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abstract

Contemporary choice behaviour studies usually test for the presence of random heterogeneity in tastes using mixed logit (ML) models and, in most cases, find that individuals indeed show significant taste variations. However, the flexible nature of the ML model is the cause of a potentially serious problem; this is the difficulty of distinguishing between different substitution patterns and parameter identification. In this paper we investigate to which extent the lack of information richness in the data is a source of empirical non-identification. The capability of estimating a model with identifiable parameters and free of confounding effects depends on how much of the phenomenon is explained by the data variability. Although this is often related to the number of observations it is not a necessary condition. In fact, this is basically the difference between revealed and stated preference data, where usually small samples are sufficient in the latter case because the information available for each individual is richer. 

A collection of datasets was generated varying systematically, once at a time, (a) the standard deviation of the distribution of the travel time difference between alternatives, (b) the number of choice tasks for each individual and (c) the number of pseudo-observations. A Monte Carlo analysis was carried out where the number of replications was varied in order to recreate the distribution of the relevant estimates. Using these datasets, several ML models allowing for random travel time parameters were estimated with different number of draws, from one to a ten thousand, and results were analysed and compared in terms of model goodness of fit, efficiency of the estimated parameters and capability to recover the real parameters used to generate each dataset. 

We found that identification problems arise when travel time has low variability between alternatives; this problem disappears as the richness of the data associated to the random parameter increases. We also found that the capability of the ML to reproduce random heterogeneity increases when more than one choice is available for each individual. Moreover, when such panel data are used, the effect of sample size on the empirical identification reduces considerably
key words Mixed Logit model, empirical identification, data richness, repeated choice tasks.

Introduction

A major concern in the recent literature on demand modelling has been accounting for the individual differences in preferences and sensitivities that modellers may found implicit in individuals choices. In the last couple of years almost any study about choice behaviour has tested for the presence of random heterogeneity in tastes and, more interestingly, almost all studies have found that individuals appear to show significant taste variations. Notwithstanding, the capability of available techniques to properly reproduce true individual behaviour is something that still needs to be explored. In fact, the flexible structure of the Mixed Logit (ML) model, which is one of the most powerful models currently available, is at the roots of several potentially serious problems.

Several studies (Bhat and Castelar, 2002; Hensher, 1998; Hensher and Greene, 2003; Munizaga and Alvarez, 2001; Sillano and Ortúzar, 2005; Swait and Bernardino, 2000) have investigated the difficulty of distinguishing different substitution patterns in a ML, referring mainly to the scale problem. Other studies (Cherchi and Ortúzar, 2006) refer to the structure of the ML, and associate the source of the confounding effects to the compensatory rule and the property of “relative” utility (i.e. discrete choice models work on differences between alternatives). Munizaga and Alvarez (2006) suggest that small sample sizes can lead to erroneous conclusions about the model’s covariance structure, while Chiou and Walker (2006) show that only using a sufficiently large number of random draws it is possible to detect whether the model is empirically identified.

The objective of this paper is to analyse to which extent the richness of the dataset might be the source of empirical identification problems. It is well-known that the capability of estimating a correct model (i.e. with identifiable parameters and free of confounding effects) depends on the amount of explanation that can be extracted from the data. However how rich (in terms of variability) the data should be to avoid empirical identification problems is not known and, more importantly, it is not known either to which extent good estimated models (from a statistical point of view) really reproduce the “true” underlying random heterogeneity. Although the problem of data richness is often related to the number of observations, this is not a necessary condition. In fact, this is basically the difference between revealed and stated preference data, where usually small samples are sufficient in the latter case because the information available for each individual is richer. In this paper we analyse the effect of data variability on the estimation of ML models with both revealed and stated preference data.

In particular in the case of stated preference (SP) data the variability in the data can be controlled by the analyst through the range and number of levels of the attributes. We specifically try to analyse the effect that each of these elements, determining data variability, has on the empirical identification of the ML model and on its capability to reproduce the real underlying phenomenon. Bliemer and Rose (2004; 2005) analysed the effect of the number of alternatives, attributes, and attribute levels on the optimal sample size for a stated choice experiment, that is, the experimental design that determines the higher asymptotic efficiency of the estimated parameters in a MNL model. In particular, they found that the number of attribute levels does not play a role in determining the optimal sample size, while the attribute level range may be the possible explanation for some problems of convergence encountered in their experiments; however, they do not explicitly analyse the effect of the attribute range. They also discuss that there is obviously a relation between the number of attribute levels and the attribute ranges, as the latter usually increases with the number of levels, but they did not attempt to separate out these two effects.

