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Abstract 
This paper considers the welfare impacts of a range of franchising regimes for congestible 
highways. For a single road in isolation, it is shown that a competitive auction with the level 
of road use as the decision criterion produces the socially optimal road (in terms of capacity 
and toll level), provided neutral scale economies characterize highway operations. The 
auction outperforms various alternatives, in which the bidders are asked to minimize the toll 
level or toll revenues, or to maximize capacity or the bid for the franchise. When second-best 
network aspects are taken into account, the patronage-maximizing auction is no longer 
optimal. With unpriced congestion on parallel capacity, the second-best highway would 
generate losses and the auction produces a below-optimal capacity. With unpriced congestion 
on serial capacity, the auction produces an above-optimal capacity. However, the patronage-
maximizing auction does replicate the second-best optimum under a zero-profit constraint in 
both cases. An inquiry into the degree of generality of this result shows that the first-order 
conditions suggest that this similarity would carry over to generalized networks, of 
undetermined size and shape. But second-order conditions are not fulfilled in general, and 
also corner solutions may occur. A numerical example is used to illustrate that the patronage-
maximizing auction may then achieve the least efficient among the possible zero-profit roads. 
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1. Introduction 

The private supply of highway capacity offers one way to deal with growing traffic 

congestion in the face of insufficient public funds to finance new capacity, and insufficient 

support for public road pricing. Private involvement in highway supply is not exceptional. 

Around one-third of the Western European highway network is currently under concession, 

with a strong concentration in the more Southern countries of France, Spain, Italy and 

Portugal. Some of the value pricing projects in the US involve private pay-lanes. And private 

toll roads are an increasingly common phenomenon in developing countries. 

 Proclaimed potential advantages of private over public highways include cost-

efficiency, innovativeness, and availability of funds. A main disadvantage is the divergence 

between the private objective of profit maximization and the social objective of welfare 

maximization (e.g. Edelson, 1971; Mills, 1981; Mohring, 1985). An important question is 

whether there are ways, particularly through the design of auctions for highway concessions, 

to make the private operator behave more closely in line with welfare maximizing price and 

capacity setting. Such strategies might preserve the advantages of private involvement, while 

limiting the potential disadvantages. Moreover, a properly designed auction would provide 

incentives to minimize the cost of supplying the capacity chosen, and would give the 

government an objective way to select a road operator among a larger set of candidates. And 

of course, the use of auctions or comparable allocation mechanisms seems unavoidable in the 

awarding of concessions for highways, anyway. It is therefore important to have a proper 

understanding of the potential efficiency impacts of the design of such auctions. 

 This paper investigates one particular aspect of auctions for highway concessions, 

namely the extent to which the choice of the criterion used in the selection of the winning bid 

affects the efficiency of the resulting highway. The choice of criterion becomes relevant 

whenever the regulator is unsure about the optimal capacity and toll (schedules); possibly 

because these depend in part on the (efficiency of) the operator’s other choices, for example 

during the construction phase. Under complete certainty, a criterion that awards the 

concession only to a bidder offering the optimal capacity and toll (schedule) would of course 

suffice to achieve the socially most desirable outcome, and the auction becomes a formality. 

We will mainly consider auctions in which private bidders are free to select highway capacity 

and toll, but will also briefly consider more limited auctions in which capacity is pre-

specified. 

To focus attention, some simplifying assumptions will be made. First, we consider 

stationary traffic conditions with homogeneous users. Second, we ignore specific distortions 

that might arise from strategic interactions between bidders in the auction, by considering 

competitive auctions only. There is no a priori reason to expect that these interactions would 

systematically affect the ranking of the various criteria that we will consider, although the 

welfare gains (or losses) from each criterion would of course be different under non-

competitive bidding. Third, we will not formally model demand uncertainty and contract 

renegotiation. And fourth, we will assume that the government has sufficient power and 
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credibility to enforce fulfilment of the bid, and can punish violations such that the net 

profitability of winning the auction but not living up to it would be negative and hence below 

that of not winning. The set-up of the analysis is similar to that of Ubbels and Verhoef (2004), 

but extends it by considering the impacts of an unpriced complement (in addition to an 

unpriced substitute); by considering maximum patronage as a candidate criterion and, for pre-

specified capacities, minimum toll revenues; and by using a different (non-linear, BPR-type) 

congestion cost function in the numerical model. Furthermore, unlike Ubbels and Verhoef 

(2004), this paper considers the (second-best) optimality of auctions in generalized networks, 

of undetermined size and shape – and finds a counter-example where a candidate second-best 

optimal auction in fact produces a minimum of achievable surplus levels. 

