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ABSTRACT 

The purpose of this paper is to address three methodological issues that arise when 

modeling time-of-travel preferences: unequal period lengths, schedule delay in the 

absence of desired time-of-travel data, and the 24-hour cycle. Varying period length 

is addressed by using size variables. Schedule delay is treated by assuming either 

arrival or departure time sensitivity and using market segment specific utility 

functions of time-of-travel, or using distributions of desired times-of-travel. The 24-

hour cycle is modeled by using trigonometric or constrained piecewise linear utility 

functional forms. The methodologies developed in this paper are applied to the 

modeling of time-of-travel choices in the context of tour-based models using the 

2000 Bay Area travel survey, and selected model estimation results are presented. 

 

Keywords: time-of-travel modeling, schedule delay, cyclicality, tour-based model, 

revealed preference data 
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1. INTRODUCTION 

1.1 Motivation and Objective 

The topic of time-of-travel preferences is of relevance for virtually all types of 

transportation services due to its importance in evaluating demand management 

policies such as congestion pricing and predicting transportation system 

performance. The purpose of this paper is to discuss methodological issues related to 

modeling time-of-travel preferences. The paper specifically addresses three 

methodological issues: (1) modeling time periods of unequal length, (2) accounting 

for schedule delay when data on the desired times-of-travel are unavailable, and (3) 

modeling the cyclical properties of time-of-travel preferences. 

The first issue arises because of the discretization of continuous time into time 

intervals or periods. These time intervals are often of varying length, for example, 

due to the small volume of trips for certain time intervals. We wish to address how 

to account for time periods of unequal length in the specification of the time-of-

travel model. 

The second issue is related to schedule delay, which is a fundamental concept in 

modeling time-of-travel choice (Vickrey, 1969; Cosslett, 1977; Abkowitz, 1980; 

Hendrickson and Kocur, 1981; Small, 1982). It postulates that travelers have desired 

arrival or departure times, and that travel at other times incurs disutility. If the 

desired times-of-travel were known, it would be relatively straightforward to include 

schedule delay in a time-of-travel choice model. However, these data are often not 

collected especially in revealed preference surveys and are difficult to forecast, and 

therefore it is important to find methods that account for schedule delay. 
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The third issue arises because of the 24-hour cycle and its implications on time-of-

travel preferences. That is, for a model designed for a one-day time frame, times t  

and 24t +  hours correspond to the same time instance. Therefore, these two times 

exhibit the same arrival (or departure) time preference and should have the same 

utility of arrival (or departure). We wish to address how to account for these cyclical 

properties in the utility specification of the time-of-travel model. 

1.2 Literature Review 

Time-of-travel choice has been studied using different methodological approaches 

which vary by the level of temporal analysis, model structure, and type of data 

collected. These various approaches include the use of discrete (see for example 

Small, 1982) vs. continuous time models (Wang, 1996; van Vuren et al., 1999); 

model structures ranging from logit to other more general models such as nested 

logit (Brownstone and Small, 1989), Ordered Generalized Extreme Value (Small, 

1987), multinomial probit (Liu and Mahmassani, 1998), and error components logit 

(de Jong et al., 2003; RAND Europe, 2005; Hess et al., 2007); and presence of 

schedule delay terms, generally available from stated preference but not revealed 

preference surveys (see for example de Jong et al., 2003). A review of the earlier 

literature on time-of-travel procedures can be found in Alfa (1986), Cambridge 

Systematics (1999), and Bates (2002). More recent work can be found in de Jong et 

al. (2003), Hess et al. (2005), RAND Europe (2005), Cambridge Systematics (2005), 

Abou Zeid et al. (2006), and Hess et al. (2007). 

Next we discuss how the literature has generally treated the methodological issues 

raised in this paper. First, the number and length of the time periods used have 
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varied, with earlier efforts using a few number of coarse time periods and more 

recent work using more detailed time periods. For example, in RAND Europe 

(2005) and Hess et al. (2007), periods as short as 1 hour or 15 minutes are used in 

the model. Generally, time period-specific constants for arrival time, departure time, 

and/or duration are included in the utility equations of the time periods. If the 

periods are of unequal length, these constants will capture the effect of unequal 

lengths but will mask the pattern of time-of-travel preferences, and therefore the use 

of size variables is preferred, as discussed later. 

