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Abstract The subjective value of time is the ratio of the marginal rate of substitution between travel time and travel cost. In investment appraisal and analysis, measurement of value of time is necessary to establish the individual’s willingness to pay and in coming up with valid demand forecasts to justify expenditures of scarce public investment. This paper explores the building of confidence intervals for the subjective value of time applying methods that make inferences about the ratio of normal means, that is, by direct substitution of Fieller’s probability density function and our proposed t-test method. The theory, however, does not prescribe exactly how to choose the endpoints for the confidence interval. An obvious criterion is to minimize the length of the interval, which is not a problem as it is symmetrical if the resulting distribution is normal. As the resulting distribution of the value of time is generally skewed, we propose a method of minimizing its confidence interval. Our proposed approach in building the confidence interval and in minimizing the length of the confidence interval are then applied to data taken from a long-distance survey conducted in Japan.     
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1
INTRODUCTION

It is widely recognized in transportation economics that in the evaluation of the transportation projects’ costs and benefits, time savings represent the most important benefit, estimated up to 80% of the measured benefit of the project. It is commonly referred to as willingness to pay of an individual for savings in travel time. The subjective value of time is the marginal rate of substitution between travel time and travel cost.  In practice, it is derived normally from discrete choice models based on random-utility theory (Ben-Akiva and Lerman, 1985). Generally the resulting willingness to pay value is a point estimate from the mean of travel time divided by the mean of the travel cost, as if the pseudo mean of the distribution of the ratio X/Y would be just the ratio of the means of (1/(2. 

Garrido and Ortúzar (1993) proposed replacing the single value by the construction of a confidence interval given a certain level of confidence. This allows the estimation of lower and upper limits, which is important in the sensitivity analyses of project evaluation. Further, Armstrong, Garrido and Ortúzar (2001) proposed methods to make statistical inference on the ratio without the direct use of the associated probability density function since they considered the probability distribution for the ratio between two normally distributed variables as unknown a priori. However, it is a well-solved problem albeit a messy and complex solution. Fieller (1932) and later Hinckley (1969) derived the probability density function of the ratio of two normal variables. 

The problem of making inferences about the ratio of two normal variables occurs in many fields such as bioassay, bioequivalence and calibration. In this study we propose the application of the theory of the ratio of two normal variables in deriving the confidence interval for the value of time. In building the confidence interval, we use direct substitution of Fieller’s probability density function as well propose a t-test method as an alternative approach.      

The theory, however, does not prescribe exactly how to choose the endpoints for the confidence interval. An obvious criterion is to minimize the length of the interval as suggested by Greene (2003). The purpose of coming up with a short interval by minimizing the length of the interval is to obtain the greatest possible precision, similar to searching for point estimates with small dispersion (Pratt, 1961). The study will expound on the minimization of the length of the confidence interval based on the results of the direct substitution of Fieller’s pdf and the t-test method.  

2
Definition of VOT and the assumed modal split model

Here we adopt a practical case of defining VOT. Value of time is defined as the change in travel cost relative to change in travel time with the utility level kept constant.  The subjective value of time is given as
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where: 
Pi = travel cost, 
Ti = travel time

Travel cost and travel time are variables of a general multivariate normal population. Taking this simple example of an aggregate Logit model, an individual has the following choice of modes (2) and (3) given the utility function as (4). 
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where:
(i : share of mode i
Ui : utility function of mode i
(0i, (1, (2: parameters

pi = travel cost of mode i
ti = travel time of mode i
The choice function is given by
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where 
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The subjective value of time or the willingness to pay is 
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If the parameters a1, a2 are denoted as the estimates of the parameters (1, (2., then,
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where
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Now the important assumption here in this case is that value of time is a ratio of normal variates. Going back to the results in the previous chapters, VOT is derived as a ratio of demand functions. So assuming that both the demand functions of the numerator and the denominator are normally distributed, then this method is also directly applicable. 

3
Fieller’s probability density function

The problem of the ratio of normal variables is common in the field of biomedical assay (Finney, 1978), bioequivalence (Chow and Liu, 1992), cost data (Laska, 1997), calibration and agriculture (for example, in the estimation of red cell life span and ratio of the weight of a component of the plant to that of the whole plant).  

The nature of the distribution of the ratio depends on the parameters, a1 and a2 (means), (1 & (2 (standard deviations) and ( (correlation coefficient) of the bivariate normal distribution of the primary variables X and Y.  Fieller (1932) and later refined by Hinkley (1969) derived the density function of the ratio 
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where:
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To better illustrate the various resulting distributions depending on the values of the means, variances and coefficient of variation, let us consider the following examples.

