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Examining Accuracy of Logit Modeling with Simulated RP and SP Data

By JD Hunt, M Zhong and JE Abraham
Abstract
This paper describes some initial work done in a larger program of research examining the properties of logit model estimation and calibration approaches, in particular focusing on the ability of these approaches to re-establish known true, or ‘population’, parameters.   In this work, synthetic observations having the characteristics of revealed preference data and stated preference data are developed using specified population utility function parameter values.  Then some of the different approaches available for estimating logit models using such data, both separately and jointly, are applied to determine the estimates of the parameter values that are provided – in essence to see how accurately the estimates reproduce the specified population values used to generate the data.  The results indicate some of the relative strengths and weaknesses of the different approaches considered.  For example, results are less accurate when the number of people choosing an alternative is low; this problem can be addressed by asking people to rank alternatives using stated preference experiments, which provides additional information about lower-ranked alternatives.
Introduction

Context

Logit choice models enjoy wide-ranging use in transportation demand modeling.  These models are one part of a larger family of disaggregate choice models that has evolved and expanded over the past 50 or so years to include probit, logit, nested logit, ordered logit, distributed parameter logit, combinatorial logit, and mixed/cross-nested logit (Train, 2003).  These various elements of the family arise with different treatments of the random components of utility that are added to the more basic measurable conditioning components of utility assigned to the choice alternatives.  The logit (multinomial logit) and nested logit forms are the most widely used.  Specialized software packages and routines within standard statistical software packages are readily available for the estimation of specific models.  Much has been done and reported in the use of different types of data from widely different locations and contexts, producing models with various function forms, attributes and socioeconomic variables.
In many cases, the observations of choice behavior used to estimate the models concern real-world situations, collected in surveys with respondents indicating the travel choices they make from among actual alternatives.  Such observations are called revealed preference, or RP, observations.  In some cases, the observations of choice behavior used concern hypothetical situations, collected in surveys with respondents indicating the travel they prefer from among described alternatives presented to them.  Such observations are called stated preference, or SP, observations.  Sometimes, the estimation process uses both RP and SP observations together, either sequentially or simultaneously.  Several techniques are reported in the literature.

However, there is very little reported in the literature on examinations of the accuracy of these estimation processes – ‘accuracy’ in this case concerning how well the estimated values they provide match the corresponding population values for the utility function coefficients and related model parameters.  Of course, the population values for the parameters are not known with the sorts of RP and SP observations collected in surveys as described above.  In fact, specific ‘population’ values are perhaps more theoretical constructs than actual values in such cases.  So the estimated values cannot be compared with anything directly, and the accuracy of the estimation process cannot be assessed in this way.  Thus, despite the very widespread use of the logit model, this specific aspect of its accuracy does not get much attention.   In some discussions in the literature, there is almost a sense that it is naïve to even consider the accuracy of the estimation process in this way.

A lot of work has been done comparing aggregate demands from model results and model forecasts for changed conditions with the corresponding actual aggregate demands.  In general, such work is seeking indications of the accuracy of the model, and by implication, indications of the accuracy of the estimation processes used as defined above.  But many other factors are also influencing the values being considered and any indications that are provided in such efforts are at best only very indirect indications of the match between model and population parameter values.

The intention in the work described here is to consider the accuracy of the estimation processes commonly used with the logit model – in terms of how well the estimated values match the corresponding population values – considering this as a separate component in isolation using direct indications.  Estimation processes using RP observations of choices, SP observations of ranked preferences and combined RP/SP data are all considered.  This is motivated by a desire to increase understanding of the impact of this element of the larger modeling process on the accuracy – or perhaps more general fidelity and realism – of the results of policy analysis and forecasting work and of the indications about the nature of behavior and sensitivities that are obtained. 

The approach in the work described here is to synthesize both RP and SP observations using utility functions with specified (and thus known) values for the population parameters, and then perform the model estimations using the synthesized data and compare the resulting estimated values with the known population values.  Samples of synthetic observations with sizes and characteristics similar to those typical of larger travel demand model development are considered.  This is done to help make the indications from the work more readily applicable in practical contexts.

