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ABSTRACT

Growing traffic congestion and the associated externalities, require the study of innovative measures to reduce the number of automobiles traveling every day to the city centers, specifically single occupant vehicles. Carpooling is a system by which a person shares his private vehicle with one or more people that have similar destinations. A new Simulation-based methodology for the evaluation of the viability of Carpooling is presented. Based on statistical data from the commuter trips of single riders and the population characteristics in each borough one is able to evaluate the matching probability between potential clients, having in consideration time and capacity constraints. Using an optimization program embedded in a GIS tool one identifies the geographic areas which are better candidates for providing stronger carpooling operations.
1 . INTRODUCTION
The rising of auto usage deriving from suburban occupation and car ownership growth is making traffic congestion more frequent in urban areas. This results in air pollution, energy waste and unproductive and unpleasant consumption of people time. Moreover the majority of the trips in individual transport are single occupant vehicle (SOV)  trips (1999). During the nineties the number of solo drivers grew by almost 13 million, and 30 million vehicles were added to house-holds in the USA (Pisarski, 2006). In Europe, numbers of 1997 from the International Energy Agency for the 15 member countries at that time showed that automobile occupancy rates in commuter trips was between 1.1 and 1.2 people per vehicle.

One may conclude that most of the major cities were not able to insure effective mobility polices for controlling modal split and traffic congestion, thus need now recovery measures. Some measures have been tested in the last years in the perspective of Transport Demand Management (TDM) strategies whose main objective is to use the existing transportation infra-structure in a more efficient way rather than building new infra-structure supply for an ever increasing demand of automobile trips.
Public Transport is many times pointed as the best solution to mitigate traffic congestion because it has a higher ratio between space occupied and number of passengers transported. But improvements in Public Transportation to make it more appealing may be costly, studies show that only a relatively small proportion of the new trips attracted to improved Public Transportation have diverted from car trips (May and Nash, 1996). Underlying this weakness is the way people perceive the different transportation modes, many times based in subjective factors. One of the most important factors is “status”, cars are not regarded only as a means of transportation but also as a way of showing some degree of ascent in society (Thomson and Bull, 2002).
The fact is that automobile utilization is very attractive. Its universal appeal is demonstrated by rapid growth in car ownership levels even in countries with high fuel prices, good public transportation systems and dense land occupation. Therefore mobilization of private vehicles is an option that can be used as an advantage through an increase in vehicle occupancy, moving the same number of people in fewer cars. 
Carpooling systems search that higher occupancy, particularly in commuter trips, associating neighbors who travel to work places next to each other, using their vehicles one at a time on a day-to-day or week-to-week basis. These neighbors form pool groups that should be stable to increase the impact of its application. The advantages can be fuel cost reduction, automobile maintenance reduction, parking availability and increased trip comfort as some people take advantage of the available time to read the newspaper or just relax as his partner drives the car. Moreover, accordingly to a study about the automobile passenger, we can identify people that are not willing to change from single driving to Public Transportation, preferring the so called automobile passenger mode (McCoomb and Steuart, 1981).
In carpooling we may distinguish between “internal” carpools, members of the same household, and “external” carpools. From its viability point of view the most difficult pools to form are those formed by unrelated people, and that is why they represent a smaller share of the total carpoolers even in the USA where these systems started being applied since the nineteen seventies (Ferguson, 1997). At the same time these are the most interesting from its potential result in congestion reduction because the “external” carpool is much more regular than the “internal”. The “external” carpool feels the responsibility for vehicle provision and driving which is difficult to break when there is less intimacy between people (Teal, 1986). A study about the relation between carpooling and household vehicle trips concluded that if most carpools created under commute trip reduction programs are household carpools, then regional reductions in vehicle trips may not result (Bard, 1997). 

