Diego region, these were estimated based on expected riders per person rather than by applying the local regional travel model.  
To model intraregional trips, we relied on the trip generation and distribution models in each of the urban areas and modified existing mode choice models.  The urban mode choice models include a variety of transit modes, but not specifi​cally a high-speed rail mode in any model, with the exception of the new SCAG mode choice model.  San Francisco urban mode choice models was modified to insert a high-speed rail mode based on coefficients and constants from the new SCAG model.  Following is a brief description of the model implementation for each of the urban areas:
· San Francisco Bay Area - The San Francisco regional model was enhanced to include transit submodes (BART, commuter rail, light rail, ferry, local bus, and express bus) in the mode choice model. This allowed for easier inclusion of the high-speed rail mode in the model.  The new mode choice model was validated at the regional level to match observed ridership numbers by operator. 
· Southern California Association of Governments Region - The Southern California Association of Governments (SCAG) model is currently under development. This is the only urban mode choice model that includes a high speed rail mode. 
In Southern California (SCAG), the Statewide model has lesser zonal detail than the regional model, so all the inputs to the mode choice model were modified to match the zonal detail in the statewide model.  Urban trip tables from the MTC and SCAG metropolitan areas were added to the interregional trips for the assignment.

Summary

The travel forecasting models developed for predicting high-speed rail alternatives for the state of California have several immediate benefits over previous ridership forecasting methods:  they are network-based and provide more accurate assessments of time and cost tradeoffs with other modes, modal choices are sensitive to reliability, party size, and detailed access and egress options, induced travel is assessed based on changes in level of service for all modes, and intraregional travel is estimated based on detailed urban area models where interregional travel is estimated based on statewide models estimated from observed travel behavior.  The intraregional and interregional models are integrated to assess impacts of congestion on other modes and to reflect differences in peak and off-peak conditions.  

There are some areas where these models may be improved for other statewide and regional planning activities.  The trip frequency models could benefit from additional data on weekly or monthly long distance travel, because a one-day snapshot does not provide as strong a basis for travel decisions as longer-term data would provide.  The destination choice models could also be improved by including data on special generators, such as Disneyland.  Lastly, the mode choice models could benefit from a tour-based methodology, recognizing that decisions on mode are affected by both the outbound and return portions of the trip.  
These integrated statewide models offer a more comprehensive tool to forecast long and short distance travel in California.  The separation of travel into market segments based on distance (short and long), purpose (business, commute, recreation and other) and travel markets (inter- and intraregional) provide a more robust and accurate assessment of multimodal travel at the statewide level. 
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Table 1. Total of All Survey Interregional Trips by Mode, Distance, and Purpose
	
	Drive
	Air
	Rail
	Bus
	Other
	Total

	Long Trips
	
	
	
	
	
	

	Business
	314
	620
	27
	18
	17
	996

	Commute
	263
	15
	9
	1
	74
	362

	Recreation
	1114
	228
	80
	3
	23
	1448

	Other
	365
	85
	17
	8
	91
	566

	Short Trips
	
	
	
	
	
	

	Business
	381
	14
	48
	3
	15
	461

	Commute
	1136
	0
	168
	9
	108
	1421

	Recreation
	873
	2
	29
	3
	52
	959

	Short Other
	591
	1
	10
	23
	44
	669

	Total
	5,037
	965
	388
	68
	424
	6,882


Table 2.  Trip Frequency Models for Long Trips1
	
	Business
	Commute
	Recreation
	Other

	Observations
	108,401
	108,401
	108,401
	108,401

	Final log-likelihood
	-1,168.3
	-1,823.7
	-2,048.8
	-1,865.3

	Rho-squared(const)
	0.08
	0.10
	0.04
	0.09

	Variable
	Coeff.
	T-stat
	Coeff.
	T-stat
	Coeff.
	T-stat
	Coeff.
	T-stat

	Level of Service
	
	
	
	
	
	
	
	

	Intraregion accessibility
	-0.128
	-1.5
	-0.217
	-4
	-0.4
	-6
	-0.532
	-7.4

	Mode/destination choice logsum
	0.466
	1.5
	0.123
	0.6
	0.656
	2.8
	0.159
	0.6

	Household Characteristics
	
	
	