Contents of This Paper

This paper describes the approach used in this work, including setting out in some detail how the synthetic samples are generated and outlining more generally how the tests are conducted.  It presents some test results and discusses the indications they provide, and it then offers some conclusions about what this work has shown and what are appropriate next steps. 
Previous Work
The approach used here has been used previously by Koppelman and Chu (1983) in the context of logit model estimation.  But the issue investigated in their work is the influence of sample size on the range of error in the estimated values relative to the known population values.  Comparatively small choice situations and simple utility functions are considered.  A primary finding is that the range of error is unacceptably large with sample sizes of less than about 1,000 to 2,000 observations in such situations.  Reasonable practical work often includes much larger samples and more alternatives.  The impacts of data type and estimation process – involving RP choices, SP rankings and combined RP/SP data – are not considered.  
de Carvalho et al (1998) also used this approach previously in the context of logit model estimation.  But the focus in their work was a comparison of the logit model results with results from neural network methods.  In one of the reported tests, a comparatively large sample size is used, with just over 51,000 observations, but with only two alternatives and very simple utility functions.  The distributions assumed for the utility error terms are identical to those assumed in the development of the logit model.  This is a near ideal case for the estimation process, and yet the resulting parameter estimates are still not as close to the population values as might be expected or hoped.  They are close, but not exact; and the terms ‘roughly’ and ‘near’ are used to describe their matches.  The potential for further consideration of the sampling distributions for the parameter estimators is mentioned and dismissed, and the discussion moves on to consideration of other less ideal cases and comparisons with neural network methods.

The work reported here extends and broadens these investigations, using the same approach, to consider the impacts of data type and estimation process, including RP choices, SP rankings and combined RP/SP datasets, typical of those used in practical modeling efforts.  

Generating Samples of Synthetic Observations
A range of different samples of synthetic observations are generated.  The same basic approach is used in all cases, with certain properties of the sample varied as part of the testing process.

Basic Approach

The choice situation considered includes 7 discrete alternatives, each with 4 attributes.  In each synthetic observation, a utility value for each observation is calculated as follows:

Um   =   Vm  +  em 
(1)
with

Vm   =   Σk αm,k xm,k  +  βm
(2)

where:

m    
= 
index representing alternatives;
k     
= 
index representing attributes;
Um  
= 
utility for alternative m;
Vm  
= 
measurable conditioning component of utility for alternative m;
xm,k 
= 
value of attribute k for alternative m;
αm,k 
= 
sensitivity parameter for attribute k for alternative m;
βm    
= 
alternative specific constant (ASC) parameter for alternative m; and
em     
= 
random component of utility for alternative m, often called the ‘error term’ of the utility for the alternative.
The calculation of these utility values, Um, for all m alternatives in a given observation requires specific values for all of the following components:
· the αm,k  for all m and k; these are the population sensitivity parameter values;

· the βm for all m; these are the population ASC parameter values;

· the xm,k for all m and k; these are the attribute values for the alternatives in a given observation; and 

· the em for all m; these are the random components of utility for the alternatives.

Using all these specific values, the utility values, Um, for all m alternatives are calculated and used to construct the observation – expressing it in terms of the description that would be obtained in each case.

In the generation of a particular sample of n such observations, the specific values for the components are established as follows:

· a single constant value is specified for each of the αm,k for all m and k and for each of the βm for all m; these are the values for the target population parameters for the sample that the estimation process is seeking to match;
· a sampling distribution with a value for the mean μm,k and a value for the standard deviation σm,k is specified for each of the xm,k for all m and k; the specific values for the xm,k for a given observation are then selected using the corresponding distributions; and

· a sampling distribution with a value for the mean μm and a value for the standard deviation σm is specified for each of the em for all m; the specific values for the  em for a given observation are then selected using the corresponding distribution;

Table 1 shows the specified values for the αm,k and βm used in all of the synthetic samples considered here.

This basic approach is used in the development of each of the synthetic samples considered here.  The samples differ in terms of both (a) the values specified for the means and standard deviations for the sampling distributions for the xm,k and em and also (b) the construction of the observation.
Construction of the Observation – RP vs SP Observations

Actual RP observations typically include, in each observation, a set of choice alternatives and their attribute values along with an indication of the selected alternative.  Consistent with this description, each synthetic RP observation considered here is constructed by identifying the one alternative with the highest utility, marking it as the selected alternative, and listing the values for all 4 attributes for all 7 alternatives.

Actual SP observations sometimes include, in each observation, a ranking of the choice alternatives from most to least preferred together with their attribute values.  Consistent with this description, each synthetic SP observation considered here is constructed by listing all 7 alternatives in order from highest utility to lowest utility, indicating most to least preferred, and listing the values for all 4 attributes for all 7 alternatives.

Synthetic Sample: RP1
A sample of 15,000 synthetic RP observations is developed and labeled ‘RP1’.

The xm,k are sampled from independent Normal distributions with means and standard deviations as shown in Table 2.