Some experiences have been conducted to incentive “external” carpooling, mainly in the USA and Europe, but they have been obtaining limited success mainly for schedule differences between participants and because of the difficulty in matching people that are strangers to each other in the same automobile. Studies show that only a small percentage of the people who make a positive change in commute mode to carpooling are likely to stay with the new mode until they are not traveling to that workplace (Smith and Beroldo, 2002). “Carpooling is inferior to driving alone because it requires an increase in travel time due to the need to pick up and deliver carpool members. Probably more importantly, carpoolers suffer from significant reduction in convenience due to the schedule rigidity which this mode usually entails” (Teal, 1986). Furthermore there are other aspects such as commuting cost to household income burden, household size and composition, car ownership levels and parking prices that can also affect carpooling viability and which are usually included in any stated preference survey to determine the different attitudes before the different transportation modes (Hunt and McMillan, 1997) . Hence, these experiences haven’t been able to reach the scale where they would reduce the congestion problem.
The present study objective is not to explore the problem of social matching and attitudes towards carpooling, nor even the determinant socio-demographic characteristics of the commuters that affect it. Although acknowledging its importance in determining carpooling viability (Dueker, et al., 1977); it is recognized that if there are no compatible trip characteristics, namely origins and destinations and time schedules it is not possible to maintain a stable system of carpooling. Thus it is of the most importance to establish a method to determine an upper-bound for the probability of matching between the potential users of a carpooling club in a given geographic area, based on their commuter trip characteristics.
A structured simulation-based methodology for the evaluation of carpooling systems viability in commuter trips is needed because of the variation in urban distribution and density as well as trip characteristics from city to city and borough to borough. The objective is to consider the geographic variability of origins and destinations and also the different possible personal schedules based on the different regions statistical data and hence to determine the probability of a random participant obtaining a matching partner for his everyday commuting trip. This allows assessing the best regions for setting up carpooling clubs and incentive the local inhabitants to join in and try to find a compatible pooling group.
The following section discuses the existing research in carpooling modeling which reveals scant effort to increase the likeness between the real world possibilities of carpooling and the tested models. Then we present a new method for modeling these systems using simulation techniques applied on statistical data available through a National Census and a specific survey on the acceptability of carpooling. This simulation is built in a GIS program embedded with an optimization program to find the possible matches between participants. The matching of people based in their schedules and trip origins and destinations is an NP-Complete problem which at its simplest means that its complexity raises exponentially as the number of elements to analyze increases. The heuristic method to solve the problem is explained in an independent section of the paper and afterwards we explain the integration between the GIS tool and the Optimization tool in a standard Visual Basic application in order to run several simulations on top of the same geographic area. The paper continues with the Running of the program for a specific borough and is finalized with conclusions and future work. 

2 . Review of carpooling modeling
Some studies have been conducted in the past to evaluate the viability of carpooling prior to its implementation. In 1994 Van der Touw and Krishnamoorthy  started with the assumption that an 80% match rate would be the minimum to make a carpooling system viable, and then they divided the city of Melbourne (Australia) in zones and formulated lists of acceptable trips between them. This was represented as a matrix where indirect paths between zones/nodes were not considered. 

The relation used to determine the percentage of matched trips was the following:
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In this expression, the offers represent drivers that offer a passenger seat in their vehicles and the requests represent people that want to be driven to their work place. The ambivalent are those who can act both as a driver or a passenger.

The main conclusion of this work was that a 2.5% population participation rate would result in an 80% success rate. The population in question was the total population of the test region.

At a first glance this result may appear to be very positive because the population participation rate necessary to achieve good results is not very high, but there were several factors which were not taken in consideration in this methodology namely the lack of several personal time and capacity constraints. This fact may have an overestimating effect in the results of the experience. On the other hand by limiting indirect paths between zones/nodes in the construction of the pool groups, the method introduces a frontier limitation, by not allowing pool groups between people whose origins are situated in different zones.

In 1999 Tsao and Lin,  used a matrix of 2 mile side squares to simulate the trip generation and attraction in the city of Los Angeles. The objective was to find an upper-limit for the ride matching probability based on spatial and temporal constraints. The authors assumed a development pattern in which the densities of workers and jobs were uniform over an infinitely large flat geographical area. Due to this assumption they were able to focus just on the trip generation/distribution from one particular zone to all the other zones and extract conclusions about the potential demand reductions with the implementation of carpooling.

Considering a minimum distance for carpooling to be interesting greater that 10 miles  and using a gravitational method for the trip distribution they were able to search for compatible trips, which meant two trips beginning in the same square and finishing in another common square. Assuming a given distribution of departure time and dividing the peak hour into time intervals, they assumed that only people with a departure in the same interval could carpool together.

The conclusion was that carpooling was not viable for this city because those people who are more likely to carpool (i.e., those who commute a long distance) would have difficulties in finding a carpool partner due to the small number of trips from the same origin zone to the same destination zone.

This research introduced some constraints that do not correspond to reality and that can have a significant effect in underestimating the impact of these systems. This was actually assumed by Tsao and Lin in the report conclusions when they stated that the “more fundamental limitation of the model is that two people who live on opposite sides of a street separating two zones would not carpool. This in some cases may be unrealistic”. Also the assumed constant density in jobs and workers across an infinitive area does not take into account the greater density of jobs in areas such as the downtown or other centralities.