Second, schedule delay information has generally been included in time-of-travel 

models estimated from stated preference data where information about preferred 

times of travel are likely to be collected. However, when these models are used in 

application or when models are estimated from revealed preference data, the 

schedule delay terms are normally excluded since information about scheduling 

preferences are unavailable or difficult to forecast (see for example Hess et al., 

2007). The inherent assumption is that the alternative-specific constants will capture 

these schedule delay effects, among other things. However, as we show later in the 

paper, the constants capture the effects of schedule delay only if additional 

assumptions are employed. 

Third, functional forms have been developed to approximate alternative-specific 

constants so as to avoid overfitting and identification problems as the number of 

these constants increases with the number of time periods. For example, in Hess et 

al. (2005), exponential, power, and empirical functions are used to approximate 

these constants. However, to the best of our knowledge, the cyclical properties of 
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time-of-travel preferences have not been dealt with in developing time-of-travel 

choice models. 

1.3 Contributions and Organization 

The contributions of this research are (1) the use of size variables to account for 

unequal period lengths, (2) the development of methods which obviate the need for 

explicitly incorporating schedule delay in the utilities of the time period alternatives, 

(3) the use of continuous cyclic functions of time which ensure that the utility at a 

time t  is equal to the utility at time 24t +  hours, and (4) the demonstration of the 

developed methods empirically using a tour-based traffic modeling approach for the 

San Francisco Bay Area. These methodological issues and their solutions have been 

developed by the authors of this paper for a project whose results are documented in 

Cambridge Systematics (2005) and Abou Zeid et al. (2006). The purpose of this 

paper is to provide the detailed derivations and analyses.   

The remainder of this paper is organized as follows. Section 2 discusses the issue of 

unequal period lengths and proposes a method to account for it. Section 3 develops 

methods for incorporating schedule delay even though related data might be 

unavailable. Section 4 derives the continuous functions of time that satisfy the 

cyclicality property of time-of-travel. Section 5 presents a case study describing the 

application of these methodological issues to the San Francisco Bay Area and 

presents selected model estimation results to illustrate the concepts. Section 6 

concludes the paper. 
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2. MODELING TIME PERIODS OF UNEQUAL LENGTH 

For discrete choice modeling of time-of-travel, a number of alternatives are defined 

which could be of varying lengths. In this section, we discuss how to account for 

this issue in the utility specification of the model. 

Let t  be an index for continuous time, where [ ]0,24t∈ . Let ( )v t  denote the 

systematic utility of time-of-travel t  and ( )f t  be the probability density function of 

time-of-travel choice. For a continuous logit model (Ben-Akiva and Watanatada, 

1981; de Palma et al., 1983), ( )f t  is given by: 

( )
( )

( )
24

0

v t

v t

e
f t

e dt
′

=
′∫
 

                                     (1) 

We discretize the 24-hour time horizon into H  periods. For a time period h  where 

1, ,h H= … , let ( )st h  denote its start time (with respect to an arbitrary reference 

point), h∆  its length, and ( )hP  the choice probability of time period h . ( )hP  can be 

expressed as follows: 

( )
( )

( )( )

( )
( )

( )

( )

( )
24 24

0 0

s h

s h

s

s

t h

v t

t h v t
t h

v t v tt h

e dt
e

P h dt

e dt e dt

+∆

+∆

′ ′

= =
′ ′

∫
∫
∫ ∫

            (2) 

Applying the mean-value theorem for integrals, define for the interval 

( ) ( ),s s ht h t h + ∆    the systematic utility ( )V h  of period h , equal to the value of 

( )v t  at a “mid-point” of time interval h , and express (2) as follows: 
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( )
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                       (3) 

Thus, time periods of unequal length can be accounted for by adding the natural 

logarithm of the length of the period (size variable) to its systematic utility and 

constraining the coefficient of the size variable to 1.  

 

3. ACCOUNTING FOR SCHEDULE DELAY 

Schedule delay is a fundamental concept in modeling time-of-travel choice which 

captures the disutility caused by traveling at times other than the desired times-of-

travel. In this section, we discuss two approaches that can be used to account for 

schedule delay when data on the desired times-of-travel are unavailable. 