The em are sampled from independent and identical Normal distributions, with mean μm=0 and standard deviation σm = 1.5.  In the development of the logit model form the em are assumed to follow Gumbel distributions, not Normal distributions.  Normal distributions are used in this work, consistent with the Central Limit Theorem, in an attempt to keep the tests as realistic as possible.  Further testing could consider the impacts of these different distributions on the accuracy of the estimation process as considered here.

Synthetic Sample: RP2

Another sample of 15,000 synthetic RP observations is developed and labeled ‘RP2’.  The inputs are the same as for RP1, but with the means for the xm,k altered in order to change the selection frequencies for the alternatives over the full set of 15,000 observations in the sample.

Synthetic Sample: RP3

A third sample of 15,000 synthetic RP observations is developed and labeled ‘RP3’.  Again, the inputs are the same as for RP1 and RP2, but with the means for the xm,k altered again in order to change the selection frequencies over the full sample.

The resulting aggregate selection frequencies for the three RP samples are shown in Table 3. 

Synthetic Sample: RP4
A fourth sample of 15,000 synthetic RP observations is developed and labeled ‘RP4’.
The inputs are the same as for RP3, but with the xm,k sampled from independent Normal distributions with means as shown in Table 2 and standard deviations all 4 times larger than the corresponding values shown in Table 2. 

Synthetic Sample: SP1 

A sample of 15,000 synthetic SP observations is developed and labeled ‘SP1’.

The xm,k are again sampled from independent Normal distributions with means and standard deviations as shown in Table 2.

The em are again sampled from independent and identical Normal distributions, with mean μm=0 and standard deviation σm = 1.1.
It can be argued that the hypothetical situation considered in an actual SP observation can be much more clearly specified and controlled than the real-world situation considered in an actual RP observation, which should act to reduce the variance in the error terms in the SP case relative to the RP case.  On the other hand, it can also be argued that the hypothetical situation in an SP observation can concern unfamiliar alternatives or situations, and can fail to elicit a careful and considered response, which should act to increase the comparative variance in the error terms in the SP case.   So, in seeking to be more realistic in the testing, it is not clear if a larger or a smaller standard deviation should be used for the distribution for the em for the SP observations relative to that used for the RP observations.  In any case, for the work here it is sufficient merely to specify a different standard deviation for the SP observations, and it is decided to use a smaller value of 1.1 for σm 
Synthetic Sample: SP2 

Another sample of 15,000 synthetic SP observations is developed and labeled ‘SP2’.

The xm,k are sampled from independent Normal distributions with means as shown in Table 2 and standard deviations all 4 times larger than the corresponding values shown in Table 2.

The em are again sampled from independent and identical Normal distributions, with mean μm=0 and standard deviation σm = 1.1.
Estimation Tests
The estimations described here are all performed using ALOGIT, version 3.2 (Daly, 1992).
The estimates of the sensitivity parameters and ASC parameters output by the estimation process are factored by the value of the logit model dispersion parameter.  That is, the reported values from the estimation process are:

α*m,k = λα’m,k
(3)
and
β*m = λβ’m
(4)
where:

α*m,k = 
value output by estimation process for sensitivity parameter corresponding to population sensitivity parameter αm,k ;
α’m,k
= 
value of point estimate established by estimation process for population sensitivity parameter αm,k ;
β*m 
= 
value output by estimation process for alternative specific constant parameter corresponding to population alternative specific constant parameter βm ;
β’m 
= 
value of point estimate established by estimation process for population alternative specific constant parameter βm ; and
λ 
= 
dispersion parameter for logit model.
The dispersion parameter λ is a component of the Gumbel distributions assumed for the utility error terms in the development of the logit model.  The standard deviation of the Gumbel distribution is related to the dispersion parameter λ as follows:
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This is used to calculate the λ used in Equation (3) and (4) when converting the α*m,k and β*m values output by the estimation process into the α’m,k and β’m values for the point estimates that can be compared to the population values αm,k and βm.
One of the ASC values considered in estimation, β*m for m=1, is fixed at 0 in every estimation.  This is necessary because the estimation process can establish at most A-1 differences among the ASC for a full set of A alternatives.  The population value βm for m=1 is also specified to be 0 throughout, for consistency.

Figure 1 presents the estimation results using sample RP1.  The points in the plot compare the estimated values α’m,k and β’m along the vertical axis with the population values along the horizontal axis.  The square points are for the α’m,k and the triangle points are for the β’m.  The wrapped value besides each triangle is the index of the alternative and the corresponding t-ratio for each of the β’m is shown inside parenthesis. If the match is perfect, then the point sits on the equivalence line.