The frontier problem has emerged as one of the main limitations from these two experiences in modeling carpooling. Both spatially and temporally, as the departure times are also divided in “zones” not allowing people to carpool when departing close to the upper or the lower limit of one of the time intervals with people in the other “side”.

Furthermore there were two aspects which were not considered in both studies: a configuration for the carpooling system and the existence of near term trips and failures that may occur. 

3 . METHODOLOGY
The method introduced in this paper to estimate a matching probability for carpooling systems consists in generating random trips for a specific geographic area (typically the borough), and evaluate the possibility of associating those people in a carpool in order for them to drive together to their work destination and in the afternoon return home. 
The method should be applicable for any given urban region, but to test its application it was necessary to consider a specific case-study. We used Lisbon Metropolitan Area (Portugal) with statistical data from the commuter trips of single drivers and the population characteristics from every borough to test the following representation of a carpooling club (Correia and Viegas, 2005):
(Figure 1)
This system is based in users who can act both as passengers and drivers. No person should be allowed to act solely as a driver or as a passenger; this is to decrease the probability of taking Public Transportation demand.

We use the concept of a club with the objective of minimizing the suspicious attitude towards carpooling systems by filtering its members, as well as to manage efficiently the several stable pool groups and enable people, in an exceptional situation, to find, through a dynamic ride match, a group for a near term trip.
The methodology requires three main tools: 
· An optimization software to analyze the possibility of carpooling between members of the club. This implies solving the combinatory problem known as LCPP;

· A GIS program to generate feasible origin and destination coordinates for the random trips and latter for the representation of output indicators;

· A Visual Basic Program application embedded in the GIS program for the generation of the necessary remaining attributes, to connect the geographic and optimization tools and also to generate the outputs.
The Long Term Carpooling Problem (LCPP) is an NP-Complete problem (Varrentrapp, et al., 2002) that is why some heuristic methods have been used to find the optimal matches between participants, minimizing a cost function that uses the time spent in journeys as the main variable to find the best match. Some of those heuristics have been developed and tested thoroughly in previous work. The best example is the ANTS heuristic (Maniezzo, et al., 2001), this has been developed to solve the LCPP in order to find the best optimal solution for sets in a range of 50 to 225 clients with different origins and a common work destination, however this has proven to have a significant CPU time cost.

The objective of this simulation is not to find the best optimal solution, but to get the shortest feasible number of groups for the greatest number of participants in a randomly generated list of participants of considerable size, typically the population of an entire borough. This implies a search algorithm to minimize an objective function, which in the end does not need to reach the minimum value since we are aiming for the scale and not for the best groups that would be formed. For instance, the total combinations of four people in groups of two is six possible groups, but the maximum groups which are able to be formed is two, whichever its members.
Thus the method that was used to search for this scale is based on a typical four-indices formulation using binary variables close to the formulation by Maniezzo, but instead of using one heuristic to find an optimal solution for the whole set of clients, this set was divided into clusters, of up to a maximum dimension (Nmax) and then analyzed independently in a divide-and-conquer algorithm approach (Dinh and Mamun, 2004). 
In the next sub-section the LCPP Problem (Maniezzo, et al., 2001) is revisited and updated with the changes compatible with the model to be tested in this work, and then the whole process of clustering the users and finding the matches for a large population is explained.

3.1 . The Long Term Carpooling Problem updated
The LCPP can be defined as follows: A number n of users must reach their work destination, and latter on the day get back home. The problem objective is to partition the set of users into subsets, or pools, such that each pool member in turns will pick up the remaining members in order to drive together to the workplace and back (Maniezzo, et al., 2001). In what concerns to the common destination constraint we introduce the possibility of different work places as long as their relative distances do not surpass a certain limit. 
Hence the present approach considers that the server picks up his colleagues, takes them to his workplace and then they have to walk from this point to their destinations. In the afternoon they return to this point were they are picked up by the server and taken to their homes. It was not considered that the server would deliver people in their workplaces in the city center due to traffic congestion (Figure 2).
(Figure 2)
In order to solve this combinatory problem each user i enlisted in the carpooling program specifies:

The maximum extra driving time Ti user i is willing to accept, when picking up colleagues, in addition to the time needed to drive directly from home to the workplace or back;

The minimum time ei acceptable for leaving home;