Let h  denote a time-of-travel period, *h  denote a desired time-of-travel period, a  

denote an arrival time period, *a  denote a desired arrival time period, d  denote a 

departure time period, *d  denote a desired departure time period, ( )TT h  denote the 

travel time in period h , and ( )*,SD h h  denote the schedule delay for travel period 

h  given a desired time-of-travel period *h . Let t  denote a time-of-travel, *t  denote 

a desired time-of-travel, ( )tt t  denote the travel time corresponding to time-of-travel 

t , and ( )*,sd t t  denote the schedule delay for time-of-travel t  given a desired time-

of-travel *t . 
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3.1 Approach 1: Assume Constant Desired Times-of-Travel by Market Segment 

We specify the utility of a time-of-travel period as a function of the travel time, 

schedule delay, and size of the period. We also include an alternative-specific 

constant and allow the specification to include other explanatory variables. 

For trips with a desired arrival time (e.g. the trip from home to work), the systematic 

utility of an arrival time period a  can be expressed as follows: 

( ) ( ) ( ) ( )*1 1 1 , ln aV a a TT a SD a aα β γ= + + + ∆ +� (4) 

And for trips with a desired departure time (e.g. the trip from work to home), the 

systematic utility of a departure time period d  can be expressed as follows: 

( ) ( ) ( ) ( )*2 2 2 , ln dV d d TT d SD d dα β γ= + + + ∆ +�  (5) 

In the above equations, ( )a1α  and ( )d2α  are alternative-specific constants, 1β , 2β , 

1γ , and 2γ  are coefficients to be estimated, and a∆ln  and d∆ln  are the size 

variables described in the previous section. 

For a desired arrival time period *a , modeling arrival time choice means that 

( )*1 ,SD a aγ , which is a function of the difference between a  and *a , can be 

expressed as a function ( )ag1  for a given market segment if *a  is assumed to be 

constant for individuals in that market segment. ( )ag1  is then an attribute of period 

a  (whose value does not vary across individuals in a market segment) and is 

absorbed by the alternative-specific constant (for the respective market segment) of 

the systematic utility of period a ; in this case, there is no need to explicitly include a 

schedule delay term in the systematic utility.  
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If on the other hand departure time choice were modeled for a trip with desired 

arrival time, schedule delay would depend on travel time and cannot be a constant. 

This is seen by noting that for a given trip, ( )a d dt t tt t= + , where at  is the arrival 

time which corresponds to a departure time dt . Therefore, the schedule delay 

( )*,a a
sd t t  for a departure at time dt  and a desired arrival at time *a

t  will be a 

function of dt , travel time ( )dtt t , and *a
t . Even if *a

t  is assumed to be constant for 

individuals in a market segment, the travel time will assume a different value for 

individuals in that market segment who travel between different origins and 

destinations. 

By a similar argument, for a desired departure time, modeling departure time choice 

reduces the schedule delay to a constant if desired departure time is assumed to be 

constant for individuals in a market segment.  

To sum up, we model arrival time choice if the trip is arrival sensitive (i.e. with a 

desired arrival time) and model departure time choice if the trip is departure 

sensitive (i.e. with a desired departure time). Schedule delay functions become 

arrival and departure specific constants by market segment.  

3.2 Approach 2: Latent Desired Times-of-Travel 

An alternative approach to the one described above is to assume a probability 

density function ( )*f t  for the latent (unobserved) desired time-of-travel *t  such 

that: 

 ( )
24

* *

0

1f t dt =∫  (6) 
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and 

( ) ( )240 ff =  (7) 

Let ( )*P h t  denote a time-of-travel choice model with an explicit schedule delay 

term that depends on *t . Then, the time-of-travel choice probability ( )hP  can be 

computed by integrating the conditional choice probability ( )*P h t  over the density 

of the desired time-of-travel, as follows: 

( ) ( ) ( )
24

* * *

0

P h P h t f t dt= ∫  (8) 

The two techniques discussed above thus account for schedule delay in time-of-

travel choice models when desired time-of-travel data are unavailable, which is 

typically the case especially with revealed preference surveys. 

 

4. MODELING THE 24-HOUR CYCLE 

In this section, we discuss the specification of the alternative specific constants of 

the model. Two points are worth noting. The first point is that instead of using 

dummy variables for the time periods, we specify these constants as continuous 

functions of time. The advantages of this approach are (1) the reduction in the 

number of unknown parameters which need to be estimated, especially if the data do 

not contain observations for all arrival and departure time periods, and (2) the 

smoothing of discontinuities in the utility function that would result if dummy 

variables for the periods were used instead. 