	
	
	
	
	

	Medium income
	0.527
	1.5
	0.188
	0.8
	
	
	
	

	High income
	1.139
	3
	0.291
	1.1
	-0.246
	-1.3
	0.393
	2.1

	Missing income1
	0.955
	2.3
	0.34
	1.1
	0.282
	1.3
	0.158
	0.7

	Fewer cars than workers in HH
	-0.412
	-1
	-0.457
	-1.6
	-0.922
	-2.4
	-0.915
	-2.2

	No cars in HH
	
	
	
	
	
	
	
	

	Fraction of HH  who are workers
	0.537
	1.9
	1.274
	5.8
	
	
	
	

	No workers in HH
	-2.098
	-3.4
	-2.668
	-3.7
	
	
	0.372
	2.4

	Household size
	
	
	
	
	
	
	
	

	1 person household
	
	
	
	
	
	
	-0.424
	-2

	3+ person household
	
	
	
	
	-0.482
	-3.9
	-0.379
	-2.8

	Location Variables
	
	
	
	
	
	
	
	

	SACOG resident
	0.976
	3.7
	0.918
	4.7
	1.084
	4.4
	2.527
	10.3

	SANDAG resident
	-0.704
	-1.1
	-0.419
	-1
	1.344
	3.5
	0.92
	1.8

	SCAG resident
	-1.176
	-3.6
	-1.644
	-6.3
	-0.031
	-0.1
	0.259
	0.8

	MTC resident
	-1.372
	-3.6
	-0.729
	-2.9
	1.011
	3.4
	1.134
	3.4


1  Does not include alternative-specific constants, which were adjusted during model calibration.
2Missing income not used in model application.
Table 3.  Destination Choice Models for Long Trips1
	
	Business
	Other

	Observations
	1,342
	1,922

	Initial log-likelihood
	-12,102.6
	-17,029.0

	Final log-likelihood
	-11,475.4
	-16,219.3

	Rho-squared
	0.052
	0.048

	
	Coef
	T-stat
	Coef
	T-stat

	Level of Service
	
	
	
	

	Mode choice logsum2
	0.107
	5.1
	0.103
	6.7

	Mode choice logsum3
	0.107
	constrained
	0.103
	constrained

	Distance (miles)
	-0.024
	-8.5
	-0.031
	-11.7

	Distance squared/100
	0.0070
	8.9
	0.0087
	10.8

	Distance cubed/10000
	-0.0005
	-8.0
	-0.0007
	-9.5

	Area type
	
	
	
	

	Urban destination
	0.724
	6.7
	0.810
	9.5

	Rural destination
	0.222
	2.0
	0.607
	6.8

	Urban to urban
	-0.010
	-0.1
	-0.096
	-0.8

	Suburban to suburban
	-0.185
	-1.5
	-0.029
	-0.3

	Rural to rural
	-0.112
	-0.7
	-0.036
	-0.3

	Size variables (exponentiated)
	
	
	

	Other employment
	1.000
	constrained
	
	

	Households
	
	
	1.000
	constrained

	Retail employment-low inc
	2.889
	2.1
	0.960
	-0.1

	Service employment low inc
	1.728
	1.5
	0.287
	-3.6

	Retail employment med inc
	9.318
	4.9
	0.850
	-0.4

	Service employment med inc
	2.292
	1.8
	0.373
	-3.3

	Retail employment -high inc
	7.338
	5.6
	1.385
	0.8

	Service employment - high inc
	2.525
	2.8
	0.393
	-2.4

	Retail employment missing inc4
	100.000
	0.1
	0.001
	-0.1

	Service employment missing inc4
	100.000
	0.1
	0.433
	-1.4


1  Does not include location-specific constants and region-to-region constants, which were adjusted during model calibration.
2  Estimated without distance terms.
3  Constrained in final model.
4  Not used in application.