The rest of the paper is organised as follows. In section 2, after a brief review of the basic ML theory, we discuss the parameter identification problem and the effect of data variability on the efficiency of ML parameter estimates. In section 3 the empirical experiments set out to test the effect of data richness in the empirical identification problem are described. In section 4 the results from the estimation of several ML models, using the datasets generated are reported and discussed, while section 5 summarizes our conclusions.

1. The identification problem in the mixed logit model

The ML utility function is characterised by an error term with two components. The first allows obtaining the logit probability (and thus has the usual iid Gumbel distribution) and the second has a distribution which can be chosen by the modeller, depending on the phenomenon s/he needs to reproduce. In fact, the ML label is applicable to any model the choice probabilities of which can be expressed as the integral of standard logit probabilities over a density of parameters:
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The logit probability of individual q choosing alternative j, evaluated at parameters, is integrated over the density distribution of 
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where kj is an alternative specific constant, bj a vector of taste parameters fixed over the population, xqj a vector of attributes, qj a vector of unobserved taste parameters randomly distributed over the population for each alternative, and zqj a vector of attributes that could be known (i.e. such as the xqj) or unknown. It is common practise to talk of Random Parameters Mixed Logit (RP) when the specification involves only the error term sharing the vector of attributes with the systematic component of utility, and to talk of Error Components Mixed Logit (EC) when the error term is associated only to unknown attributes.

The identification issue is related to the existence of a single unique solution for the unknown model parameters. But the ML model, as any discrete choice model, needs to be normalised as, otherwise, there are an infinite number of values (i.e. parameter estimates) that can reproduce the model structure. Walker (2002) distinguishes between two types of identification: the theoretical identification, which is inherent to the model specification regardless of the data at hand, and the empirical identification that depends only on the information used to estimate the model.

The theoretical identification problem is usually associated to the presence of too many parameters; here the model cannot be estimated because of the implicit structure. Walker (2001) provides a refreshingly clear analysis of the three conditions (order, rank and positive definiteness) that must hold for the model to be identified. The empirical identification problem, instead, occurs when the model is estimable in principle but the data cannot support it. Whether the full covariance structure can be estimated or not, will depend on the quality of the information provided. In theory, the parameters can be empirically identified if the number of observations is sufficiently large to provide enough information, but the covariance matrix is inversely related to the squared value of the attributes associated to each parameter as we show below.

Let us assume a MNL model with only two alternatives and one parameter. This assumption does not modify the general result but it allows to simplify the notation, as we can omit the index for the k-th attribute and the summation over the i alternatives available to the individual q, with 
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; then, the variance of the estimated parameter can be written as the value of the second derivative calculated at the point of the estimated parameter (which is the best approximation of the expectation of the Hessian):
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where 
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 is the probability that individual q chooses the alternative (j) which is actually chosen. From (3) it is evident why a bigger sample size and higher variability in the data allows for models estimated to be, generally, more robust. In the revealed preference data case the degree of variability is often related to the number of observations because it cannot be controlled by the modeller; in the case of SP data instead, the number of choice tasks faced by each individual and the range of the attributes matter. In particular, if the attribute levels are defined as a percentage variation of the actual values experimented by each individual (
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while for absolute attribute levels (
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where Q is the sample size. When a ML is estimated, the covariance matrix is still calculated as the inverse of the matrix of second derivatives of the log-likelihood function, but the probabilities are now simulated probabilities:
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where R is the number of draws used to calculate the simulated probability. The expression of the covariance matrix in the ML model is more complex than those reported in equations (3)-(5) but the structure is analogous. In the simple case of two alternatives and generic parameters, the variance of the mean of the random parameter is:
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In particular, note that it is also inversely related to the squared value of the attributes associated to each parameter (as in the case of fixed parameters) and it is also a function of the probabilities. A major problem in the estimation of the ML model relates to the log transformation of the simulated probabilities (Borsch-Supan and Hajivassiliou, 1993): the log-likelihood function in the ML model is biased. This is the main reason while a sufficiently large number of draws is required to have efficient estimates in a ML model. In fact, as reported by Walker (2001), in order to minimize the bias in the simulated log-likelihood, the choice probabilities must be simulated with precision, and precision increases with the number of draws. At the same time, as shown in equations (3)-(5), the data (sample size and attributes’ variation) are determinant in increasing the efficiency of the estimated parameters.
Finally it is interesting to remember that while the theoretical identification is crucial for the EC version of the ML model, it does not exist when random parameters are specified for continuous attributes of the alternatives. In fact, in the RP version of the ML model the random parameters are associated to some known (by the modeller) attributes, and thus there is always some information that allows to theoretically identifying extra parameters.
2. simulated experiments