 The plan of the paper is as follows. Section 2 starts with some theoretical 

backgrounds. Section 3 considers the performance of a number of auctions for a single road; 

while Section 4 moves on to introduce network aspects. Section 5 considers the second-best 

optimality of the most promising auction on generalized networks. Section 6 concludes. 

2. Theoretical backgrounds 

This section provides some theoretical backgrounds for our analysis. Section 2.1 identifies the 

conditions for surplus-maximizing and profit-maximizing road capacities and tolls, and thus 

identifies the direction in and extent to which an auction should ideally affect the private 

operator’s choices, compared to unrestricted freedom in setting the toll and capacity. Three 

cases are discussed: the benchmark of an isolated road, and two second-best cases allowing 

for simple network spill-overs, namely where either an unpriced substitute or an unpriced 

complement is available. Section 2.2 addresses the profitability of surplus-maximizing roads, 

and therewith identifies the desirability for auctions designed so as to push bidding companies 

to a zero-profit bid. Throughout the section, we will restrict attention to interior solutions, 

with positive capacities. We thus ignore corner solutions in which it is not attractive to build 

the road at all, which may become important when there are strong economies of scale or 

under certain network configurations (see also Section 5). 

 

2.1. Welfare maximizing and profit maximizing tolls and capacities 

Single road 

Consider a single road with capacity K, which is used under stationary traffic conditions by 

homogeneous drivers with an aggregate inverse demand function D(N), where N denotes the 

equilibrium flow of traffic. The average user cost includes all variable costs incurred by the 

user, including travel time, and depends, through congestion, on N and K. It is denoted 

c(N,K). The generalized price faced by road users, p(N,K), is equal to the sum of c(N,K) and a 

toll τ if levied. The per-unit-of-time capacity cost depends on the road’s capacity and is 

denoted Cc(K). Ignoring external costs other than congestion, the first-best optimal toll and 

capacity, defined so as to maximize social surplus S, can be determined by solving the 

following Lagrangian: 
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where the first three terms represent the objective, and the fourth term the equilibrium 

constraint (λ is the Lagrangian multiplier). The set of first-order conditions (w.r.t. N, K ,τ  and 

λ) can be solved to yield two familiar conditions: 

NcN ⋅=τ  (2a) 

c
KK CcN =⋅−  (2b) 

where subscripts denote partial derivatives. Equation (2a) shows that the optimal toll should 

be set equal to the marginal external congestion costs, while (2b) shows that the marginal 

benefits of capacity expansion (the l.h.s.) should be equal to the marginal cost (the r.h.s.). 

 An unrestricted private road operator would maximize profits by solving:  

( ))(),()( NDKNcKCN c −+⋅+−⋅=Λ τλτ  (3) 

The set of first-order conditions now yield: 

NN DNcN ⋅−⋅=τ  (4a) 

c
KK CcN =⋅−  (4b) 

The profit-maximizing toll includes the marginal external congestion costs from (2a), but adds 

to this a standard monopolistic mark-up that increases as demand becomes less elastic. The 

latter term has the conventional interpretation; the internalization of congestion is motivated 

by the fact that any reduction in congestion costs can be turned into revenues for the operator 

by increasing the toll accordingly. Internalizing the congestion externality therefore 

contributes to the profit (e.g., Edelson, 1971; Mills, 1981). 

Interestingly, the profit-maximizing optimality condition for capacity choice (4b) is 

the same as for the social optimum (2b). The intuition is that the operator can, as it were, turn 

all savings in average user cost into toll revenues and hence profits on a dollar-by-dollar basis 

when increasing capacity while keeping the generalized price p and hence total demand N 

fixed. The profit-maximizing trade-off is therefore identical to the surplus-maximizing trade-

off. Of course, the difference between (2a) and (4a) will generally cause the profit-maximizer 

to evaluate (4b) for a smaller N than a surplus-maximizer would consider, producing a lower 

optimal capacity. As a corollary, when demand is perfectly elastic so that (4a) becomes equal 

to (2a), a profit-maximizing operator would set its instruments such that the optimum is 

achieved, and no further regulation is warranted. Because estimates of demand elasticity for 

road transport usually indicate (in absolute terms) elasticities well below –1 (e.g. Hanly, 

Dargay and Goodwin, 2002), this observation is of limited use for practical policy making. 