Figure 1
Skewed unimodal

Fig. 1 is not a normal distribution but the distribution is fairly well behaved that it is possible to define a “pseudo mean” and “pseudo variance” thereby deriving the confidence interval. 

Figure 2
 Skewed unimodal

Fig.2 at first glance looks like a normal distribution. This is the case where 
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 follows the Cauchy distribution with indefinite variance and no mean and accordingly, no confidence interval. Another interesting point is that the ratio probability density function also has the potential to exhibit bimodal behavior as shown in Fig. 3. This bimodality does not mean any abnormality on the data being analyzed. Marsaglia (1965) addressed the fundamental formulation of the distribution of the ratio of normal variables, as well as pointed out through series of graphs this behavior of bimodality. 

Figure 3 
Bimodal
Fieller’s pdf could be applied to either skewed unimodal or bimodal distribution. We propose a simpler estimation for the skewed unimodal test by the t-test approach. However, before we implement this method, we need a preliminary test that indicates that the resulting distribution is indeed skewed unimodal. We adopt the method used by Hamedani, et al (2002) as preliminary test in determining the underlying distribution given as,
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wherein if 
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 means it is a Cauchy distribution, if 
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 then it is a skewed unimodal distribution and if ( ranges between 0.1 to 0.9 then it highly probable to be a bimodal case. 
4.1
Proposed method 1: Direct substitution of Fieller’s pdf

To derive the confidence interval for value of time, estimated values of (, (, and ( from actual data are plugged into (6.8) where 
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From the resulting graph of the distribution, the confidence interval is computed given a 95% confidence limit,  
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such that, 
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4.2 Proposed method 2: t-test method

The t-test method is an instance of what statisticians call as the method of pivots, wherein a pivot is a function of the data and the parameters whose distribution is independent of the value of the true parameter. The t-test method is slightly sophisticated as it uses Student’s t-distribution to account for population variances, which need to be estimated by sample variances as in the case of value of time data.

This approach is as follows. Suppose the linear statistics a1 and a2 are jointly normally distributed with expectations E[a1]=(1,and  E[a2]=(2. Then,
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Whatever the true value of (, 
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where
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and
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Setting the confidence level as 95%, 
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From (7.16) and given the condition 
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Solving for (,
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where
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Considering that the values of the interval are derived from a quadratic function, its results could either be real or imaginary numbers whereby the resulting interval could be either finite or infinite. 

Let 
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 be the quadratic coefficient of (18). When x is positive, 
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, the graph of (18) is concave upward, has a single minimum and has at least one real root. The confidence set is the interior of the interval between the roots as shown in Figure 4. On the other hand, if 
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[image: image53.wmf]0

=

x

, the graph is a straight line and the confidence set is a half-line to the left or right of the root, depending on the slope of 
[image: image54.wmf](

)

2

0

12

2

1

2

t

s

a

a

-

q

.
Figure 4 When 
[image: image55.wmf]0

>

x


Figure 5 When 
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4.3
Proposed method 3: Minimization of length of the confidence interval 

If the sampling distribution is symmetric, the symmetric interval is the best one. If the sampling distribution is not symmetric, however, as in the skewed case of value of time, this procedure is not optimal. The obvious criterion is to minimize the length of the confidence interval (Greene, 2003). 

The measure of desirability of a confidence interval is its expected length, thereby we propose minimizing the length of confidence interval. However, short intervals are desirable only when they cover the true parameter value but not necessarily otherwise (Lehmann, 1959). If a short confidence interval is taken to indicate accurate information about the parameter, then it may be preferable that the interval be long when it is far from the true parameter value (Pratt, 1961). This leads to a condition considering both expected length and the probability of covering false values conditional on the true value being covered.

To minimize the length of the confidence interval from the t-test method, set 
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Then, the resulting value of ( for the t-test method is solved by
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where:
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So what this study proposes is to apply this method of minimization of length of the confidence interval either to the results of the Fieller’s pdf or the t-test results.

5 Application to value of time

The data was taken from the long-distance travel survey in Japan and the resulting values of ( and ( are the following:
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The distribution of the ratio is plotted by solving the direct substitution method and is shown in Figure 6.  The graph is a skewed unimodal case (single peak). This is not a normal distribution but is well behaved enough to define a “pseudo mean” and “pseudo standard deviation”. This applies to large data wherein the assumption can be justified by the Central Limit Theorem in statistics, which says the mean of a sufficiently large sample will be approximately normally distributed no matter what the underlying population distribution.   