Following Williams and Ortúzar (1982), a collection of datasets were simulated in which pseudo-observed individuals behaved according to a choice process determined by the analyst. Simple samples, with only two alternatives, two generic attributes (travel time and cost) and a Gumbel error (q), were generated but the marginal utility of travel time (q) was varied such that the generated sample showed random heterogeneity in tastes. In particular, two types of experiments were set out. In the first one, individuals were assumed to evaluate only one situation for each pair of alternatives (i.e. as in revealed preference data), while in the second we considered repeated observations (i.e. pseudo-individuals as in SP data). In all experiments the attributes and travel time parameters were generated according to a censored Normal distribution to avoid mass points on the truncations that can induce estimation problems (Cherchi and Polak, 2005).

In the first experiment, the datasets were generated according to the following utility functions:
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We first generated the vectors of Gumbel errors and of cost differences between both alternatives (with mean equal to -4.5, standard deviation equal to 2.45, and lower and upper limits equal to [–10; –0.1]). Then, keeping these vectors fixed, several samples of 2,000 observations were generated varying the standard deviation of the distribution of travel time differences between both alternatives, as illustrated in Table 1. In this way we were able to control for the richness of information in the data (in this case the travel time attribute) and its effect on the capability of the ML model to reproduce random heterogeneity in tastes. Although in the last three samples we were not able to control perfectly for the mean of the travel time parameters, the generated means varied only slightly. To avoid results being dependent on a particular case, each sample was generated several times (following Train, 2003, up to 50 repetitions were generated) with different seeds.
In the second experiment we assumed that each individual had to evaluate more than one choice situation, according to the following utility functions:
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A Monte Carlo analysis was set out to generate a collection of samples that reproduced SP choices. Samples were generated varying - once at a time - the number of choice tasks, the number of individuals and the attributes’ ranges. The choice experiments were generated varying the travel time between both options around a value previously generated for each individual, and leaving the rest of the utility functions unchanged. In particular, both the cost and travel time parameters were kept fixed among the choice tasks and equal to the value generated for sample A1, while a new Gumbel error vector was generated for this experiment that varied among choice tasks. Sample A1 was used as the base sample because it presented a very low variability in travel time differences and, as we will illustrate in the next section, the ML estimated with this dataset had a very poor performance.

Thus, in the first dataset, 25 individuals were considered, each evaluating only two choice tasks (thus the final sample had 50 pseudo-individuals), one equal to the base sample (i.e. the value generated in sample A1) and another where the travel time differences between both alternatives for each individual were increased by 5%. In the second set, the choice situations were again only two, the base sample and a second task where the travel time differences were increased by 10%, and so on. The characteristics of the samples generated are illustrated in Table 2.

For each dataset discussed above, and for each repetition of the Monte Carlo experiment, several ML models allowing for random heterogeneity in the travel time parameters were estimated varying the number of draws from 1 to 10,000. Results are compared by means of the typical statistics used in practice (i.e. the t-test against zero and the maximum log-likelihood). These two statistics allow highlighting how we would judge the model if it was estimated in real life, i.e. when we do not know the values of the true parameters. As we used simulated data, we were also able to evaluate whether and to which extent the estimated parameters differed from the true values, as we were able to calculate the model scale parameter (i.e. the ratio between the estimated and true parameters) and carry out a t-test against the true parameter. To test whether the estimated means and standard errors were close enough to the true parameters we also computed the measure of asymptotic efficiency (MAE) proposed by Bliemer and Rose (2004):


[image: image19.wmf]ˆˆ

max()()/

truetrue

qjjqjj

MAE

mbbsbb

=-±


(10)
where:
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are, respectively, the mean and standard deviation of the estimated parameters (
[image: image21.wmf]ˆ

qj

b

). The estimator is asymptotically unbiased if, in the limit, its mean is equal to the true mean and its standard deviation equals zero.