The second point is based on the fact that time-of-travel is cyclic. The cycle length 

for weekday urban trips is 24 hours. The implication of this observation is that the 
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utility of arrival (departure) at a time t  should be equal to the utility of arrival 

(departure) at time 24t +  hours. Therefore, in addition to using continuous 

functions of time as discussed above, these functions need to satisfy the cyclicality 

property. We discuss below two types of functions which can be used for that 

purpose. 

4.1 Trigonometric Function 

We make use of the property that for any trigonometric function ( ).y , we have 

( ) ( )0 2y y kπ= , where k Z +∈ . Since for our application we require that 

( ) ( )0 24v v= , we define a mapping function ( )kz t  that maps 0t =  to 0 and 24t =  

to 2kπ  as follows: 

( ) 2

24
k

k t
z t

π
= , 0 24,t k Z +≤ ≤ ∈  (9) 

with ( )0 0kz =  and ( )24 2kz kπ=  

Therefore, a utility function which is a trigonometric function of the mapped 

arguments will then guarantee that ( ) ( )0 24v v= . Consider for example the 

following utility function, which is based on the idea of the Fourier series (Fourier, 

1822): 

( ) 1 2

1 2

2 4 2
sin sin sin

24 24 24

2 4 2
        cos cos cos

24 24 24

K

K

t t K t
v t

t t K t

π π π
β β β

π π π
γ γ γ

     = + + +     
     

     + + + +     
     

�

�

 (10) 

For sufficiently large K  this series can be used to approximate any cyclical 

function. The coefficients β ’s and γ ’s need to be estimated from data. 



 13 

Letting ( )mt h  denote the mid-point of time period h  (measured from some arbitrary 

reference point), the utility of arrival or departure in period h  can be expressed as 

follows, where the mid-point of a time period is used to represent the period: 

( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

2 4 2
          sin sin sin

24 24 24

2 4 2
            cos cos cos

24 24 24

m

m m m

K

m m m

K

V h v t h

t h t h K t h

t h t h K t h

π π π
β β β

π π π
γ γ γ

=

     
= + + +     

     

     
+ + + +     

     

�

�

           (11)      

This utility function satisfies the cyclicality property since ( ) ( )24v t v t= + . Note 

that this trigonometric function is specified as a combination of sines and cosines of 

angles with different frequencies. Having both sines and cosines in the formulation 

(as opposed to having only sines or cosines) is needed to ensure that every time t  

between 0 and 24 will have a unique utility value. Moreover, the use of angles with 

different frequencies is needed to get a better model fit compared to using only one 

frequency. The truncation point K  could be determined empirically based on the 

resulting profile of the utility function and the statistical significance of the terms 

comprising the function. 

4.2 Piecewise Linear Function 

An alternative to the use of the trigonometric function described above is the 

piecewise linear function with additional constraints. For a piecewise linear function 

of time with K  breakpoints Kbb ,...,1  between 0 and 24, we define the variables: 

( ) ( ) [ ]1 1max 0,min , , 1,..., 1, 0,24k k k kt t t b b b k K t− −= − − = + ∈                        (12) 
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where 00 =b  and 1 24Kb + = . The utility function component corresponding to the 

piecewise linear function of time can be expressed as follows: 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 1 1K K K Kv t t t t t t t t t t tβ β β β β + += + + + + +� , (13), 

where 1β , 2β , 3β , …, Kβ , and 1+Kβ  are unknown parameters to be estimated.  

Figure 1 shows a schematic diagram of the utility function given by expression (13) 

with three breakpoints.   

Since ( )0 0v = , the cyclicality property ( ) ( )0 24v v=  implies that we need to have 

( )24 0v = . Since 24<Kb , we have:  

( ) ( ) ( ) ( ) ( )1 1 2 2 1 3 3 2 1 124 24 0K K K K Kv b b b b b b b bβ β β β β− += + − + − + + − + − =�  (14) 

Therefore,  

( ) ( ) ( )
K

KKK
K

b

bbbbbbb

−
−−−−−−−−

= −
+

24

123312211
1

ββββ
β

�

 (15) 

 

Substituting expression (15) for 1+Kβ  in the utility expression (13), we obtain: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2 3 3

1 1 2 2 1 3 3 2 1

1

...                                                      

          
24

K K

K K K

K

K

v t t t t t t t t t

b b b b b b b
t t

b

β β β β

β β β β −
+

= + + + +

− − − − − − − − 
+  − 

� (16) 

Rearranging terms, we obtain: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1
1 1 1 2 2 1

