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Abstract 
Transport markets have a unique character wherein demand can be expressed as series of aggregated levels such 

as generation, OD, mode, route and link. Thus one can have a question, “Which level of aggregation should be used 
for benefit estimation of transport project?” For this question, this paper proves theoretically that benefit measures 
for each level of travel demand have same value if consistent travel demand model and price quantities are used. 
We validate the property in any kind of model that is consistent with random utility theory, a model with determi-
nistic route choice, and a model with any OD-level demand functions. Finally we verify the applicability of this 
theoretical property empirically with Nested Logit based network model developed by Maruyama et al. (2003). 
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1. Introduction 
 
Transport market has a unique character that demand quantity can be expressed as several aggre-
gated level or demand hierarchy such as generation, OD, mode, route and link. Thus one can have a 
question, “Which level of aggregation should be used for benefit estimation of transport project?” 
Traditionally transport planners have used OD based “Rule-of-Half” (RoH) formula for benefit es-
timation. However, recent papers by an economist (Kidokoro, 2004, 2006) imply that link/route 
level measures would be more appropriate measures. In Japan, there is a heated academic-debate on 
the question “OD vs Route” between economists and engineers. Therefore, this paper aims to clar-
ify the confusion on the issue by both theoretical and empirical analysis.  
 
At first, this paper proves theoretically that benefit measures for each level of travel demand ex-
pressed with integral term have same value if consistent travel demand model and price quantities 
are used. We validate the property in any kind of model that is consistent with random utility theory, 
a model with deterministic route choice, and a model with any OD-level demand functions. The 
proof for deterministic route choice uses the division of integral interval. In addition, we prove that 
link level and route level measures always have the same value in any model with link-additive 
route cost. Please note that you may think it is natural that each benefit measure has consistent 
value if consistent model is used, but the original contribution by this paper is to show that even in 
link-level measure has the same value even in the deterministic/stochastic choice situation.  
 
However, we also show that, if we consider the issue practically, such theoretically proof is not ap-
plicable in any case. In practical evaluation of user benefit, we use the RoH instead of exact value 
of integral of demand function. The RoH is based upon linear approximation of demand functions 
and it is a good approximation of exact value when price changes are small. If we apply the RoH in 
OD-level, the error of approximation may be small. However, if we use the formula in link/route-
level, the error would be larger than that in OD-level.  
 
Finally we verify these properties with a Nested Logit based network model. If we use generation-
level RoH, the approximation error is at most 0.03%. OD-level RoH gives 2% error at most. How-
ever, error by link/route-level RoH is higher than 60%. We can see that the error is expanded in 
lower hierarchy.  
 
Through these theoretical and empirical investigations, we have the concrete answer; “As long as 
the consistent travel demand model and price quantities are used, theoretical benefit measures for 
each demand hierarchy have same value even in link level. However, OD level or higher level de-
mand hierarchy is appropriate measure because the approximation error by RoH for link/route level 
may be so large.” 
 
 
2. Equivalence of Theoretical Benefit Measures for Each Level of Travel Demand 
 
For easier understanding, we prove the equivalence property in order of following models. 
(1) Nested logit model 
(2) Any kind of model that is consistent with random utility theory 
(3) A model with deterministic route choice 
(4) A model with any OD-level demand functions 
 
2.1 Nested Logit model 
 
Let’s consider the 4-level nested logit model for user choice of trip-making, destination, mode, and 
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route. In this model, demand quantities can be expressed as following (Maruyama et al. 2002, 2003, 
Oppenheim, 1995). 
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where monetary-based generalized travel cost of route k on mode m between OD pair rs is defined 
as 
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In this paper subscript “w” means “with” and “wo” means “without”. Then, the following consumer 
surplus is the exact measure for user benefit. 
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Then we have following proposition. 
 
Theorem 1  
In nested logit model, theoretical benefit measures for each demand level have equivalent value 
(equivalent property):  

GEN MODE OD PATH LINKUB UB UB UB UB UB= = = = =      (5) 
 
Proof  
By eqn. (3), we have following. 
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This completes the proof. 
 