As discussed previously all parameters estimated in a discrete choice model are scaled by an unknown factor () proportional to the inverse of the standard deviation. It does not matter the absolute value of the scale but that the estimated parameters are deflected by the same scale value. Thus, when comparing the estimated values with the true values in equations (10) and (11), the MAE measure can be influenced by the scale factor of the estimated parameters. Therefore, we also computed a scaled MAE measure, where at each iteration the ratio 
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3. estimation of ML models

Table 3 reports the results of the ML estimation using the datasets described in Table 1. As a Monte Carlo experiment was set out, the values reported in Table 3 are the average estimates over the number of times the data were generated (Monte Carlo repetitions). The first result worth noting is that we found a strict relation between empirical identification problems and the variability of the data associated to the random parameter. In fact, empirical identification problems clearly appear only when the travel time differences between alternatives have low variability, while all models were identified for higher richness in the data.

In particular, we found that in 40% of cases (i.e. 40% of the seeds used) for a coefficient of variation CV(Tv1-Tv2) = 0.08 (model RP1, Table 3) we could only estimate the model with 125 draws; in another 40% of cases models could be estimated with up to 1,000 draws and in the remaining 20% with 2,000 draws. For a higher CV(Tv1-Tv2) = 0.11 (model RP2, Table 3) we found that in 25% of cases we were able to estimate the model only for 125 draws and in 13% of cases models could be estimated with up to 1,000 draws (the remaining 62% with 2,000 draws). For CV(Tv1-Tv2) = 0.16 (model RP3, Table 3) we found that in 25% of cases models could be estimated with up to 1,000 draws and the remaining 75% with 2,000 draws. Finally, with the samples generated with CV = 0.19 or greater (models RP4-RP8), the ML estimates were always empirically identified whatever seed was used.

If we look at the tests we usually perform in practice it is clear, and not surprising, that the significance of the standard deviation of the random travel time parameter increases with the information richness (i.e. the difference between the attributes in both alternatives). In particular, in our experiment a significant random parameter (i.e. t-test against zero greater than at least 1.96) was estimated only when the coefficient of variation of the travel time difference between alternatives was greater than 0.25. However, if we look at the scale parameter (lambda), it seems that the richness of the data is not a sufficient condition for the ML to reproduce correctly random heterogeneity. In fact, if lambda varies among the attributes for a given model it means that some parameter is not estimated correctly. In this sense, note that even model RP8, which is the best one under the usual statistics applied in practice, shows some differences in the scale parameters among the estimated attributes. What is more, models RP6 and RP7 (estimated with a richer dataset) also show very different scale parameters; this means that, apart from scale, the estimated parameters differed from the true values
. In line with these comments, note also that model RP8 has a much smaller MAE than model RP1 (Table 5), although the MAE measure for the standard deviation estimated with model RP8 was not too small.

The t-test against the true value deserves some further comments. First, it should be noted that to perform this test the estimated parameters need to be scaled; however, if different lambda values are estimated for each parameter, even in a simulated experiment we are not able to know what the real scale parameter is. The t-test only provides insightful information when the same scale parameter is obtained for all attributes. As in several of our models different scale parameters were obtained, and as we do not know which ones were estimated correctly, for each model we calculated the average value of lambda and carried on the t-test scaling the estimated parameter for this average lambda value.

However, this test does not seem to provide a strong indicator. It is clear that poor models (with low variability in the data and parameters) have a higher value of the t-statistic against the true values, while better models (with high variability in the data and/or in the parameters) have a low value for it, but the test is never bad and there is no clear tendency for improvement, either with data richness or with the variability of the random parameter.