Figure 6
 The distribution of the ratio of value of time

The confidence intervals (lower bound and upper bound), computed by Fieller’s pdf and the estimation by t-test method, are shown in Table 1. The characteristic of the result from the Fieller’s pdf is that it is leaning on the left-side of the curve as compared to the values from the t-test method that is more on the right-side of the curve. 

5.1 Comparative statics

Comparative statics was also done by varying the values of (1 and (2 while the covariance value (12 is fixed as –6.50x10-11 as shown in Table 1. The left side values are the lower bound (L) while the right side values are the upper bound (U) of the confidence interval.

TABLE 1
 Comparison of direct substitution of Fieller’s pdf and t-test method

From Table 1, the confidence interval derived from the Fieller’s pdf is lower and narrower as compared to the results from the estimation by the t-test method.  

Figure 7
 Confidence interval with varying values of (1
Further, Figure 7 shows the divergence of the values with the varying of the values of (1 (results of Fieller’s pdf are designated as ‘direct’ while t-test as ‘t-test’). The same figure is obtained by varying (2.

5.2 Minimization of length of the confidence interval 

Table 2 shows the results of the minimization of length of intervals as applied to both methods. Note that with that minimization process, the discrepancy of values as shown graphically in Figure 7 was minimized if not eliminated.  

TABLE 2
 Comparison of results from Fieller’s theorem and t-test method 

with minimized length of interval

Figure 8 shows graphically the results of the comparison between the Fieller’s theorem and the t-test method after minimizing the length of interval. 

Figure 8 
Confidence interval with varying values of (1 after minimization of

 

length of interval

6 Conclusions
This study presented Fieller’s probability density function and its applicability to bind the value of time. The principal virtue of using the direct substitution of Fieller’s pdf for obtaining a confidence interval for the ratio is that it could be applied regardless of the probability distributions of the underlying random variables. However, considering the complexity of the pdf, it is worthwhile to look for an easier way of estimating the confidence interval given a certain probability level. By applying a preliminary test to determine the resulting distribution, we got an indication of what possible method of deriving the confidence interval could be applied. 

The proposed t-test approach as a simplified way of estimation for the skewed unimodal case. The method of pivots like the t-test method is a good alternative to come up with a valid estimation of the confidence interval for the ratio. The t-test method is classified to be a normal-theory method wherein it invokes the Central Limit Theorem, which says that the mean of a sufficiently large sample will be approximately normally distributed no matter what the underlying population distribution is. 
Given that the resulting distribution is unlikely to be normally distributed, symmetrical endpoints of the confidence interval do not result to optimal values. Looking back at the example, the resulting confidence intervals derived from the two methods as indicated in Table 1 gave differing values. However, by introducing minimization of length of the confidence interval to both results, the discrepancy was minimized if not eliminated. This minimized interval indicates the optimum interval for the corresponding skewed distribution. 
Therefore, t-test with minimization of the length of confidence intervals is best proposed if there is a unimodal case. Otherwise, Fieller’s pdf with minimization of length of confidence intervals is the method to be applied.
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TABLE 1
 Comparison of direct substitution of Fieller’s pdf and t-test method

	
	(2
	X1.5
	X2
	X3

	(1
	
	  L                     U
	    L                   U
	    L                 U

	X

1.5
	Fieller’s

t-test
	165.3             208.4

170.5             211.7
	164.6            208.8

169.9             212.2
	162.7          210.1

168.5          213.7

	X2
	Fieller’s

t-test
	159.5             214.8

165.8             219.4
	159.0            215.2

165.4             219.8
	157.4          216.2

164.2          221.0  

	X3
	Fieller’s

t-test
	148.8             229.3

156.9             237.2
	148.5            229.5

156.6             237.4
	147.4          230.2

155.8          238.3


TABLE 2
 Comparison of results from Fieller’s theorem and t-test method 

with minimized length of interval

	
	(2
	X1.5
	X2
	X3

	(1
	
	L              U
	L              U
	L          U

	X

1.5
	Fieller’s

t-test
	169.5     210.5

169.5     210.5
	168.9       211.0

169.0       211.1
	167.3     212.3

167.6     212.5

	X2
	Fieller’s

t-test
	164.0     217.2

164.2     219.3
	164.0       218.0

163.8      217.8
	162.5     218.8

162.6     218.9

	X3
	Fieller’s

t-test
	153.4     232.0

153.7     232.3
	153.2       232.4

153.4      232.6
	152.5     233.3

152.6     233.4
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Figure 1
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Figure 6
 The distribution of the ratio of value of time
Figure 7
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