As can be seen – the points do not all sit along the line.  The ASC in particular match only very poorly.  The lower half of Figure 1 presents an expanded view of the results for just the sensitivity parameters – showing that they are also not matching all that well.  Certainly, these are only single point estimates based on just one sample.  But the values used for the population sensitivities and ACS and for the attributes are all within typical ranges in practical work.  The t-ratios are strong for 27 of the 28 sensitivity parameters α*m,k , with values greater than 2 in absolute magnitude.  The t-ratios for the ASC parameters β*m are not so strong, with values less than 2 in absolute magnitude in most cases.
The standard goodness-of-fit measure ρ2c is not very high, but again is within the typical range for practical work. ρ20 is much higher, reflecting the ability of the model to predict the relatively low chosen shares of some alternatives.  
These results do not indicate the full properties of the estimators, but they do indicate that in typical conditions the estimation process with standard RP data can provide values that do not match all that well with the corresponding population values, even when there are 15,000 observations in the sample.

Figure 1 indicates a tendency for the estimated values to be below the corresponding population values.  There may be a bias arising with the use of the Gumbel distribution in the model and Normal distributions in the synthesis for the error terms.  This tendency appears in some but not all of the other test results obtained in this work.
The low t-ratios for the ASC estimates provide some indication of their poor match, but the values for the t-ratios for the sensitivity parameter estimates do not provide much indication of the situation regarding their match. 

Figure 2 presents the estimation results using RP2 and RP3.  These show how the estimated values can change dramatically when there are changes in the means for the attributes altering the aggregate selection frequencies.  Note that the scales on the axes in Figure 2 are different from what they are in Figure 1.  The ASC were not changed in RP2 and RP3, only the attribute means.  The results suggest that the point estimates match better as the selection frequencies become more even, particularly for the ASCs.  It could be that the changes in the attribute means make the measurable conditioning components relatively larger than the error terms, which helps improve the matches.

The t-ratios obtained for the estimates of the ASC generally tend to get smaller in absolute magnitude as the selection frequencies become more even.  Thus, the ASC estimates are displaying generally lower t-ratios as their matches to the population values are improving.  In the strictest sense, the t-ratio for an estimate concerns the statistical significance of the estimate’s difference from 0.  But it provides an indication of the standard deviation of the statistical estimator being used relative to the point value established and, as such, is often used in practical work to help form an assessment of the ‘quality’ or ‘precision’ of the estimate.  These results show how misleading the t-ratio can be in some cases.

It is important to note that the values for ρ20 and ρ2c obtained in these cases are not ‘terribly’ low. For example, ρ20 is between 0.18 to 0.32 for the RP2 and RP3 estimation and ρ2c is around 0.17 for both cases.  Such values are routinely accepted in practical work.  The relative values for the ρ20 are actually higher when the matches to the ASC are worse, which is potentially misleading.  
In any case, these test results suggest that there should be more concern about such difficulties with the accuracy of the estimation process as defined here when the selection frequencies are not fairly evenly distributed.  The ρ20 and ρ2c may provide some help in identifying such situations.  But it is not entirely clear at this point how they are to be interpreted in this regard.  Perhaps some form of entropy measure of the uniformity of the selection frequencies might be an appropriate measure to consider as part of the assessment of models development in practical work.
Figure 3 presents the estimation results for SP1 and SP2.  The exploded logit estimation process described by Chapman and Staelin (1982) is used in order to take advantage of the greater amount of information available with ranking.  The ranking in a given observation is used to form a series of consistent choice observations, where the highest ranked alternatives are eliminated one-by-one from the choice sets, yielding subsets which describe what each person would have chosen if they were forced to choose from amongst a smaller set of available options.   The match is much better, particularly for the sensitivity parameters.  The values for ρ20 and ρ2c are much higher, so in practical work the greater confidence implied by these high values would perhaps not be inappropriate.  The match is still not so good for the ASC with SP1, where the σm are lower; but is fairly good with SP2, suggesting that a wider variation in the attributes in SP experiments is helpful.  The benefits of increased attribute variances in SP work have been indicated elsewhere (McMillan et al, 1997).  In essence, in an SP experiment it is desirable to have ranges of attributes that force people to encourage people to choose alternatives that they would not choose very often in the current real life situation – to enable the estimation of a model that can predict the proper response of people to those alternatives in possible future policy scenarios.
The difficulties with the ASC match encountered in much of the testing may be related to the fact that the estimation process acts to reproduce the aggregate selection frequencies when there is a full set of m-1 ASC available for m alternatives.  With the RP choice data, where there is just one set of aggregate shares, the ASC estimates β*m adjust for the cumulative effect of all the mismatches for the other sensitivity parameters in working to match the aggregate selection frequencies.  But with the SP ranking data, there is much more information about the relative preferences of the alternatives – respondents have explicitly described their relative preferences for even those alternatives that are less preferred overall.  This enables the improved ability to match the ASC – and more so with SP2 when the σm are higher and each alternative is more likely to show up in different places in the rankings.
Figure 4 shows the estimation results for RP4 combined with SP2. The simultaneous RP/SP estimation process is used as described by Morikawa et al (1991), Ben-Akiva and Morikawa, 1990a; 1990b and Bradley and Daly (1992).