Finally, it is important to mention that in the above experiments the inherent variability of the random parameter also plays an important role, especially in the capability of the model to reproduce the true phenomenon. In fact, we repeated the above experiments keeping the vector of travel time differences fixed and varying only the standard deviation of the distribution of random travel time parameters. We do not report the detailed results here for space reasons, but we found that the t-tests improved as the variability of the data increased, but were not affected by the degree of heterogeneity actually present in the taste parameters. On the other hand, the capability of the ML to reproduce the true parameter depends on the distribution of the random parameter more than on the richness of the data. This result is quite important, because it reveals that good statistics are not sufficient to guarantee that a model will reproduce correctly the true random heterogeneity.

Table 4 reports the results of models estimated using some of the datasets described in Table 2 and generated as if they were SP experiments. Firstly, it is important to remark that, differently from the revealed preference dataset, the number of cases with empirical identification problems was extremely low and only occurred for the dataset generated with two choice tasks and 50 individuals or less. Interestingly, for 50 individuals we found that the number of cases where empirical identification problems occurred increased with the range of variation of the attributes (i.e. 25% of cases with sample SP4 and 60% of cases with sample SP5). However, we need to do more experiments to verify the robustness of this effect.

For all the other samples (that is, those generated with more than 50 individuals), we did not find any empirical identification problems. All models were estimated varying the number of draws from 1 up to 10,000 and we found that for over approximately 100 draws, results were highly stable. Moreover, all models reproduced correctly a highly significant random heterogeneity in travel time, even for only two choice tasks per individual and also for very few individuals (only 100). The models in Table 4 can be compared with model RP1 in Table 3. As expected, the capability of the ML to reproduce random heterogeneity increased with the number of choice tasks performed by each individual (better t-test against zero, better log-likelihood and better scale parameter). We also found that as the number of choice tasks increased, the ML model was able to reproduce random heterogeneity even if the number of individuals was low (see model SP13 in Table 4). It is interesting to note that the scaled MAE measure (Table 5) is good and much better than that computed for the revealed preference data (note that only model RP1 can be compared with the SP results, as the SP data were generated as variations of dataset RP1). It is also important to note that the MAE (not scaled) measure is always quite high, due to the effect of the scale parameters implicit in the estimated parameters. However the high value of the MAE might also be due to the lower number of repetitions used (compared to the 1,000 repetitions used by Bliemer and Rose). Further investigations are in progress to reinforce these results.

4. Conclusions

We analysed the problem of empirical identification of parameters in the ML model, i.e. when the model is estimable in principle, but the data cannot support it. In particular, we investigated the effect of data information richness on the capability of ML structures to reproduce correctly an underlying phenomenon. Although it is well-known that the capability of estimating a correct model (i.e. with identifiable parameters and free of confounding effects) depends on the amount of explanation that can be extracted from the data, how rich the data should be to avoid empirical identification problems and to produce correct models is not known. More importantly, it is not known to which extent a well estimated model (from a statistical point of view) really reproduces the “true” underlying random heterogeneity.

Firstly, we found that revealed preference data exhibit more problems of empirical identification than stated preference data. We also found that empirical identification problems are related to the richness of the data and obviously arise when the attribute associated to the random parameter has low variability between alternatives, and decreases up to disappearance as the variability in the data increases. In particular, in our simulated revealed preference data we found that empirical identification problems arose when the coefficient of variation of the travel time differences between alternatives was lower than 0.19; i.e. only when the differences in travel time had a standard deviation bigger than one fifth the mean, the identification problems disappeared (for any number of draws, we tried up to 2,000 draws) and the travel time parameters became highly significant.
We also found that identification problems do not depend on the degree of variability inherent in the random parameter but only on the richness of the associated data. In fact, our results show that if the variability of the travel time differences between alternatives is high, the ML model is able to reproduce taste heterogeneity for any standard deviation of the random travel time parameter. However, maybe the most interesting result is that the t-test against zero depended on the variability of the data and not on the inherent variability of the random parameter; notwithstanding, this does not guarantee that the model will be able to reproduce correctly the underlying phenomenon. In fact, we found that the capability of the ML to reproduce true parameters (measured through the scale parameter) depends more on the distribution of the random parameter than on the richness of the data. A very rich dataset is not able to reproduce correctly the random heterogeneity if the true distribution of the random parameter does not show enough variability and it is too asymmetric.