One may also notice that  

PATH LINKUB UB=        (6) 
is satisfied in any model with eqns (1a) and (2a). In other words, route-based and link-based benefit 
measures have the same value in any travel model with additive route cost. 
Please note that above proof process is not valid if any level of nested logit model is deterministic 

choice. For example, if route choice is not stochastic but deterministic, then ,
rsm

m krs
rs rs
km m

fS
c q
∂

=
∂

 in eqn. (3) is 

not valid. However, as shown below, one can prove eqn. (5) in another way. 
 
 
2.2 Any model that is consistent with random utility theory 
 
Equation (3) is a special case of well-known property that partial differentiation of expected maxi-
mum utility by systematic utility is equivalent to choice probability. This property is valid not only 
in nested logit model but any model that is consistent with random utility theory of discrete choice. 
So the equivalence property of benefit calculation at any level of the demand hierarchy is expected 
to hold in any model that is consistent with random utility theory. 
 
Generally, in discrete choice models based on random utility theory, the probability that alternative 
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where Ui is the random utility function for alternative i, and ,iV iε  are deterministic and random 
components of this utility function, respectively. 
 
The aforementioned property that the derivative of the expected maximum utility with respect to the 
systematic component of the utility of any alternative is equal to that alternative’s choice probabil-
ity (Williams, 1977) can be described as,  
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Then, consider that choice set C is divided into N subsets . In the case of 2.1’s 
nested logit model, the subsets are those with identical modes or destinations. Then, the following 
equation, with marginal probability and conditional probabilities, will hold. 
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then, we have following formula that is similar to eqn. (8). 
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If we view the choice model as an individual’s demand curve, then user benefit is described as 
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where μ  is marginal utility of income (usually coefficient of travel cost). Then with eqns. (9) and 
(13), we have  
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( | )nP C C /nS μ is demand aggregated at a specific a level, and where  is a price index that is consis-
tent with this level. Then, we have proved that benefit measures for demand hierarchy with any ag-
gregation level have equivalent value if the consistent price index is used. This proof is based on 
individual disaggregate choice, but you can easily understand that the result can be applied to ag-
gregate models if you assume homogeneous individuals. Furthermore you can also see that link-
level value has also equivalent value, which is an aggregation of individual behavior. 
 
It depends on the assumption of error term whether we can calculate easily the value nS  defined in 
eqn. (11). If we use logit/nested logit type model, then  can be easily calculated as log-sum vari-nS
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able (e.g. eqn. (2b-d)). Analytical expression of  is still possible for GEV type models (McFad-
den, 1978; Choi and Moon, 1997). On the other hand, Probit model and Mixed Logit model will 
require numerical calculation with simulations, and then analytical treatment will not be so easy.   

nS

 
 
2.3 A model with deterministic route choice 
 
Deterministic route choice can alternatively be called as perfect substitution in route-level demand. 
At first, we assume the upper level choice except for route choice is described by Nested Logit 
model of eqn (1). You may think that the proof of 2.1. can be directly applied even in this case if we 
regard deterministic route choice as a special case of stochastic route choice with . However, 
this is incorrect because stochastic route choice with  is merely a special case of general de-
terministic route choice. To show this let’s consider the following example. If there is multiple 
minimum cost route on network, the deterministic route choice can assign flow in any of the mini-
mum route. This is so-called All or Nothing assignment. On the other hand, stochastic route choice 
with  will assign equal flow on each minimum route. The restriction of assignment by sto-
chastic route choice with  is severer than that of deterministic choice. Therefore general de-
terministic route choice can not always be a special case of stochastic route choice and we need an-
other method of proof for deterministic route choice. 
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In this case eqn. (1b) is rewritten as 
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With these settings, we can easily verify that the following equations will hold among eqn(5). 
     (19) ,GEN MODE OD PATH LINKUB UB UB UB UB UB= = = =

.  Then the last formula we have to prove is OD PATHUB UB=
 
Theorem 2 
In a model with deterministic route choice, theoretical benefit measures for OD level and path level 
have equivalent value:  OD PATHUB UB=
 
Proof 
In order to simplify the notation, we omit the notation rs and m below. We define the choice set of 
all route on network as K , and the set can be divided into following 4 set. 
 