The maximum time ui acceptable for arriving at work;

The minimum time ei’ acceptable for leaving work;

The maximum time ui’ acceptable for getting back home;

The capacity Qi of his car, this is the maximum number of people he is willing to take in the automobile;
The maximum distance DistMAXi user i is willing to walk from the server destination to his workplace;

The objective is to define user pools such that as few cars as possible are used and that the routes to be driven by the drivers are as short as possible, subject to time and capacity constraints. Note that pools are supposed to be stable over a period of time and will not change every day. This means that the number of people in a pool will be at most equal to the capacity of the smallest car among those owned by pool members, since each member will eventually pick up all other ones, in a day-to-day or week-to-week basis.

This LCPP problem can be modeled by means of a direct graph G = (V,A), where V={1, …,2n} is the set of nodes and A the set of arcs.

The set V is partitioned as 
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, where V1 is the subset of nodes associated with the houses of the carpool members and V2 is the subset of nodes associated with their workplaces.

The set A is a set of directed weighted arcs (ij), where each arc (ij) is associated with a non-negative cost cij, it may include travel time, toll payment, attitudinal factors, etc.

The LCPP as defined above is actually a multiobjective problem, requiring to (Maniezzo, et al., 2001):

· Maximize car usage, thereby minimize the number of cars traveling to/from work;

· Minimize the length of the path to be driven by each employee, when acting as a driver;

The problem structure suggests that it is possible to combine these two objectives in a single objective function, as follows.

Let k be a pool of clients. Each of them, on different days, will use his car to pick up the other pool members and go to work (and latter come back), thus he has to define an Hamiltonian path on the partial subgraph of G identified by k, starting from the node associated to his house, passing through all the other nodes and ending at his workplace.

Let Hpath (i,k) be such an Hamiltonian path, starting from i ( k, connecting all j ( k\{i} and ending at the workplace of the server.

Hpath (i,k) is a feasible path iff |k| ( Qj, ( j ( k, and all user constraints are met.

The minimum path, min_path(i,k), for i ( k is the shortest feasible Hamiltonian path for i.

(Figure 3)

Considering the example of Figure 3:
k={1,2,3,4}

min_path(1,k) = (35+20+45+60)+(60+35+40)=295
min_path(2,k) = (35+40+45+57)+(25+45+40)=287
min_path(3,k) = (45+30+35+57)+(25+35+35)=262
min_path(4,k) = (45+20+35+65) +(60+45+35)=305
cost(k) = (295+287+262+305)/|k| = 287.25
In this formulation, it is assumed that the shortest paths are chosen. The cost of a pool k is then defined to be:
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If a person is alone, this has an increased penalty, whose amount is associated with him and equal to penalty pi.
The cost of a complete solution is the sum of the costs of all the pools in it, that is, 
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. This perspective optimizes both objective functions. Provided that the penalty pi of a client is sufficiently greater than 0, it is more convenient to pool clients together than to leave them alone.

3.2 . A four indices mathematical formulation for the updated LCPP
The four indices formulation that translates the LCPP defined above uses the following variables and constraints:


[image: image5.wmf]hk

ij

x

: Binary variable equal to 1 iff arc (ij) is in the shortest Hamiltonian path of a server h of a pool k;
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: Binary variable equal to 1 iff client i is in pool k;
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: Binary variable equal to 1 iff client i is not pooled with any other client;
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: Non negative variable denoting the pick-up time of client i by server h;
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: Non negative variable denoting the arrival time of each client i at his workplace when traveling with server h;
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: Non negative variable denoting the departure time of each client from his workplace traveling with server h;
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: Non negative variable denoting the arrival time of client i at home, driven by server h; 
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: The minimum time acceptable for leaving home; 
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: The maximum time acceptable for arriving at work;
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: The capacity available in each car;
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: The maximum driving extra time user i is willing to accept, when picking up colleagues, in addition to the time needed to drive directly from home to the workplace or back;

pi: Penalty incurred when driving alone;
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: Time travel between trip origins of clients i,j;


[image: image19.wmf]ij

tOD

: Time travel between trip origin of client i and destination of client j;
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: Time travel between trip destination of client i and destination of client j – this is a walking distance;
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: Maximum walking distance that each client is willing to walk from the server destination to each work place;
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d

: Destination distance between clients;

K: Index set of all pools;

C: Index set of all clients

Objective function (LCPP):