Finally, to try isolating the effect of sample size on the richness of the information provided to estimate a parameter, we generated a collection of samples that reproduced stated preference choices. We found that the capability of the ML to reproduce random heterogeneity increased when more than one choice was available for each individual. Moreover, when panel data was used the effect of sample size on the empirical identification reduced considerably. In fact, we found that for a number of choice tasks equal to four, the ML model was able to reproduce random heterogeneity even if the number of individuals was very low (i.e. 25 individuals). Conversely, to avoid the empirical identification problem at least 100 individuals were necessary if they had only two choice tasks.
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Table 1. Samples generated varying travel time attributes

	Samples
	Time1 – Time2

	
	mean
	standard deviation
	coefficient of variation
	limits

	RP1
	4.0
	0.31
	0.08
	[2.9; 5.1]

	RP2
	4.0
	0.44
	0.11
	[2.5; 5.6]

	RP3
	4.0
	0.62
	0.16
	[1.9; 6.2]

	RP4
	4.0
	0.76
	0.19
	[1.4; 6.7]

	RP5
	4.0
	0.98
	0.25
	[0.6; 7.5]

	RP6
	4.0
	1.37
	0.34
	[0.2; 9.0]

	RP7
	4.1
	1.86
	0.45
	[0.1; 9.5]

	RP8
	4.3
	2.27
	0.52
	[0.1; 9.9]


Table 2. Samples generated varying the number of choice tasks and the sample size

	Samples
	

	
	No. of

choice tasks
	Sample size

(Pseudo-individuals)
	N. of individuals
	% variation

	SP1
	2
	50
	25
	(=, 5%)

	SP2
	2
	50
	25
	(=, 10%)

	SP3
	2
	100
	50
	(=, 5%)

	SP4
	2
	100
	50
	(=, 20%)

	SP5
	2
	100
	50
	(=, 50%)

	SP6
	2
	100
	50
	(=, 10%)

	SP7
	2
	200
	100
	(=, 5%)

	SP8
	2
	200
	100
	(=, 10%)

	SP9
	2
	200
	100
	(=, 50%)

	SP10
	2
	1,000
	500
	(=, 50%)

	SP11
	2
	2,000
	1,000
	(=, 5%)

	SP12
	2
	2,000
	1,000
	(=, 50%)

	SP13
	4
	200
	50
	(=, 5%, 10%, 15%)

	SP14
	4
	400
	100
	(=, 5%, 10%, 15%)

	SP15
	4
	1,000
	250
	(=, 5%, 10%, 15%)

	SP16
	4
	2,000
	500
	(=, 5%, 10%, 15%)


Table 3. Model estimation results: travel time parameter q ~ N(-0.9, 0.39)
	 
	RP1
	RP2
	RP3
	RP4
	RP5
	RP6
	RP7
	RP8

	sample CV(Tv1-Tv2) 
	0.08
	0.11
	0.16
	0.19
	0.25
	0.34
	0.45
	0.52

	Travel time (mean)
	-0.4006
	-0.5473
	-0.5861
	-0.609
	-0.623
	-1.6905
	-0.9108
	-0.7255

	t-test vs 0
	(-2.34)
	(-1.24)
	(-4.53)
	(-4.73)
	(-5.39)
	(-3.80)
	(-5.40)
	(-6.74)

	t-test vs "true" value
	-2.92
	-0.80
	-2.43
	-2.26
	-2.40
	1.78
	0.06
	-1.62

	lambda
	0.45
	0.61
	0.65
	0.68
	0.69
	1.88
	1.01
	0.81

	Travel time (st.dev.)
	-0.0162
	0.7778
	0.2073
	0.2645
	0.3098
	1.3176
	0.7426
	0.4752

	t-test vs 0
	(-0.05)
	(-0.99)
	(-1.26)
	(-1.55)
	(-2.15)
	(-3.14)
	(3.56)
	(3.54)

	t-test vs "true" value
	-1.15
	-0.49
	1.11
	0.74
	0.56
	-2.21
	-1.69
	-0.63

	lambda
	0.04
	1.99
	0.53
	0.68
	0.79
	3.38
	1.90
	1.22

	Travel cost
	-0.5499
	-1.1878
	-0.6292
	-0.6822
	-0.7041
	-1.8471
	-1.1669
	-0.8926