K1 : subset of routes that are used in neither with nor without scenario. 
K : subset of routes that are used in with scenario but are not used in without scenario. 2
K : subset of routes that are used in without scenario but are not used in with scenario. 3
K : subset of routes that are used in both with and without scenario. 4
 
Then eqn. (16) is described as, 
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Then, we have proved that route-based benefit measure and OD-based benefit measure have same 
value even in the deterministic route choice case.  
 
 
We can easily see that this equivalent property will hold even in the case where upper choice except 
route choice is described by any model that consistent with random utility theory besides Nested 
Logit model. 
 
 
2.4 A model with any OD-level demand functions 
 
Consider the case demand function is set in OD-level. Beckman model is one example (Beckmann 
et al. 1956). Doubly-constrained trip distribution/ assignment model is another example (Sheffi, 
1985). 
Then, it’ll be said to be consistent that the demand function is defined as OD-based minimum travel 
cost if route choice is deterministic, or the demand function is defined as OD-based expected mini-
mum cost if route choice is stochastic. For simplicity we omit the notation m here.  
In the case of deterministic route choice, if we define demand function  between OD-pair rs, (.)rsD

(..., ,...) ( )rs rs rs rsq D c D= = c     (24) 
then OD-based benefit measure is 
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and we can prove  as 2.3. In the case of stochastic route choice if we define demand 
function as 

OD PATHUB UB=
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then OD-based benefit measure is 
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and we can prove  as 2.2. OD PATHUB UB=

 
 
This chapter proves theoretically that benefit measures for each level of travel demand have same 
value if internally consistent travel demand model and price quantities are used. You may think it is 
natural that each benefit measure has consistent value if consistent model is used, but the original 
contribution by this paper is to show that even in link-level measure has the same value even in the 
deterministic/stochastic choice situation. To my knowledge there is no paper which describes this 
property explicitly before. 
 
 
3. Practical Method to Calculate Benefit for Each Demand Level 
 
This chapter considers the practical method to calculate benefits for each demand level. For the eas-
ier understanding, we consider the Nested Logit model in 2.1. 
 
 
3.1 Applying Rule-of-Half 
 
Practically the integral-based value in eqn (4) are approximated with following Rule-of-Half (RoH) 
formula. 
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These equations will have some approximation error because they are approximation of eqn (4). 
Before investigating the approximation error, we show the relationship among these equations. 
At first, in any model, following equations are hold. 

PATH LINKUB UB=         (29) 
The proof is given below with omitting the notation m here. 
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If route choice is deterministic, the following relationship will hold. 
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Where underlined term is zero because of deterministic route choice condition eqn.(16). Then with 
the route choice set (K ,K ,K ,K ) defined in 2.3, we have following formula. 1 2 3 4
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Therefore generally we can conclude . In addition, if there are many route flows for 
choice set K

OD PATHUB UB≠

2 then OD PATHUB UB<  will be hold. If there are many route flows for choice set K  then 3

OD PATHUB UB>  will be hold. Generally the transport projects are intended to improve the traffic situa-
tion and number of used route choice alternative will increase, so there will be many route flows for 
choice set K OD PATHUB UB<, and  will hold. 2
 
Therefore in Deterministic User Equilibrium (DUE) model applying RoH at link/path level doesn’t 
necessarily produces the exact values. However, in the DUE model with fixed demand we can cal-
culate the exact value using another formula based on link-based values. The formula is the differ-
ence of total travel cost. The proof is shown below. 
 