Under first-best pricing and capacity choice, and assuming no cost interdependencies 

between links, equations (2a) and (2b) would hold for every single link in a network. And a 
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private operator would attempt to add to this a monopolistic mark-up, as in (4a), for every 

origin-destination pair in the network. Indeed, network extensions become analytically more 

challenging when second-best conditions apply elsewhere on the network. An important type 

of second-best distortion would be the existence of untolled, congested links, with capacities 

set arbitrarily. Solving the resulting second-best optimal or profit-maximizing tolls and 

capacities for generalized networks, of undetermined size and shape, can yield tedious 

expressions (see Verhoef, 2002ab) that elude easy interpretation. More insightful expressions 

can be obtained by considering two particular extensions of the one-link network considered 

above: one with an unpriced parallel link (a substitute), and one with an unpriced serial link (a 

complement). Figure 1 shows these simple networks, both serving a single origin-destination 

pair OD and both assumed to consist of an unpriced link U of given capacity, and a link T for 

which both a toll and capacity can be set. 

 

 

 

 

 

Figure 1. Simple two-link networks with an unpriced substitute (a) and an unpriced complement (b) 

 

Unpriced substitute 

The case of second-best congestion pricing with an unpriced substitute, in Figure 1.a, has 

been considered by various authors, including Lévy-Lambert (1968). The inclusion of 

capacity as a second policy instrument has been less common. Using superscripts U and T to 

denote the untolled and the tolled alternative, respectively, and assuming that KU is to be 

treated as given, the surplus-maximizing second-best toll τT and capacity KT can be found by 

solving the following Lagrangian: 
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The set of first-order conditions (w.r.t. NU, NT, KT ,τT, λU and λT) can be solved to yield: 
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where DN denotes the slope of the (single) demand function. 

The second-best optimal toll (6a) is the same as the one reported by Lévy-Lambert 

(1968), and is therefore unaffected by the possibility of also setting capacity for route T. A 

more detailed interpretation of this toll expression can be found in Verhoef et al. (1996), but 

(a) Unpriced substitute (b) Unpriced complement 

O D O D 
Link T 

Link U 

Link U Link T 
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note that it is below the marginal external congestion on route T in order to optimize the 

congestion spill-over onto route U. The second-best optimal capacity rule (6b) is similar to 

the first-best rule (2b). Given the equilibrium use level of route T (NT) and the associated 

generalized equilibrium price pT=cT+τT, it is optimal to choose that combination of KT and τT 

that minimizes the social cost of carrying NT. The optimality condition for capacity is 

therefore the same as for a road without substitute. 

 The profit-maximizing toll and capacity follow from:  
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)(,
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The set of first-order conditions (w.r.t. NU, NT, KT ,τT, λU and λT) now yields: 
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The tax rule (8a) is again not affected by the possibility to set capacity: the same rule was 

found in Verhoef, Nijkamp and Rietveld (1996) who keep capacity fixed. Note that, in 

contrast to the second-best toll in (6a), this tax rule adds a positive term to the common first 

term (that represents the marginal external cost on the tolled route). As for the single link, the 

optimality conditions for surplus-maximizing and profit-maximizing capacity, (6b) and (8b), 

are the same – and for the same reason. The equilibrium capacities will differ only because 

the point of evaluation differs. 

 

Unpriced complements 

Prior literature has paid considerably less attention to second-best pricing with an unpriced 

complement than with an unpriced substitute. Maintaining the assumption of a single origin-

destination pair, and considering control over instruments at one of the two links only, the 

network of Figure 1.b emerges. The second-best optimum can be found by adapting (5) to the 

new network configuration (note that all travellers use both links U and T): 
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)()(),(),(d)( ,,

0

NDKNcKNc

KCKCKNcNKNcNnnD

TTTUU

TTcUUcTTUU
N

−++⋅+

−−⋅−⋅−=Λ ∫

τλ
 (9) 

The set of first-order conditions (w.r.t. N, KT ,τT, and λ) can be solved to yield: 
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N
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N
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Intuitively, the second-best optimal toll perfectly internalizes the marginal external congestion 

costs for both links jointly. The rule that defines optimal capacity has the by now familiar 

form. Again no welfare effects from link U are present in this rule, which reflects that indirect 

effects of changes in KT upon congestion on link U cancel because the toll in (10a) already 

perfectly internalizes this congestion. 