	
[image: image23.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

=

å

å

å

å

å

å

å

å

å

Î

Î

Î

Î

Î

Î

Î

Î

Î

C

i

i

i

K

k

C

i

ik

C

h

A

ij

hk

ij

hj

K

k

C

i

ik

C

h

A

ij

hk

ij

ij

LCPP

p

y

x

c

y

x

c

Z

x

/

0

/

min

)

(

)

(


	(3)


Constraints:
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Force a client i to be declared to be in pool k, if there is a path originated in h going from i to j;
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Force a client j to be declared to be in pool k, if there is a path originated in h going from j to i;
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Continuity of the paths;
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Force each client to be assigned to a pool or to be penalized;
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Car capacity limitation in each group;
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Maximum extra travel time;
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Disables the possibility of forming groups of only one element;
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The time in which each client arrives at his job has to be greater than the time in which the server arrives at his job plus the time between both of them;
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The difference between the time that client j is picked up by server h and the time client I is picked up has to be greater than the time to travel between i and j;
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The time in which the server reaches his destination has to be greater than the time to pick up the last client in his path and the time between this point and the server workplace;
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The Time in which the clients reach their workplace has to be less than the maximum time acceptable for reaching their destination;
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The time in which the server leaves home has to be less than the time to pick up the first client less the time between both points; 
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The pick-up time has to be greater than the minimum time acceptable for leaving home;
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The time in which the server delivers the first client has to be greater than the instant the server leaves work and the time to travel between this point and the client’s home;
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The time in which the server leaves his work has to be greater than the time each client leaves his work and the time between this point and the server’s workplace;
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The difference between the time that client j is dropped at home by server h and the time client i is dropped has to be greater than the time to travel between i and j;
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The time in which the clients arrive home from work has to be less than the maximum acceptable;
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The time in which the server arrives home has to be greater than the time in which he drops the last client and the time from that point to the server home;
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The time in which each client leaves his workplace has to be greater than the minimum acceptable;

Where M is a big constant;
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x is a binary variable;
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y is a binary variable;
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is a binary variable;

Since the problem graph is potentially fully connected, the number of arcs grows as n2, with n the number of nodes. Many of the arcs are however not feasible and should not be considered when trying to construct a solution. To filter those out and thus reduce the complexity of the problem we used the above constraints.

An arc (ij) can be part of a feasible solution of the defined LCPP (is a feasible arc) iff:
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If any of these rules is broken the correspondent 
[image: image52.wmf]hk

ij

x

turns to 0 and is not considered in the searching algorithm.
All the constraints were set in the Optimization Program Xpress-MP (Dash Optimization Software), having as input a text file with the attributes of a list of potential carpooling clients (see Annex1). Xpress-MP is a suite of mathematical modeling and optimization tools used to solve linear, integer, quadratic, non-linear, and stochastic programming problems.
As it was referred, the time to solve this combinatory problem grows exponentially, which means that we always need a heuristic to find an acceptable solution. As it was mentioned the method used was to cluster the list of clients into sets that could afterwards be analyzed in an acceptable time to retrieve the final minimum number of possible pool groups with the maximum people matched. This divide-and-conquer algorithm is explained in the next section.

3.3 . Divide-and-Conquer Algorithm
The LCPP is an NP-Complete Problem (Varrentrapp, et al., 2002) thus there is the need to use a metaheuristic approach to assign the clients and to define the paths for each group. The ANTS and the Bee-Colony algorithms are examples of metaheuristics that have been applied to this problem (Maniezzo, et al., 2001, Teodorovic and Dell'Orco, 2005). But the use of a single metaheuristic to a given problem is less efficient and flexible when dealing with real–world and large scale instances such as this. A recently proposed practical combination is using clustering techniques with metaheuristics producing satisfactory solutions to real-world instances to NP-Complete optimization problems in a short runtime (Dinh and Mamun, 2004). Mulder and Wunsch (2003) solved a 20,000 TSP size problem in 98 seconds. This suggests being a good approach to find an acceptable solution in reduced time.