Theorem 3 
In Deterministic User Equilibrium model with fixed OD-level demand, the user benefit can be cal-
culated as the difference of total travel cost: ODUB TC=  
 
 
Proof 
Notation m is omitted here. If we assume fixed demand ,w wo

rs rsq q rs= ∀  in the following, 

,

1 ( )(
2

w wo wo w
OD rs rs rs rs

r s
UB q q c c≡ + −∑ )     

we have 
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, ,

, ,
, ,

( )wo wo w wo wo w w
OD rs rs rs rs rs rs rs

r s r s r s

wo wo w w
rs k rs rs k rs

r s k r s k

UB q c c q c q c

f c f c

= − = −

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑ ∑ ∑

,
∑

,
⎞
⎟
⎠

)

     (30) 

       
On the other hand, the total travel cost TC is given by;  

, ,
, , , ,

, , , ,

, ,
, , ,

, ,

, , , ,
, ,

wo wo w w
a a a a

a a

wo wo a wo w w a w
a rs k rs k a rs k rs k

a r s k a r s k

wo wo a wo w w a w
rs k a rs k rs k a rs k

r s k a r s k a

wo wo w w
rs k rs k rs k rs k

r s k r s k

TC t x t x

t f t f

f t f t

f c f c

δ δ

δ δ

= −

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛= −⎜ ⎟ ⎜
⎝ ⎠ ⎝

= −

∑ ∑

∑ ∑ ∑ ∑

∑∑ ∑ ∑∑ ∑

∑∑ ∑∑

    (31) 

Then eqn (30) – eqn (31) yields. 

( ) (

, ,
, ,

, , , ,
, ,

, , , ,
, ,

wo wo w w
OD rs k rs rs k rs

r s k r s k

wo wo w w
rs k rs k rs k rs k

r s k r s k

wo wo wo w w w
rs k rs rs k rs k rs rs k

r s k r s k

UB TC f c f c

f c f c

f c c f c c

⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤
−⎢ ⎥

⎣ ⎦

= − − −

∑ ∑ ∑ ∑

∑∑ ∑∑

∑∑ ∑∑

−

   (32) 

Here we have following user equilibrium conditions. 
( ) ( ), , , ,0 0wo wo wo w w w

rs k rs rs k rs k rs rs k , , ,f c c and f c c r s k− = − = ∀    (33) 

ODUB TC= . This completes the proof. Thus 
 
 
It can be easily understand that there will be generally no approximation error if we measure the 
value at the level of fixed demand.  In addition, if the demand function is convex downward and 
project is intended to improve the situation, the RoH will overestimate the exact value. Special at-
tention is needed for logit based demand function. In this case the logit model is S shaped, and the 
demand function is convex downward and overestimation will occur if choice probability is less 
than 0.5. However if choice probability is more than 0.5, the demand function will be convex up-
ward and underestimation may occur. If the number of choice set is numerous such as destination 
choice and route choice situation, every choice probability may less than 0.5 and there will be the 
overestimation only. 
 
Generally speaking benefit measures based on RoH for each demand level is not equivalent. In the 
chapter 3, it was the point that we don’t use the RoH but use the integral-based exact value. 
 
 
3.2 Solution by Numerical Integral 
 
The RoH is known to break down in the following situations. 
i) large generalized cost changes 
ii) the introduction of new modes 
 
For this problem Nellthorp and Hyman (2001) proposed a numerical integral based method that di-
vides the integral interval and apply the RoH for each divided interval. Explicitly, for an aggrega-
tion level i, travel demand q , and consistent generalized cost measure c , we have following formula. i i
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11 ( )(
2 i i i i

i

UB q q c cω ω ω ω

ω

+

∈Ω

= + −∑∑ 1 )+      (34) 

where { ,1, 2,..., 1}wo wω∈Ω = − is the label which denote the interpolating point for divided integral 
interval and  means nearest interpolating point for with scenario. 1w −
 
Using this formula, the integral-based value by eqn (4) can be evaluated approximately. If the num-
ber of division is sufficient, the approximation error is expected to be small. 
Nellthorp and Hyman (2001) provided the method based on numerical integral only for OD-level 
evaluation. There is the following problem if we apply the method to path/link level based measure 
of eqn (4e), (4f). 
 