In this simultaneous process, two sets of utility functions are considered for two choice models with linked parameters, one model for the RP observations and one model for the SP observations.  The corresponding point estimates α*m,k for the two sets of utility functions are fixed to be the same and values are estimated for this single set of α*m,k along with separates sets of values for the two sets of β*m.  A value also estimated for the ratio of the dispersion parameters for the two models, which appears as a factor on all of the parameters in one of the two models.  Typically, the ratio of dispersion parameters used for this factor is as follows:
λs / λr
(6)
where:

λs 
= 
dispersion parameter for logit model for SP observations; and
λr 
= 
dispersion parameter for logit model for RP observations.
In this form (as opposed to its inverse) it is applied in the model for the SP observations.  Then the values for the α*m,k as they appear from the estimation include the λr factors internally and so they are directly suitable for use in further modeling of behavior in an RP (or real-world) context.
The estimated value obtained for λs / λr is 1.3636 , which matches the population value exactly to five digits.
The matches for the ASC appear as good as or better than they are with just SP2.  There is a slight tendency for the estimated values for α’m,k to be below the corresponding population values, as was noted with RP1.  The availability of both sets of data provided a richer and more robust set of information to the estimation procedure.  
Figure 5 shows the estimation results for RP4 combined with SP2 – this time using the sequential RP/SP estimation process described by Swait et al (1994).  In this sequential process, values for the point estimates α*m,k and β*m are estimated first using just the SP data and then the α*m,k values are fixed with those obtained from the SP estimation and new values for the β*m are estimated using just the RP data.  In effect, the second step estimates a new set of values for the point estimates for the ASC, the β*m, and a value for the ratio of the dispersion parameters λr/λs that is factored into each point estimate. The sequential estimation provides good estimates for utility coefficients as they all fall on the reference line, but deteriorated estimates for ASCs with comparable error magnitudes as the joint estimation approach. 
Conclusions
The work here considers the accuracy of logit estimation processes specifically in terms of how well the point estimates for the utility function sensitivity parameters and alternative specific constants match to the corresponding population values.  The results obtained do not provide definitive indications of relevant estimator properties; rather they provide some indications of the potential degree of match or otherwise with point estimates for logit model parameters with typical data types and estimation approaches.  This is a useful starting point for developing a more complete understanding.
There is some considerable risk in seeking to draw conclusions about the accuracy of the logit estimation process using values for the goodness-of-fit statistics ρ20 and ρ2c or the t-ratios for estimated parameters.  Some counter-intuitive results are obtained in this work, where relatively higher values for these statistics arise with estimated parameters that on balance do a poorer job of matching to the corresponding population values.  This has implications for practical work in logit modeling regarding the certainty of indications about behavior and about forecast demands.
It is appropriate to consider the distribution of aggregate selection frequencies over the full sample of observations as part of the estimation process, perhaps using some form of entropy measure, as this does appear to be related to the ability of the estimation process to match the population values.  A more uneven distribution of selection frequencies will lead to problems with the accuracy of the parameter estimates.  There seems to be an appreciation of this in some reports of practical work, and the idea of choice-based sampling has been available for some time for dealing with the lack of information for infrequently chosen alternatives.  The results here provide a bit more focus on the issue, and highlight its relevance with regard to the alternative specific constants in particular.
The additional information provided with the ranking in SP observations is very helpful in improving the accuracy of the estimation process as considered here – particularly with regard to the alternative specific constants.  A wider variation in the attribute values is also helpful in improving this accuracy, suggesting that stated preference experiments should be designed to elicit a variety of responses and to force respondent to consider ranges of situations that might not occur in the real world.
The issues considered here need further systematic attention, with work done running a multitude of simulations for ranges of the factors considered in order to develop more complete indications of the estimator distributions for α’m,k and β’m.  In addition, it is expected that relevant work that has been done and reported elsewhere on these and related aspects of the properties of these estimators, perhaps using closed-form mathematics rather than the simulation approach used here; the results of such other work should be integrated with the work done here.
Work should also be done investigating issues concerning the ability to use SP observations containing alternatives not included in the RP observations in order to establish suitable values for α*m,k and β*m.  Assessing the demand for an alternative that does not exist in available RP observations is a common problem in practical modeling work, with a variety of approaches being used – in particular concerning the identification of the value to use for the alternative specific constant.  Additional understanding and appropriate practical guidance would help.  
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Table 1 Pre-specified utility function coefficients and alternative specific constants 