The algorithm that is used to reduce the number of clients to be analyzed at the same time in the optimization program is the k-means clustering algorithm which in short allows classifying objects based on attributes into K number of groups. The grouping is done by minimizing the sum of squares of distances between data and the corresponding cluster centroid.
There are several formula distances between two objects, but the most used is the Euclidean distance which is the square root of the summation of square differences between the values i and j for all the variables that characterize the objects (v = 1,2, …, p).
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If we consider as attributes the origin and destination coordinates, we are joining in clusters the people that have trips more close in space to each other. This is actually one of the most used methods for automated pattern spotting and knowledge discovery in spatially referenced data (Murray and Estivill-Castro, 1998).
 But geographic proximity does not guaranty for it self a good match between trips because schedules may vary significantly, thus this was also introduced in the formula distance by adding the acceptable times to leave home, arrive at work, leave work and arrive at home. Hence allowing identifying clusters of people with higher probability of being partners in a pool group (equation 31).
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- xi, yi, xdi and ydi are the coordinates of the trip origins and destinations respectively;

- ei, ui, ei’ and ui’ are the minimums and maximums time schedules available for carpooling;

- λ1 and λ2 are the weights for the geographic distance and the schedule distance respectively. These have to be calibrated for best results.
The following scheme shows how Clustering and Local Optimization work together towards a final grouping solution in the divide-and-conquer algorithm (Figure 4):
(Figure 4)

We start with all objects in a large size list of potential users of the carpooling system, with the attributes defined in section 3.2 Then they enter the K-means clustering algorithm, where the members are divided in clusters such that every one of these is smaller than the maximum number of elements (Nmax) that we want the Optimization program to considerer at a time, value that should be calibrated in function of the computing time. The process runs like in Figure 5.
(Figure 5)

When this process is complete, all the clusters are sent to the optimization program which searches for the possible group combinations in order to find the smallest number of groups with maximum people.
If the resulting groups are composed totally from people that have completed their car capacity they are saved as complete groups. As for the remaining groups and all the other people that were not able to find a match in the previous iteration, they are set together for another iteration, where the process of clustering and search for groups is again repeated. The process ends when the user-defined iterations are met or no new groups are formed.
Xpress-MP uses the brunch and bound technique solution method for Mixed Integer Programming (MIP) problems consisting of an enumeration of the feasible values of the discrete variables (branching) coupled with Linear Programming (LP) techniques (providing bounding information). Typically represented in the form of a Branch-and-Bound tree where every node stands for the solution of an LP problem, and the connections between these nodes are the bound changes or added constraints. Such enumerative methods may lead to a computational explosion, even for relatively small problem instances which is the case of each of the clusters we are sending to the optimization program, so that it is not always realistic to solve MIP problems to optimality. Thus a solution for the grouping inside a cluster as small as it can be has an error associated which increases with the problem instance.
4 . the simulation program
Having set a method to determine the minimum number of groups with maximum people that we are able to form from a set of potential clients of carpooling, we need now to generate input data and this is where the simulation component is actually introduced. Which trip origins and destinations are we going to analyze with which attributes? The GIS program and the VB interface come up to complete building the simulation program by creating this data accordingly to discrete probability distributions depending on census data and constrained to a specific geographic area.
The present case-study respects to the commuting movements inside Lisbon Metropolitan Area (LMA) (Portugal) from the surrounding boroughs towards central Lisbon. This encompasses great traffic flows, values that have been rising in the last years as suburban occupation grew and offices replaced housing areas in Lisbon downtown (Figure 6). 

(Figure 6)
Simulation is widely used by OR teams when they are interested with developing a design or operating procedure for some stochastic system (a system that evolves probabilistically over time). Because the “simulations runs” typically require generating and processing a vast amount of data, these simulated statistical experiments are inevitably performed in a computer (Hillier and Lieberman, 2005).
The simulation component of the system that we are testing lies in generating feasible origins in the peripheral boroughs of the LMA and destinations in Lisbon as well as the other remaining attributes of commuter trips. These have to be stochastically generated a priori before they are introduced in the cluster analysis and optimization tool. This generation has to be done in a certain number of times to produce results in terms of the matching probability in a given region. The number of runs depends on the time that each analysis takes to complete but also with the statistical significance that we want the results to have.
We start with the origins and destinations coordinates of the commuter trips. These are generated randomly in each simulation for a given borough, which is a feature of the GIS program. We take out the areas where there is low population density (< 2 people/km2), so that origins are not placed in unpopulated places. There is a difference between the several parishes in each borough in terms of trip generation, so for every parish feature we need an attribute of the total single driver trips in commuting hours (from 6:00 to 10:00 a.m.) with origin in that area and destination in Lisbon, this is obtained weighting the total commuter trips for the borough with the populations of every parish accordingly to census data, all this data is available in the Census 2001 survey. Then an internal tool of the GIS program is used to generate randomly as many origin trips as the percentage of single driver trips that we want to consider for that borough. The number represents the scale of participation in the club, different participation rates will result in different probabilities of finding one or more partners for a commuter trip.