3 2 1
3 3 1 1

24 24

24 24

K K

K K

K K
K K K K

K K

b b b
v t t t t t t t t t

b b

b b b b
t t t t t t t t

b b

β β

β β

+ +

−
+ +

   −
= − + −   − −   

   − −
+ − + + −   − −   

�

           (17) 

The corresponding utility expression for the time period is: 
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( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

1
1 1 1

2 1
2 2 1

3 2
3 3 1

1
1

          
24

           
24

   
24

           
24

m

m K m

K

m K m

K

m K m

K

K K
K K m K m

K

V h v t h

b
t t h t t h

b

b b
t t h t t h

b

b b
t t h t t h

b

b b
t t h t t h

b

β

β

β

β

+

+

+

−
+

=

 
= − − 

 −
+ − − 

 −
+ − − 

 −
+ + − − 
�

                                                     (18) 

Thus, a piecewise linear function with K  breakpoints and one of the unknown 

parameters ( 1+Kβ ) expressed as a function of the other parameters ( 1β  to Kβ ) 

requires the estimation of K  parameters and satisfies the cyclicality property of 

time. Note that the choice of breakpoints could be based on aggregate arrival time 

(or departure time) profiles and apriori knowledge of time-of-travel preferences. 

They can be adjusted according to the estimated profiles and the statistical 

significance of the terms comprising the function.    

 

5. EMPIRICAL RESULTS 

In this section, we describe a case study that shows the application of the above 

modeling methods to the San Francisco Bay Area using the 2000 survey. We first 

present an overview of the approach used and then show selected model estimation 

results. Additional details on the methodology, model estimation, and application 

can be found in Cambridge Systematics (2005) and Abou Zeid et al. (2006). 
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5.1 Overview of the Modeling Approach 

We use the 2000 Bay Area Travel Survey to estimate logit time-of-travel choice 

models using a tour-based approach. The models are estimated for auto tours/trips of 

different purposes: work, school, shopping, eat-out, personal business, pick-up/drop-

off, discretionary, and work-based (subtours). The explanatory variables used 

include level of service variables (such as travel time), demographic variables, mode 

(drive-alone vs. carpool), etc. A total of 35 time periods are used, all of which are 

half-hours except for the first and last periods (early morning and late evening 

hours) which are of longer duration. 

Time-of-travel choice modeling is done at two levels: primary activity and 

secondary activity. A primary activity of the tour can be defined to be the activity of 

longest duration on the tour, the activity with highest priority, etc; all other activities 

are considered secondary.  

The primary activity divides the tour into two half-tours. Since scheduling decisions 

on a tour are interrelated, the two half-tours comprising a tour are scheduled 

simultaneously. We assume that the half-tour from home to the primary activity is 

arrival sensitive, while the half-tour from the primary activity to home is departure 

sensitive. Therefore, we model the joint choice of arrival time and departure time at 

the primary activity. Since there are 35 time periods, scheduling the tour at this level 

involves a choice among 630 alternatives (equal to 35× (35+1)/2). An alternative 

( )da,  is thus characterized by an arrival time period a , a departure time period d , 

and a duration ( ) ( )m mt d t a− , and its systematic utility can be expressed as follows: 
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( ) ( ) ( )
( ) ( )

( ) ( )( )

1 1

2 2

3

, ln

             ln

             

a

d

m m

V a d a TT a

d TT d

t d t a

α β

α β

α

= + + ∆

+ + + ∆

+ − +�

 (19) 

where we have included size variables for the arrival and departure time periods, 

defined as the number of half-hour periods within a given time period, since not all 

periods are of equal duration. The schedule delay terms for both half-tours are 

accounted for by alternative-specific constants by market segment, assuming that 

desired times-of-travel are constant by market segment. 

For secondary activities before the primary activity, we can compute (in model 

application) the departure time s

dt  from the secondary activity given the modeled 

arrival time at  (corresponding to period a ) at the primary activity, as follows: 

( )s s

d d at tt t t+ = , where ( )sdtt t  is the travel time corresponding to departure time s

dt . 

Time-of-travel choice for secondary activities before the primary activity is then a 

choice of arrival time from a choice set of at most 35 time periods (periods 

corresponding to arrival times larger than s

dt  will be unavailable). 