The problem is how to set the prohibited price if there are several new links. If the number of new 
link is one, then implement the assignment procedure several times with increasing the cost of new 
link gradually, and prohibited price is determined as the price which yields the zero traffic flow on 
the link. Then divide the integral interval between the prohibited price and the price at with scenario. 
However, if there are several new links, such as construction of new ring road, the checking the 
prohibited price for each new link is burdensome. In addition, the prohibited price for each new link 
can not be set uniquely. 
 
If we accept the idea that we calculate one set of prohibited prices for each new link, the following 
method can be proposed. Beginning with “with” scenario network, implement the assignment sev-
eral time with adding equally small travel cost on each new link, and record the result of link flow 
and link cost. If the every new link has zero link flow, then terminate the iteration and regard the 
link flow and link cost calculated until then as the interpolating point and calculate the value by eqn 
(34).  
 
We can easily verify that benefit measures for link level and path level have same value even with 
the numerical integral. 
 
 
4. Empirical Investigation 
 
This chapter validates the equivalence property using the method shown in chapter 3 with actual 
data. 
 
We pick up the same project as Maruyama et al. (2002, 2003) used as a case study. The project in-
volves construction of new links that constitute a part of outer ring road for Tokyo Metropolitan 
Area. Those model parameters and data settings are all used there (Maruyama et al. 2002, 2003). In 
this large scale application, explicit treatment of path variable is infeasible. However, we have 
shown that path-level value is same as link-level value in exact integral formula, RoH and numeri-
cal integral method, thus we can see the link-level value instead. 
 
We try to investigate the precision of numerical integral by varying the number of integral divisions. 
Specifically in Numerical Integral (I) we implement the assignment several times with adding the 0, 
5, 10, 50 (min) additional cost on the new links. We verify that using 50 (min) additional cost yield 
zero traffic on each new links. In this case the integral interval is divided up to three. Numerical In-
tegral (II) use the additional cost of 0, 1, 3, 6, 10, 15, 20, 25, 30, 40, 50 (min) and integral interval is 
divided up to ten. 
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The results for each time period are shown in Table 1. Compared to the exact formula, approxima-
tion error of the RoH formula for generation/ mode level is up to 0.03% and this is extremely small. 
The approximation error of RoH formula for OD level is up to 2% and this is sufficiently small. The 
error is made much smaller if Numerical Integral (I) is applied. In addition, as mentioned earlier the 
error by RoH is roughly overestimation in each time period. The error tends to be large in the 
crowded time period. In addition, the error tends to increase as the demand hierarchy goes down. 
 
The value by link/path level has big error of 20~60% even if Numerical Integral (I) is used. If Nu-
merical Integral (II) is used, the error decreases but it is not within practical range yet. In off-peak 
time period (0~5 a.m.), we recalculated numerical integral by dividing integral interval by 1 min, 
and the error is around -0.1% ~ 2.91%. This procedure need numerous computing times. The RoH 
for link/path level is not calculated because the calculating prohibited price is burdensome but the 
value will have larger error than the value by Numerical Integral (I). Thus RoH for link/path level 
won’t be practical.  
 
In order to investigate the large error in link level benefit measure, we plot relationship between 
link flow and link cost in a link that come from the procedure with integral interval of 0.5 (min) in 
Figure 2. When the additional cost is zero, the link cost is about 3.5 (min) and link flow is about 
365(vehicle). Additional cost increases by 0.5(min) and plot the relevant link flow. If the additional 

Table -1 Empirical Comparison of Estimates of Benefit for Each Level of Travel Demand  
 (Unit: 103 Japanese Yen) 

Generation level Mode level OD level Link/Path level 

Time 
period 

Exact 
Value 

Eq.(4a) 

Rule of 
Half 

Eq.(28
a) 

Error 
Rule of 

Half 
Eq.(28b) 

Error 
Rule of 

Half 
Eq.(28c)