	Alternative (m)
	αm,1
	αm,2
	αm,3
	αm,4
	βm

	1
	-0.25
	-0.50
	-0.25
	-0.50
	0

	2
	-0.80
	-0.50
	-0.15
	-0.40
	-0.75

	3
	-0.65
	-0.20
	-0.55
	-0.30
	2.50

	4
	-0.50
	-1.20
	-0.70
	-0.20
	0

	5
	-0.40
	-0.50
	-0.15
	-0.4
	1.5

	6
	-0.05
	-0.30
	-0.50
	-0.55
	-0.80

	7
	-0.25
	-0.50
	-0.10
	-0.80
	1.50


Where αm,k  is the utility sensitivity parameter for attribute k for alternative m and βm is the alternative specific constant parameter for alternative m
Table 2 Pre-specified means and standard deviations for attributes of individual alternatives

	Alternative (m)
	μm,k=1
	σm,k=1
	μm,k=2
	σm,k=2
	μm,k=3
	σm,k=3
	μm,k=4
	σm,k=4

	1
	10.0
	0.25
	5.0
	0.50
	20.0
	3.25
	15.0
	0.40

	2
	5.0
	0.50
	5.0
	0.50
	25.0
	7.00
	20.0
	4.10

	3
	15.0
	1.20
	2.0
	0.20
	19.0
	2.50
	15.0
	2.20

	4
	10.0
	2.20
	10.0
	4.00
	20.0
	5.00
	12.0
	1.80

	5
	10.0
	2.50
	8.0
	2.00
	16.0
	3.00
	10.0
	1.50

	6
	15.0
	2.30
	7.0
	1.30
	15.0
	2.00
	15.0
	2.70

	7
	15.0
	1.50
	5.0
	1.00
	14.0
	1.20
	25.0
	3.50


Where um,k is the mean and σm,k is the standard deviation for the sampling distribution for values of attribute k for alternative m.
Table 3 Choice frequency for the three RP datasets
	Alternative
	First set
	Second set
	Third set

	
	Choice frequency
	Choice frequency
	Choice frequency

	1
	1,377
	1,051
	1,682

	2
	835
	894
	1,783

	3
	53
	3,046
	2,842

	4
	25
	236
	3,044

	5
	12,100
	6,331
	1,944

	6
	594
	2,271
	1,940

	7
	16
	1,171
	1,765
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[image: image2.emf](a) RP Choice estimates v.s. true values (with theta =2.4 and 15,000 observations)
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Figure 1 Estimation results for the first RP choice data set

[image: image4.emf]RP choice 2 estimated v.s. true values (with 15,000 observations)
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[image: image5.emf]RP choice 3 estimated v.s. true values (with 15,000 observations)
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Figure 2 Estimation results for the second and third RP choice data set
[image: image6.emf](a) SP ranking estimates v.s. true values (with original attribute variances)
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[image: image7.emf](b) SP ranking estimates v.s. true values (with 4 time variances of originals)
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Figure 3 Estimation results for the SP ranking data set
[image: image8.emf](a) Joint RP/SP Ranking Estimation with 15,000 Observations for Each
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Figure 4 Joint RP/SP Estimation
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Figure 5 Sequential estimation with SP and RP data
Table 4 Estimation Results
	Samples and Estimations:
	RP1
	RP2
	RP3
	SP1
	SP2
	RP4&

SP2

simultaneous
	RP4 & SP2

sequential

	Estimated Coefficients

	α*m,k or β*m for a particular m and k
	Est
	t
	Est
	t 
	Est
	t
	Est
	t
	Est
	t
	Est1
	t
	Est2
	t

	α*1,1
	-0.016 
	-0.1
	-0.204 
	-1.6
	0.036 
	0.3
	-0.323 
	-4.6
	-0.261 
	-12.9
	-0.292 
	-9.7
	-0.261 
	-12.9

	α*1,2
	-0.395 
	-6.6
	-0.129 
	-2
	-0.205 
	-3.8
	-0.517 
	-14.9
	-0.588 
	-54.1
	-0.498 
	-31.3
	-0.588 
	-54.1