 Finally, the profit-maximizing choice of instruments can be found from solving:  

( ))(),(),()(, NDKNcKNcKCN TTTUUTTcT −++⋅+−⋅=Λ τλτ  (11) 

The set of first-order conditions (w.r.t. N, KT ,τT, and λ) now yields: 

( )N
U
N

T
N

T DccN −+⋅=τ  (12a) 

Tc

K

T

K TT CcN ,=⋅−  (12b) 

The profit-maximizing toll is a straightforward generalization of (4a), like the surplus-

maximizing toll (10a) was from (2a). And also in this final network, the rule dictating profit-

maximizing capacity is the same as the one for surplus maximization. The equilibrium 

capacities will again differ only because the point of evaluation differs. 

 

2.2. Optimality, self-financing and maximized profits 

Mohring and Harwitz (1962) showed that an optimally designed road – i.e., with an optimal 

capacity and an optimal toll – will be exactly self-financing, provided some technical 

conditions are satisfied. These technical conditions can be summarized as follows: (1) road 

capacity should be a continuous variable; (2) there should be constant returns to scale in 

congestion technology (equiproportional changes in use and capacity leave average user cost 

unaffected); and (3) there should be constant economies of scale in highway construction (the 

cost per unit of capacity is independent of total capacity).1 This ‘self-financing’ theorem has 

been shown to extend to each road individually in a full network, and therefore also to the 

network in aggregate, provided each link is optimally priced and all capacities are optimized 

(Yang and Meng, 2002). The theorem also extends to dynamic models (Arnott, De Palma and 

Lindsey, 1993); in present-value terms when allowing for adjustment costs and depreciation 

(Arnott and Kraus, 1998); when maintenance and durability are considered (Newbery, 1988); 

and when input markets are not competitive (Small, 1999). 

 Empirical evidence suggests that conditions (2) and (3) may hold at least 

approximately: empirical estimates of the ratio of long-run average and marginal costs of 

vehicle-kilometres are often relatively close to unity (Small, 1992, Sections 3.4, 3.5).2 Profits 

                                                
1 More generally, the original result in fact states that the degree of self-financing, measured as the ratio of toll 
revenues to capacity cost, is equal to the elasticity of capacity cost with respect to capacity. This implies exact 
self-financing under neutral scale economies. 
2 More recently, Levinson and Gillen (1998) report a point estimate for the ratio between long-run average and 
marginal cost of 0.92 for auto, but 1.45 for single trucks and 1.96 for combination trucks, suggesting mild 
diseconomies for passenger cars but considerable economies for trucks. 
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or deficits under optimal design and pricing of a road will then be relatively small. Condition 

(1) seems unrealistic for a single road because the number of lanes is discrete. But capacity 

per lane can be varied by widening lanes, by resurfacing, or by re-grading or straightening a 

stretch of road. And when this is not the case, an optimally designed road might still be self-

financing over the longer run, when periods of undercapacity and overcapacity alternate as 

demand grows over time. 

 We can illustrate the self-financing theorem in our model by replacing the general cost 

function c(N,K) by the somewhat less general c(N/K) (securing constant returns in congestion 

technology), and the capacity cost function Cc(K) by γc
·K, with γc denoting a constant cost per 

unit of capacity (securing constant economies of scale in highway construction). Observe that:  

N

KNc

K

N

K

KNc

∂
∂⋅−≡

∂
∂ )/()/(

 (13a) 

All conditions for optimal capacity choice encountered thus far were of the same type, which 
can be rewritten (using our assumption of a constant cost per unit of capacity) as: 

 c
KcN γ=⋅−  (13b) 

Multiplying both sides by K yields: 

 c
K CcNK =⋅⋅−  (13c) 

or, using (13a):  

c
N CcNN =⋅⋅  (13d) 

The l.h.s. of (13d) gives total capacity cost when capacity is set according to (13b), and is 

equal to total toll revenues under the first-best pricing rule of (2a). This means that, whenever 

(13b) is satisfied but the toll rule deviates from (2a), as in the two second-best cases 

considered above, optimal capacity choice will result in an unbalanced budget. There will be a 

financial surplus if the toll exceeds the marginal external congestion cost, and a deficit when 

the reverse holds. For a road in isolation – or, indeed, a road in an otherwise optimally 

managed network – equation (13d) confirms the self-financing theorem of Mohring and 

Harwitz (1962). 