Error

Numerical
Integral 

(I) of 
Eq. (4d) 

Error

Numerical 
Integral 

(I) of 
Eq. (4f) 

Error 

Numerical
Integral 
(II) of 

Eq. (4f)

Error

 A B (B−A)/A C (C−A)/A D (D−A)/A E (E−A)/A F (F−A)/A G (G−A)/A
0 327 327 0.000% 327 0.000% 328 0.344% 327 0.104% 415 27% 342 4% 
1 260 260 0.000% 260 0.000% 261 0.464% 260 0.135% 378 45% 292 12% 
2 244 244 0.000% 244 0.000% 246 0.422% 245 0.126% 324 33% 254 4% 
3 999 999 0.000% 999 0.000% 1,003 0.404% 1,000 0.115% 1,271 27% 1,072 7% 
4 1,526 1,526 0.000% 1,526 0.000% 1,535 0.538% 1,529 0.154% 1,864 22% 1,565 3% 
5 5,005 5,005 0.006% 5,005 0.006% 5,027 0.441% 5,013 0.155% 6,052 21% 5,474 9% 
6 14,251 14,251 0.002% 14,251 0.002% 14,368 0.820% 14,279 0.197% 21,555 51% 15,103 6% 
7 22,766 22,768 0.010% 22,768 0.010% 23,208 1.941% 22,872 0.467% 36,919 62% 23,549 3% 
8 20,425 20,431 0.030% 20,431 0.030% 20,717 1.426% 20,486 0.300% 30,999 52% 20,962 3% 
9 21,221 21,223 0.011% 21,223 0.012% 21,433 0.999% 21,269 0.228% 32,401 53% 22,572 6% 
10 19,795 19,796 0.006% 19,797 0.011% 19,969 0.879% 19,835 0.200% 29,589 49% 21,524 9% 
11 20,734 20,736 0.006% 20,736 0.010% 20,884 0.721% 20,769 0.169% 28,389 37% 20,959 1% 
12 14,554 14,554 0.003% 14,555 0.006% 14,638 0.578% 14,576 0.149% 19,806 36% 14,986 3% 
13 22,569 22,570 0.005% 22,571 0.009% 22,748 0.790% 22,610 0.181% 32,093 42% 23,336 3% 
14 19,988 19,989 0.005% 19,990 0.009% 20,135 0.737% 20,022 0.171% 28,559 43% 21,004 5% 
15 21,985 21,986 0.004% 21,987 0.007% 22,138 0.693% 22,020 0.159% 29,793 36% 22,112 1% 
16 22,681 22,681 0.000% 22,681 -0.003% 22,823 0.626% 22,712 0.137% 31,231 38% 23,097 2% 
17 28,405 28,403 -0.007% 28,401 -0.014% 28,566 0.567% 28,439 0.121% 39,246 38% 30,022 6% 
18 20,568 20,565 -0.013% 20,564 -0.019% 20,696 0.622% 20,599 0.152% 28,229 37% 22,275 8% 
19 8,478 8,479 0.009% 8,479 0.009% 8,508 0.357% 8,494 0.190% 10,633 25% 8,943 5% 
20 5,319 5,319 0.007% 5,319 0.007% 5,339 0.383% 5,332 0.239% 6,474 22% 5,468 3% 
21 3,058 3,059 0.007% 3,059 0.007% 3,071 0.410% 3,067 0.283% 4,169 36% 3,218 5% 
22 1,403 1,403 0.001% 1,403 0.001% 1,408 0.393% 1,407 0.312% 2,085 49% 1,487 6% 
23 778 778 0.002% 778 0.002% 780 0.364% 780 0.302% 1,299 67% 831 7% 

Day 
total 297,339 297,353 0.0047% 297,354 0.0049% 299,828 0.837% 297,943 0.203% 423,772 43% 297,355 4% 

 Note 1) Value for column A and D is same as Table 8 in Maruyama et al. (2003)  