	α*1,3
	-0.150 
	-16
	-0.180 
	-17.6
	-0.167 
	-19.7
	-0.292 
	-51.2
	-0.282 
	-113.6
	-0.247 
	-72
	-0.282 
	-113.6

	α*1,4
	-0.497 
	-6.7
	-0.335 
	-4.1
	-0.338 
	-5.1
	-0.629 
	-14.6
	-0.551 
	-42
	-0.463 
	-23.7
	-0.551 
	-42

	β*1
	0.000 
	N/A
	0.000 
	N/A
	0.000 
	N/A
	0.000 
	N/A
	0.000 
	N/A
	0.000/0.000 
	N/A
	0.000 
	N/A

	α*2,1
	-0.610 
	-7.9
	-0.275 
	-3.7
	-0.025 
	-0.5
	-0.917 
	-27.9
	-0.916 
	-72.9
	-0.799 
	-44
	-0.916 
	-72.9

	α*2,2
	-0.257 
	-3.3
	-0.487 
	-6.4
	-0.345 
	-6.2
	-0.554 
	-17.3
	-0.572 
	-49.4
	-0.484 
	-28.7
	-0.572 
	-49.4

	α*2,3
	-0.093 
	-16.4
	-0.096 
	-17.1
	-0.095 
	-22.8
	-0.175 
	-69
	-0.170 
	-119.8
	-0.148 
	-76.6
	-0.170 
	-119.8

	α*2,4
	-0.249 
	-24.4
	-0.272 
	-26.7
	-0.257 
	-33.8
	-0.452 
	-92.8
	-0.456 
	-131.9
	-0.389 
	-86
	-0.456 
	-131.9

	β*2
	-1.941 
	-1.1
	-0.397 
	-0.2
	-0.029 
	0
	-1.999 
	-2
	-0.353 
	-1.2
	-0.75/-0.93
	-1.7/-2.1
	-0.224 
	-8.2

	α*3,1
	-0.654 
	-5.4
	-0.202 
	-11.3
	-0.215 
	-11.8
	-0.718 
	-42.7
	-0.742 
	-107.1
	-0.621 
	-66.5
	-0.742 
	-107.1

	α*3,2
	-0.153 
	-0.2
	-0.330 
	-3.1
	-0.016 
	-0.1
	-0.265 
	-2.8
	-0.243 
	-8.7
	-0.178 
	-4.4
	-0.243 
	-8.7

	α*3,3
	-0.497 
	-8.3
	-0.225 
	-24.9
	-0.214 
	-23.3
	-0.621 
	-69.9
	-0.625 
	-128.1
	-0.527 
	-82
	-0.625 
	-128.1

	α*3,4
	-0.329 
	-5.1
	-0.172 
	-17.4
	-0.163 
	-15.9
	-0.332 
	-36.9
	-0.337 
	-98.2
	-0.295 
	-60.9
	-0.337 
	-98.2

	β*3
	7.449 
	2.3
	0.374 
	0.2
	1.202 
	0.8
	1.263 
	1.2
	3.251 
	10.5
	1.958/1.869
	4.2/4/1
	3.395 
	122.6

	α*4,1
	-0.180 
	-1.3
	-0.350 
	-10.4
	-0.181 
	-17.1
	-0.573 
	-32.3
	-0.570 
	-100.1
	-0.493 
	-64.4
	-0.570 
	-100.1

	α*4,2
	-1.018 
	-7.8
	-0.546 
	-22.2
	-0.188 
	-30.3
	-1.354 
	-81.3
	-1.374 
	-132.7
	-1.172 
	-86.8
	-1.374 
	-132.7

	α*4,3
	-0.572 
	-7.2
	-0.224 
	-14.2
	-0.184 
	-35.3
	-0.785 
	-72.3
	-0.800 
	-130.2
	-0.683 
	-84.8
	-0.800 
	-130.2

	α*4,4
	-0.051 
	-0.3
	-0.146 
	-3.7
	-0.115 
	-9
	-0.211 
	-10.6
	-0.221 
	-44.4
	-0.195 
	-28.4
	-0.221 
	-44.4

	β*4
	-1.866 
	-0.6
	0.021 
	0
	0.007 
	0
	-1.438 
	-1.4
	0.415 
	1.4
	-0.07/-0.191
	-0.2/-0.4
	0.622 
	16.7

	α*5,1
	-0.223 
	-23.5
	-0.233 
	-29.7
	-0.257 
	-22.9
	-0.488 
	-26.7
	-0.456 
	-114.6
	-0.384 
	-72
	-0.456 
	-114.6