Similarly, for secondary activities after the primary activity, we can compute (in 

model application) the arrival time s

at  at the secondary activity given the modeled 

departure time dt  (corresponding to period d ) at the primary activity and the travel 

time ( )dtt t  corresponding to departure time dt , as follows: ( )s

a d dt t tt t= + . Time-of-

travel choice for secondary activities after the primary activity is then a choice of 

departure time from a choice set of at most 35 time periods (periods corresponding 

to departure times smaller than s

at  will be unavailable). 
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5.2 Selected Model Estimation Results 

Figures 2 and 3 show the utility function values corresponding to the estimated 

arrival time functions for a work tour and a school tour model, respectively. In each 

of these figures, the “base” plot represents the arrival time function net of all 

interactions (with other variables), and every other plot represents the sum of the 

“base” plot and the interaction of the arrival time function with the variable that is 

referenced. Every plot is further divided by the function value at 8 AM, so that for a 

given plot one can compare the relative rather than absolute utilities across arrival 

time periods.  

For the work tour model, trigonometric arrival time functions with truncation point 

4=K  are used. The results shown in Figure 2 can be interpreted as follows. 

Compared to a full-time worker, the utility of arrival to work for a part-time worker 

increases after 8 AM because many part-time jobs occur during night shifts for 

example. For a worker without work time flexibility, the utility of arrival before 8 

AM increases and the utility after 8 AM (and up to 2 PM) decreases relative to a 

worker with full or partial work time flexibility; this is expected since workers 

without work time flexibility prefer to arrive early than late. For a female with kids 

in the household, the utility of arrival before 8 AM decreases and the utility for most 

time periods after 8 AM increases relative to a female without kids in the household 

or to a male; the presence of kids in the household causes later arrivals to be more 

favorable because of the need to take care of the kids (e.g. dropping kids at school or 

day care centers, etc.). 
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For the school tour model, piecewise linear arrival time functions are used with three 

breakpoints chosen in the following periods:  6:45 – 7:15 AM (b1 = 4), 7:45 – 8:15 

AM (b2 = 5), and 9:15 – 9:45 AM (b3 = 6.5), where 0t =  represents 3 AM. The 

results shown in Figure 3 can be interpreted as follows. Relative to a kid of age 5-15, 

the utility of arrival to school for a kid of age 16-17 increases before 8 AM and 

decreases after 8 AM; high school students generally arrive at school earlier than 

elementary school students.  For kids where all adults in the household work full 

time, the utility of arrival earlier than 8 AM increases more than the utility of arrival 

after 8 AM; when all adults in the household work, the kid is more likely to be 

dropped off earlier because of the work arrival time constraints of the adult workers.  

Finally, note that in the time periods close to 8 AM, the effect of the distance 

variable is to decrease the utility of arrival after 8 AM more than it decreases the 

utility of arrival before 8 AM; long distance travel does not favor late arrivals. 

 

 

6. CONCLUSION 

This paper has addressed three methodological issues related to time-of-travel 

modeling: unequal period lengths, schedule delay, and the 24-hour cycle. 

We deal with the first issue by using size variables to account for time intervals of 

different lengths. 

Two methods are proposed for modeling schedule delay when desired times-of 

travel are unobserved. The first one is to use market segment specific utility 

functions of time-of-travel and model arrival time choice for arrival sensitive trips 

and departure time choice for departure sensitive trips. The second one is to use a 

probability density function of the latent desired time-of-travel. 
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The third issue is that the utility function of time-of-travel needs to be cyclical and 

can be modeled using either trigonometric or constrained piecewise linear functions. 

A case study was presented to demonstrate the time-of-travel modeling 

methodologies developed in this paper. Tour-based time-of-travel models were 

estimated using the 2000 Bay Area Travel Survey, and selected model estimation 

results for work and school tours were presented. 35 time periods, all consisting of 

30-minute intervals except for two periods of longer duration, were used in the 

model. Both the trigonometric and the constrained piecewise linear utility functions 

were demonstrated. The approach developed here has also been used to estimate 

time-of-travel choice models for tours of other purposes both at the primary and 

secondary activity levels. The estimated models have then been applied to the San 

Francisco County Transportation Authority model, a microsimulation activity-based 

model, and used to test various scenarios such as highway and transit improvements 

and congestion pricing. The tests showed that the time-of-travel distributions were 

reasonable and peak spreading was observed when congestion levels increased. 

Furthermore, the time-of-travel distributions predicted by the model for a baseline 

scenario compared favorably with observed patterns. The detailed estimation and 

application results can be found in Cambridge Systematics (2005). 
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Arrival time functions for the work tour model
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Arrival time functions for the school tour model
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