Table 4. Access and Egress Mode Choice Models

	Long Distance
	Business - Access
	Other - Access
	Business - Egress
	Other - Egress

	Observations
	1,500
	2,724
	1,466
	2,668

	Final log-likelihood
	-1,662.3
	-2,519.4
	-2,121
	-3,066.6

	Rho-squared(0)
	0.276
	0.365
	0.075
	0.231

	Rho-squared(cons)
	0.003
	0.068
	-0.023
	0.053

	
	Coeff.
	T-stat
	Coeff.
	T-stat
	Coeff.
	T-stat
	Coeff.
	T-stat

	Level of Service
	
	
	
	
	
	
	
	

	Cost ($)
	-0.075
	const
	-0.120
	const
	-0.075
	const
	-0.120
	const

	In-vehicle time (min)
	-0.060
	const
	-0.030
	const
	-0.060
	const
	-0.030
	const

	Out of vehicle time (min)
	-0.147
	-6.4
	-0.083
	-2.5
	-0.140
	-6.2
	-0.060
	const

	VOT IVT ($/hour)
	$   48.00
	
	$   15.00
	
	$   48.00
	
	$   15.00
	

	Ratio OVT/IVT
	2.45
	
	2.76
	
	2.33
	
	2.00
	

	Drive and (un)park
	
	
	
	
	
	
	
	

	Constant
	4.503
	4.6
	1.319
	2.6
	1.580
	1.5
	-7.241
	-5.2

	Travel alone
	
	
	-1.925
	-3.0
	
	
	
	

	Fewer cars than persons
	-1.547
	-2.2
	-1.903
	-2.8
	
	
	
	

	Low income
	-2.741
	-1.8
	-1.960
	-2.8
	-18.010
	-2.5
	-1.263
	-1.1

	High income
	0.709
	1.6
	0.339
	1.4
	
	
	
	

	From conventional rail
	
	
	
	
	-9.490
	-2.5
	
	

	From high-speed rail
	
	
	
	
	-2.251
	-1.8
	
	

	Airport is LAX
	-3.128
	-3.8
	-1.275
	-1.7
	
	
	
	

	Airport is SFO
	-4.082
	-4.4
	-3.036
	-2.6
	
	
	
	

	Airport is SJC
	
	
	-1.479
	-2.1
	
	
	
	

	Airport is SAN
	-1.410
	-2.3
	-1.370
	-2.3
	
	
	
	

	Rental car
	
	
	
	
	
	
	
	

	Constant
	-7.010
	-4.3
	-8.801
	-3.2
	6.345
	4.8
	-0.280
	-1.3

	To/from conventional rail
	-5.000
	const
	-5.000
	const
	-3.522
	-2.4
	-1.176
	-3.1

	From high-speed rail
	
	
	
	
	
	
	-0.552
	-2.4

	No cars in HH
	5.110
	3.2
	
	
	
	
	
	

	High income
	2.953
	2.4
	
	
	
	
	
	

	Travel alone
	
	
	
	
	
	
	-2.588
	-4.7

	Low income
	
	
	
	
	-2.082
	-0.9
	-1.891
	-3.7

	Get dropped off
	
	
	
	
	
	
	
	

	In-vehicle time (min)
	-0.014
	-2.5
	-0.031
	-3.1
	
	
	-0.015
	-3.9

	Household size
	0.606
	2.9
	0.478
	2.8
	0.974
	2.8
	
	


Table 4. Access and Egress Mode Choice Models (continued)

	Long Distance
	Business - Access
	Other - Access
	Business - Egress
	Other - Egress

	
	Coeff.
	T-stat
	Coeff.
	T-stat
	Coeff.
	T-stat
	Coeff.
	T-stat

	Taxi
	
	
	
	
	
	
	
	

	Auto distance
	-0.084
	-4.8
	-0.071
	-3.8
	-0.126
	-7.9
	-0.052
	-6.6

	Constant
	0.927
	1.4
	-2.207
	-2.7
	7.705
	5.5
	-0.749
	-3.3

	To conventional rail
	-2.827
	-2.6
	-2.265
	-2.4
	
	
	
	

	To/from high-speed rail
	
	
	-1.092
	-2.1
	2.507
	3.6
	
	