	t-test vs 0
	(-26.09)
	(-1.31)
	(-5.79)
	(-5.13)
	(-5.80)
	(-3.60)
	(-5.10)
	(-6.22)

	t-test vs "true" value
	-21.35
	0.21
	-3.41
	-2.39
	-2.46
	1.65
	-0.73
	0.75

	lambda
	0.55
	1.19
	0.63
	0.68
	0.70
	1.85
	1.17
	0.89

	Constant (alt. 1)
	-0.2277
	-1.7146
	0.3035
	0.2296
	0.2366
	0.3705
	-0.1532
	0.2251

	t-test vs 0
	(-0.33)
	(-0.91)
	(-0.76)
	(-0.65)
	(-0.82)
	(-0.67)
	(-0.51)
	(1.01)

	t-test vs "true" value
	-0.33
	-0.91
	-0.76
	-0.65
	-0.82
	-0.67
	0.51
	-1.01

	L(max)
	-1049.96
	-1034.22
	-1031.54
	-1018.41
	-1017.12
	-976.93
	961.43
	-935.66

	No. of draws
	125-2000
	125-2000
	1000-2000
	2000
	2000
	2000
	2000
	2000

	Sample size
	2000
	2000
	2000
	2000
	2000
	2000
	2000
	2000


Table 4. Model estimation results: travel time parameter: CV(Tv1-Tv2) = 0.08
	
	SP7
	SP9
	SP11
	SP13
	SP14
	SP16

	No. of choice tasks
	2
	2
	2
	4
	4
	4

	No. of individuals
	100
	100
	1000
	50
	100
	500

	% variation
	5%
	50%
	5%
	5-10-15%
	5-10-15%
	5-10-15%

	Travel time (mean)
	-1.3324
	-1.2282
	-1.1626
	-1.6235
	-1.1378
	-1.2399

	t-test vs 0
	(-3.05)
	(-3.42
	(-9.99)
	(-2.66)
	(-3.86)
	(-9.72)

	t-test vs "true" value
	-0.052
	0.004
	0.507
	0.034
	-0.292
	0.217

	lambda
	1.51
	1.42
	1.30
	1.77
	1.38
	1.37

	Travel time (st.dev.)
	0.9676
	0.8042
	0.8759
	1.0692
	0.8587
	0.8756

	t-test vs 0
	(3.32)
	(3.28
	(10.87)
	(3.52)
	(5.46)
	(11.86)

	t-test vs "true" value
	0.426
	-0.003
	0.633
	0.019
	0.896
	0.397

	lambda
	1.68
	1.42
	1.49
	1.80
	1.61
	1.50

	Travel cost
	-1.2677
	-1.4262
	-1.3561
	-1.8072
	-0.8107
	-1.3821

	t-test vs 0
	(-2.85)
	(-3.64
	(-11.28)
	(-3.05)
	(-2.75)
	(-10.91)

	t-test vs "true" value
	0.525
	-0.008
	0.193
	-0.022
	1.426
	0.170

	lambda
	1.26
	1.42
	1.35
	1.80
	0.81
	1.38

	L(max)
	-88.9871
	-92.7012
	-897.4769
	-77.8909
	-159.9737
	-778.2788

	No. of draws
	1000
	1000
	1000
	1000
	1000
	1000

	Sample size
	200
	200
	2000
	200
	400
	2000


Table 5. Model asymptotic efficiency

	
	MAE
	MAE scaled

	
	RP1
	RP8
	SP7
	SP11
	SP16
	RP1
	RP8
	SP7
	SP11
	SP16

	Travel time (mean
	0.5469
	0.2470
	0.7939
	0.3815
	0.4627
	0.4237
	0.1658
	0.0849
	0.0815
	0.0749

	Travel time (st.dev.)
	1.1081
	0.4855
	1.0295
	0.5670
	0.6025
	1.2147
	0.2081
	0.0857
	0.0992
	0.1043

	Travel cost
	0.4721
	0.2907
	0.5885
	0.4130
	0.4800
	0.5872
	0.1228
	0.0217
	0.0315
	0.0457











� It important to remark that all the models illustrated in Table 1 were estimated also with 5,000 and 10,000 draws and results did not change.
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