 
Note 2) Numerical Integral (I) divide integral interval up to three and Numerical Integral (II) divide integral interval up to ten. 
Please refer to text for details. 

v 
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cost exceed 11.5(min), the link flow is zero. So the prohibited price for this link is around 15 
(3.5+11.5) (min). Figure 2 shows this procedure. 
This Figure 2 is figure of the general equilibrium demand curve for this link. To author’s knowl-
edge this is the first to figure the link-based general equilibrium demand curve. From this figure the 
general equilibrium demand curve for this link is far from line and roughly convex curve. 
If we approximate the curve with line between with and without scenario and estimate the benefit 
by triangular area, the estimated benefit will be overestimated by more than two times. Even if we 
use numerical integral, there will be a lot of approximation error without sufficient integral divi-
sions. 
 
 

Figure 2 An example of Estimate of Link-based General Equilibrium De-
mand Curve and User Benefit by Numerical Integral 

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300 350 400

リンク交通量 (台/時)

リ
ン
ク
一
般
化
価
格

 (単位: 分)

Link flow (vehicle /hour) 

Link  
generalized  
travel cost  

(Unit: min) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Last chapter verify the equivalence of benefit measures for each level of travel demand theoretically. 
On the other hand, this chapter verifies the equivalence property in practical situations. In this cal-
culation, benefit measures for generation/ mode/OD level are very close to the exact value even us-
ing the RoH formula. However, if we apply the RoH formula to link level, the approximation error 
will be extremely large, and this error can be reduced in numerical integral method only if the suffi-
cient interpolating points are set as integral divisions. The implication that the approximation error 
is large in applying RoH in link/path level may be specific to the setting of this calculation which 
considers congestion in metropolitan level. However, because the number of such project is large, 
estimation of link/path level is not recommended at least in such cases. 
 
5. Discussion 
 
The question raised by this research is which is recommended to be used in benefit estimation, 
link/path or OD level. For this question theoretically an answer can be made that any level will OK, 
because the benefit measure is equivalent in internal consistent travel demand model. However, 
theoretical value is based on integral and this value is not always easy to be calculated. Therefore, 
an approximation is needed for the integral value for a hierarchy. Such kind of discussion has never 
made in existing literature. 
 
Generally transport project are described as change of generalized cost in link-level price. If the in-
ternal consistent travel demand model is given, a change of generalized cost in OD level that is con-
sistent with link-level change can be defined. These change rates of generalized cost can be very 
large in link-level measures but it can be made smaller in OD-level measures because of aggrega-
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tion. Generally the RoH is based on the liner approximation of integral, thus the approximation er-
ror will be made large if the change of generalized cost is large. Therefore approximation error of 
link-level RoH is large than that of OD-level RoH. This point is strongly supported by the calcula-
tion shown in last chapter. As you can see in Figure 2, the approximation error of general equilib-
rium demand curve in link-level will be extremely large. 
 
6. Conclusion 
 
This paper shows the following point. 
(1) Travel demand can be expressed in various aggregation levels such as generation/mode/OD/link 
and benefit measures for each level are equivalent in theoretical integral based value if the internal 
consistent demand forecasting model and consistent price index are used. We validate the property 
in a model that is consistent with random utility theory (e.g. Nested Logit), a model with determi-
nistic route choice, and a model with any OD-level demand functions. 
(2) Path-based benefit measures and link-based benefit measures have the same value in any model 
with additive route cost. This hold not only in exact value expressed in the integral but also in Rule 
of Half (RoH) formula. 
(3) In deterministic route choice context, we show RoH for OD level is different from that for 
link/path level. In addition we clarify the tendency of the difference property. 
(4)  The equivalence property is validated in an empirical situation that develops Nested Logit 
model in large metropolitan area and shown that even RoH formula has very close value to the ex-
act value in generation/mode/OD level. However, applying the RoH to link/path level yields very 
large approximation error. 
(5) Practically the OD-level estimation is more recommended than the link/path level estimation 
because the approximation error of the former is smaller than the latter. 
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