The trip destination points are generated in Lisbon parishes accordingly to an indicator of job density. We take the relative weight of office area in every borough and using a pseudo-random number generator, by roulette wheel selection, choose a parish for each of the trips, naturally the parishes with greater office area will have a higher probability of receiving commuter trips.
After generating the trip origins and destinations we need to find feasible values for the remaining trip attributes which are mainly the variables that were defined in the beginning of section 3.2 . These attributes were divided in “stochastic parameters” and “other parameters” in the VB interface. The first are generated through roulette wheel selection using pseudo-random generated numbers over discrete distributions obtained through the surveys. The second ones are user defined but are considered constant, this is the case of the Average Driving Speed, Walking Speed, DistMAX (Maximum distance that a person is willing to walk from server destination to their destination) and pi, the penalty incurred when a person drives alone to the work place (this is needed for the optimization program).
The variables that are stochastically generated are the Ti – Maximum distance a person is willing to drive to pick-up his pooling partners; Qi – The capacity that each user makes available for pool partners (does not include the driver); and variables ei, ui, ei' and ui' that depend on the personal schedules.
The schedule variables are generated accordingly to a georefered mobility survey from 1995  which covered all the Metropolitan Area and where the departure times were recorded. Those times are divided in four categories: 6-7 a.m., 7-8 a.m., 8-9 a.m., 9-10 a.m., and considering only the trips that had a corresponding trip at the end of the afternoon (commuting trip) we built a discrete distribution of the departure time using the four categories for each borough which are saved in separate attributes of the feature boroughs in the GIS Database. Using those distributions, we were able, again by Roulette wheel selection, to get a time departure for each commuting trip.

The Trip times are also available but these are based in the interviews perception of travel time which can vary significantly (Levinson, et al., 2004). Hence there is the option to compute more accurate Trip Times using traffic assignment. It may not be feasible to compute dynamically travel times for any morning instant and origin and destination coordinates. The alternative can be to use a grid for the origin and the destination regions and calculate trip times between all the cells for four departure intervals: [6,7] h, [7,8] h, [8,9] h and [9,10] h (Figure 7). This way travel times are a function of the congestion levels for different morning intervals existing in the analyzed geographical area which affects the probability of finding a partner.

(Figure 7)
The other trip times (between the origins and between the destinations) can be calculated using the Euclidean distances and an average speed for driving (origins) and walking (destinations). The arrival time at work can now be obtained by summing the Departure from Home and the Modelled Trip Time.

Introducing a degree of flexibility around these schedules one obtains maximum and minimum times to depart and arrive at home and work. To obtain this schedule flexibility we will need more data than the one we usually find in a National Census hence there is the need to precede with a survey focused on the acceptability and preferences for carpooling.

For the duration of the stay in the workplace we used data from the TIS.pt mobility survey (TIS.pt, 1995). Considering the commuting single driver trips for every borough this value has a probability distribution divided in the following intervals: 7-8 hours, 8-9 hours, 9-10 hours, 10 – 11 hours and 11-12 hours. This distribution is then saved as an attribute of the feature boroughs in the GIS Database. Using a random number we are able to get a value for the time that each worker stays at the office. The values of ei’ and ui’ are computed adding to ei and ui the value of the duration.

From the carpooling survey we also obtain the Car Capacity a person is willing to share with his partners and the Maximum Distance a person is willing to walk to/from gathering points.
The information obtained through this survey will vary from person to person thus it needs to be analyzed to be used in the simulation. The results should be worked through multivariate regression or other mathematical method with Census Variables such as Age_Group, Academic_Qualifications, Family_Dimension, Presence_of_Children, or Average_Commuter_Time. These variables are available and can be acquired for each borough independently, thus obtaining different behaviors for people with commuter trips in different areas. 
5 . the Program running

5.1 . Setting up the simulation

All the data that is needed to introduce in the program is done trough a window that is embedded in the GIS application and this is mainly divided in four sections: Input geographic features, Data generation, Compute groups and Output features (Figure 8).

(Figure 8)

Because the Carpooling survey is not available yet, the information on the maximum extra driving time was considered as a linear function, with a maximum, of the total travel time (Figure 9).
(Figure 9)
In the end of each simulation the results are computed through the following indicators:

· Number of groups formed;

· Number of groups of two participants;

· Number of groups of three participants;

· Number of unmatched participants;

· Percentage of unmatched participants;

· Number of unused vehicles;

· Percentage of unused vehicles;

· Time of calculation;
· Number of iterations.