	α*5,2
	-0.293 
	-24.8
	-0.282 
	-29
	-0.482 
	-32.1
	-0.653 
	-29.4
	-0.572 
	-114
	-0.490 
	-72.6
	-0.572 
	-114

	α*5,3
	-0.073 
	-9.9
	-0.093 
	-15.1
	-0.097 
	-10.7
	-0.213 
	-14.8
	-0.173 
	-75.2
	-0.147 
	-45.3
	-0.173 
	-75.2

	α*5,4
	-0.231 
	-15.2
	-0.248 
	-19.8
	-0.241 
	-13.3
	-0.491 
	-17.3
	-0.452 
	-89.6
	-0.376 
	-53.7
	-0.452 
	-89.6

	β*5
	-2.030
	-1.2
	-0.859
	-0.5
	1.109
	0.7
	2.926
	2.6
	2.178
	7.3
	1.057/1.095
	2.4/2.5
	2.188
	78.5

	α*6,1
	-0.021
	-1.1
	-0.022
	-2.1
	-0.041
	-3.7
	-0.068
	-9.8
	-0.057
	-24.1
	-0.052
	-15
	-0.057
	-24.1

	α*6,2
	-0.253
	-7.4
	-0.212
	-11.3
	-0.187
	-9.5
	-0.335
	-26.9
	-0.338
	-71.6
	-0.302
	-44.5
	-0.338
	-71.6

	α*6,3
	-0.347
	-15
	-0.315
	-24.9
	-0.306
	-22.7
	-0.567
	-64.3
	-0.570
	-118.4
	-0.490
	-75.6
	-0.570
	-118.4

	α*6,4
	-0.351
	-20.1
	-0.164
	-17.9
	-0.163
	-16.7
	-0.620
	-87.6
	-0.627
	-130.2
	-0.533
	-85
	-0.627
	-130.2

	β*6
	-1.372
	-0.8
	-1.561
	-0.8
	-0.064
	0
	-2.032
	-2.1
	-0.451
	-1.5
	-0.88/-0.81
	-2/-1.8
	-0.363
	-13.6

	α*7,1
	-0.380
	-2
	-0.168
	-7.9
	-0.170
	-9.4
	-0.277
	-16.9
	-0.288
	-61.9
	-0.250
	-36.7
	-0.288
	-61.9

	α*7,2
	-0.868
	-3.2
	-0.355
	-10.9
	-0.170
	-6.3
	-0.576
	-22.9
	-0.574
	-76.7
	-0.506
	-46.9
	-0.574
	-76.7

	α*7,3
	-0.099
	-0.4
	-0.071
	-2.7
	-0.059
	-2.6
	-0.101
	-5
	-0.126
	-23.5
	-0.092
	-11.8
	-0.126
	-23.5

	α*7,4
	-0.667
	-7.3
	-0.267
	-27
	-0.255
	-30.3
	-0.881
	-84.2
	-0.910
	-135.7
	-0.779
	-89.4
	-0.910
	-135.7

	β*7
	8.129
	1.6
	0.554
	0.3
	1.391
	0.9
	-0.303
	-0.3
	2.377
	7.6
	1.43/1.39
	3.1/3
	2.52
	82.3

	
	
	
	
	
	
	SPoRP = 1.0
	

	Goodness of Fit Statistics
	

	Number of observations
	15,000
	15,000
	15,000
	90,000
	90,000
	36,000
	90,000 (SP)/90,000 (RP)

	Ln-Likelihood(0)
	-29188
	-29188
	-29188
	-127877
	-127877
	-51150
	-127877

	Ln-Likelihood(C)
	-10786
	-24037
	-28777
	-108167
	-128010
	-51260
	-128263

	Ln-Likelihood(*)
	-8808
	-19991
	-23782
	-29283
	-22464
	-10307
	-30889

	ρ2(0)
	0.698
	0.315
	0.1852
	0.771
	0.824
	0.798
	0.758

	ρ2(C)
	0.183
	0.168
	0.1736
	0.729
	0.824
	0.798
	0.759


1. ASC estimates are paired by (RP-ASC/SP-ASC).

2. The coefficients are from the SP estimation and ASCs are from the RP estimation. 



















































































































































































































Final RP estimation:





ρ20= 0.7688 


ρ2c= 0.7695





ρ20= 0.798


ρ2c= 0.798











ρ20= 0.7710


ρ2c= 0.7293





ρ20= 0.824 


ρ2c= 0.824








ρ20= 0.1852


ρ2c= 0.1736





ρ20= 0.3151


ρ2c= 0.1683





ρ20= 0.6982


ρ2c= 0.1834
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