These results have implications for the potential of competitive auctions to achieve 

efficiency. At least when no subsidies are part of the auction, a competitive auction would 

drive profits to zero. For a road in isolation, and for which the constant-returns-to-scale 

assumptions are fulfilled, the optimal profit is zero, too. This means that there could be 

competitive auctions that would have the optimum road as an outcome. For a road with 

unpriced complements or substitutes, this would not generally be the case. 

3. Competitive auctions for an isolated road 

A competitive auction can be defined as one in which a sufficiently large number of 

sufficiently equally efficient non-cooperative bidders are active, so that there is no scope for 
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strategic behaviour, and the bidders do not believe they will stand a chance of winning the 

auction when submitting a bid with a lower than their best score on the selection criterion 

used in the auction. The assumption of a competitive auction, while probably questionable in 

the context of road supply3, allows a ‘clean’ analysis of the performance of different selection 

criteria for an auction, without imperfections in the bidding process complicating the analysis. 

Such imperfections would in reality of course be of potentially decisive importance for the 

overall efficiency. However, the questions of to exactly what extent the performance of an 

auction would be affected, and of whether the ranking of the different selection criteria would 

be systematically affected, are left for future research.  

 For a competitive auction thus defined, any selection criterion that can be improved 

upon as long as profits are positive would cause bidders to be pushed closer towards a zero-

profit bid. We will call such criteria ‘profit-exhausting’. Bids for profit-exhausting criteria for 

competitive auctions are formulated by maximization (or minimization) of the criterion 

subject to a zero-profit constraint. All criteria we will consider in the sequel will be profit-

exhausting. A somewhat unrealistic example of a criterion that would not be profit-exhaustive 

would be the criterion of ‘social surplus’ when an unpriced congested complement is 

available; compare equations (13d) and (10a) above.  

 Indeed, if information would be so complete that a meaningful auction with ‘social 

surplus’ as the criterion were possible, it would not be hard to define the optimal criterion for 

an auction. In practice, more easily observable criteria will have to be used. The set to be 

considered below is based on practical examples, earlier proposals in the literature, and on an 

attempt to find a relatively efficient criterion. The criteria to be considered are: a maximum 

bid for the right to build and operate the road (“Bid”), a maximum capacity supplied (“Cap”); 

a minimum toll charged for a pre-defined capacity (“Toll-cap”)  4; and the maximization of the 

use level or patronage of the new capacity (“Pat”).  

 If an auction is profit-exhausting, the occurrence of a ‘winner’s curse’ is of course not 

inconceivable: the winning bid is from the party that holds the most optimistic expectations 

about market opportunities, and that therefore stands a considerable risk of incurring losses 

once operation commences. We will not formalize the existence of a dispersion of 

expectations across potential bidders. But one way of dealing with this problem in reality 

would be to ask bidders to supply, along with their bid, a detailed account of the predicted use 

levels, travel times, toll levels, and road design. This would allow verification of the 

plausibility of the travel times as a function of road characteristics (capacity) and patronage, 

as well as patronage as a function of travel time and toll level. For the latter test, existing 

                                                
3 Worldbank (2006) for example state “Particularly in the case of large toll road concession projects, there is 
often a relatively limited number of bidders” (Section 5; sub-page entitled “Attract bidders”). Reasons could be 
the specific knowledge required to build and operate roads, the lumpiness of projects, the required efforts for 
composing bids, etc. 
4 Another potential criterion would be a minimum toll charged (“Toll”) without a pre-defined capacity. This 
criterion was considered in an earlier version of this paper, but is dropped here because it consistently leads to 
zero-capacity bids. 
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transport network models could be used; and further insights can be obtained by comparing 

bids with each other. With a deviation above a certain threshold, the bid could be ignored to 

protect the bidder from a winner’s curse, or clarification or revision could be demanded.  

 And finally, a credible and effective penalty should of course exist for under-

performance compared to the bid, if wining. This penalty should be such that the firm should 

make a net loss from winning the auction and underperforming afterwards, and might be 

coupled to the government obtaining the right to set the toll levels when persisting 

underperforming occurs. 