The indicator that was mainly used to translate the result of each simulation and that we wish to be the minimum possible is the percentage on unmatched participants, which translates the relative amount of commuting single drivers that for a certain borough weren’t able to find a partner for their daily trip.

The output geographic features are optional for each simulation and are divided in a points feature for the Origins and the Destinations with an attribute with the number of the group formed (if the member is not in any group the attribute is equal to 0); and an area feature with the parishes of the borough with the discrimination of the percentage of unmatched people, because one wants to register internal differences of this indicator for the same borough. 
5.2 . Simulation example

The following geographic output is a simulation for the Borough of Sintra, where we used 5% of the total single drivers totalizing 1222 commuter trips. 
(Figure 10)
The attribute parameters used in this simulation were:
· Qi = 2, we give maximum capacity to every car;

· Pi = 999, sufficiently big number;

· Walking speed = 4 km/h;

· DistMAX= 600 m;

· Driving speed = 50 km/h;

The heuristic parameters were:
· Cluster maximum dimension: 8 elements;

· Weights for the clustering distance function: λ1 = 0.6 and λ2 = 0.4;

· Iteration: 5;

The results are summed up in the following table:

(Table 1)

The percentage of unmatched participants is approximately 67% but looking at Figure 10 we see that there are significant differences between the several parishes of this borough, with four of them reaching values between 56% and 66%. These are the regions more promising to promote carpooling since they have a higher probability of including single riders with compatible trip characteristics.
6 . Conclusions and future work
Carpooling has proved in the past to be a system difficult to implement due to the sharing of the automobile with non-acquainted people. This is a complex subject that takes us deep into social psychology and the way people relate to each other and build their attitude functions. But carpooling deterrents are not reduced only to psychology matters, in the mainstream from that, we have a transportation mode, and like any other this is subject to time and capacity constraints. If certain conditions of trip characteristics are not present it is not possible to turn these systems viable, and a failure in their appliance is a step towards disbelieve in this mode.

The simulation-based methodology for the spatial-time viability of carpooling that we presented is more advanced than the previous research by limiting the frontier effects inherent to the cellular models presented in the state-of the art to a minimum. Moreover by applying more real trip characteristics, which are geographically variable, one gets a more faithful image of the urban mobility possibilities of carpooling. The first tentative results show a significant variation in the matching probability of areas in the same borough, due to different population densities and personal schedules.
Nevertheless, some limitations remain and these are to be worked out in the continuation of this study. One aspect that needs extra attention is the flexibility of carpooling clubs to personal near term schedule changes, which is one of the main deterrents to carpooling viability. An indicator for this flexibility is necessary in order to find the alternative pool groups for a person that has a different destination, or the same but with a different schedule, on a particular day.
The carpooling survey is the most important missing component of the work developed until this moment. The specific technique to extrapolate the values for the car capacity and the extra time that people are willing to accept is yet to be established. Although these distributions may be regarded as input variables of the simulation, it is expected that different social profiles of the inhabitants in each region will generate different types of behavior, constituting this way another differentiating aspect of the matching probability.
We have to conclude that this investigation is still under-going work. After implementing the referred improvements it will come a stage of parameter calibration, which includes the weights of the distance components in the cluster algorithm, the maximum dimension of each cluster and the maximum iterations to be made. The Xpress-MP optimization program results will also have to be monitored because the branch-and-bound search algorithm has an associated error that influences the results depending on the number of elements being analyzed.
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Tables

Table 1:

	Indicator
	Value

	Total trips
	1222

	Number of groups formed
	181

	Number of groups of two
	144

	Number of groups of three
	37

	Number of unmatched participants
	823

	% of unmatched participants
	67.35%

	Number of unused vehicles
	218

	% of unused vehicles
	17.84%

	Time to calculate
	14 min


Captions

Figures

Figure 1 – Carpooling Club

Figure 2 – System to be tested in the simulation
Figure 3 – Example of the elements defining the cost of a pool

Figure 4 – Framework to find the possible groups

Figure 5 – Clustering division for a total set of 100 people

Figure 6 – Commuting movement of workers in Lisbon Metropolitan Area. Source: Census 2001

Figure 7 – Trip Time Calculation

Figure 8 – Program Window

Figure 9 – Maximum Extra Time Calculation

Figure 10 – Results of the simulation
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Table 1 –Simulation Results
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