	Travel alone
	
	
	-0.877
	-1.8
	
	
	-2.768
	-4.6

	Low income
	-3.010
	-1.9
	
	
	-3.002
	-2.3
	-1.038
	-2.3

	High income
	
	
	0.849
	1.9
	
	
	
	

	Transit
	
	
	
	
	
	
	
	

	No walk access
	-4.836
	-4.6
	-1.807
	-1.9
	
	
	
	

	Rail used in path
	3.689
	5.2
	1.727
	2.4
	
	
	2.960
	5.0

	Constant
	0.912
	1.0
	-1.705
	-2.1
	4.441
	2.7
	-3.715
	-3.6

	From conventional rail
	
	
	
	
	3.580
	5.2
	1.830
	2.8

	From high-speed rail
	
	
	
	
	0.592
	0.7
	1.032
	1.9

	Travel alone
	
	
	1.569
	2.3
	
	
	
	

	No cars in HH
	
	
	1.439
	1.7
	
	
	
	

	Fewer cars than persons
	1.480
	2.1
	
	
	
	
	
	

	Low income
	
	
	0.846
	1.0
	
	
	1.216
	1.9

	Walk
	
	
	
	
	
	
	
	

	Constant
	3.142
	2.9
	0.901
	0.8
	10.330
	5.7
	-0.815
	-1.3

	To/from airport
	-5.000
	const
	-2.634
	-1.0
	-2.074
	-2.0
	
	

	Nesting and scaling
	
	
	
	
	
	
	
	

	Nest- transit, walk, taxi
	0.387
	5.9
	0.451
	3.3
	0.280
	6.9
	0.470
	5.3

	Scale on hypothetical choices
	0.682
	15.9
	1.000
	const
	0.516
	9.8
	1.000
	const


 Table 5. Main Mode Choice Models1
	
	Long Trip

	
	Business
	Other

	Observations
	2,918
	8,075

	Final log-likelihood
	-1,969
	-3,933

	Rho-squared(0)
	0.389
	0.310

	Rho-squared(cons)
	0.163
	0.155

	
	Coeff.
	T-stat
	Coeff.
	T-stat

	Main Mode Characteristics
	
	
	
	

	Air – Residual constant
	-1.645
	-4.7
	0.6898
	2.8

	Conventional rail – Residual constant
	-0.387
	-0.9
	0.6149
	2.6

	High-speed rail – Residual constant
	-0.3503
	-1.1
	1.434
	7.0

	Level of Service (all modes)
	
	
	
	

	Cost ($)
	-0.01626
	-12.8
	-0.035
	-18.5

	In-vehicle time (min)
	-0.016
	-11.1
	-0.011
	-14.2

	Service headway (min)
	-0.003
	-3.7
	-0.003
	-3.5

	Reliability (% on time)
	0.001
	0.3
	0.005
	1.9

	Implied Value of Time IVT ($/hour)
	$57.71
	$18.33

	Ratio Frequency/IVT
	0.21
	0.24

	Trip Characteristics
	
	
	
	

	Car – Travel in a group of 2+
	0.8492
	4.2
	1.417
	9.1

	Air – Travel in a group of 2+
	-0.3375
	-2.7
	-0.5061
	-3.7

	Household Characteristics
	
	
	
	

	Car – Household size
	0.0704
	0.9
	0.225
	4.9

	Air – High income
	1.018
	4.5
	
	

	Conventional rail – High income
	0.5237
	1.2
	
	

	High-speed rail – High income
	0.9807
	4.8
	
	

	Car – Fewer cars than workers in HH
	-0.7696
	-2.4
	-0.4354
	-2.8

	Nesting and scaling
	
	
	
	

	Nest – air, rail, high-speed rail
	0.8514
	8.8
	0.7426
	13.0

	Access mode choice logsum
	0.1150
	3.1
	0.2134
	3.8

	Egress mode choice logsum
	0.1561
	3.8
	0.3974
	7.1


1  Does not include location-specific constants and region-to-region constants, which were adjusted during model calibration.
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Figure 2.  Interregional Model Structure
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