 

A numerical model: a single road 

We will illustrate the discussion of the various possible selection criteria using the results of a 

small numerical simulation model. The model is highly stylized, but nevertheless calibrated 

so as to be representative for a highway that is congested during peak times. The average user 

cost function is modelled according to the well-known BPR-formulation (Small, 1992): 





















⋅+⋅⋅=
χ

βα
K

N
tKNc f 1)/(  (14) 

where α is a parameter reflecting the value of time (set at 7.5 in our model, according to 

conventional Dutch estimates), tf is a parameter reflecting the free-flow travel time (set at 0.5, 

implying 60 km for a 120 km/hr highway), and β and χ are parameters that are set at 0.15 and 

4, respectively – conventional values for the BPR-function.  

 The units of capacity are chosen such that one conventional traffic lane would 

correspond to K=1500. This implies a doubling of travel times at a use level of around 2400 

vehicles per hour. This is roughly in accordance to the flow at which, empirically, travel times 

double for a single highway lane and the maximum flow on a lane is reached (e.g. Small, 

1992, Fig. 3.4, p. 66). A maximum flow, however, is not defined for BPR functions. 

 The price of capacity, γc, is set equal to 7. With a unit of time of one hour, this 

parameter ought to reflect the hourly capital costs. To derive a value from empirical 

construction cost estimates, an assumption has to be made on whether the model aims to 

represent stationary traffic conditions throughout a day, or during peak hours only. Our 

parameterization concerns the latter. The value of 7 was then derived by dividing the 

estimated average yearly capital cost of one highway lane kilometre in The Netherlands (€ 0.2 

million) by 1100 (220 working days times 5 peak hours per working day; assuming two 

peaks) and next by 1500 (the number of units of capacity corresponding with a standard 

highway lane), and finally multiplying by 60 (the number of kilometres corresponding with a 

free-flow travel time of half an hour). Only welfare effects in peak hours are therefore 

considered in the numerical exercise, and it is assumed that off-peak travel is so modest that 

both the optimal off-peak toll and the marginal benefits of capacity expansion would be 

negligible. To maintain consistency, all selection criteria to be considered below, where 
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relevant, would also apply to peak hours only. And finally, no relevant welfare effects arise 

outside the peak, and therefore no toll revenues are supposed to be raised. 

 Finally, it is assumed that a linear inverse demand function applies:  

NND ⋅−= 10)( δδ  (15) 

A choice of δ0 = 31.21 and δ1 = 0.00462, together with K = 3000, produced a reasonably 

realistic benchmark equilibrium where an equilibrium road use of N = 5000 causes 

equilibrium travel time t to be around two times the free-flow travel time tf, while equilibrium 

demand elasticity ε is equal to –0.35. Because there are no toll revenues, profit π is negative 

in the benchmark equilibrium. (This benchmark equilibrium will not be interpreted as some 

initial situation in the single-road analysis; that is, capacity will be allowed to become smaller 

than the benchmark level.) 

 
 Benchmark Optimum Bid Cap Pat 
t / tf 2.16 1.37 1.37 1.01 1.37 

ε -0.35 -0.52 -2.05 -1.29 -0.52 
K 3000.00 3530.77 1765.39 5807.29 3530.77 

τ 0.00 5.58 15.82 13.78 5.58 
N 5000.00 4430.50 2215.25 2949.19 4430.50 
c 8.09 5.14 5.14 3.79 5.14 
p 8.09 10.72 20.96 17.57 10.72 
D 8.09 10.72 20.96 17.57 10.72 

π -21000.00 0.00 22686.70a 0.00 0.00 
S 36787.70 45373.40 34030.00 20104.80 45373.40 

ω 0 1 -0.32 -1.94 1.00 
a The figure shown in fact gives the bid. After making this bid, profit will become equal to zero. 

Table 1. Numerical results for a single road 

 

The optimum configuration is depicted in the second column of Table 1. As expected, profits 

are exactly zero in the optimum. Optimal capacity K is higher and optimal road use N is lower 

than in the benchmark. As a result, travel times are lower (1.37 times the free-flow travel 

time, compared to 2.16 in the benchmark).  

 Let us now turn to the various criteria for auctions. The first of these, Bid, forces the 

private operator to set the profit-maximizing toll and capacity identified in (4a) and (4b) (the 

net profit, after the sum promised in the bid has been paid, will of course be zero). This leads 

to a toll that is nearly three times as high as the optimal toll, and a capacity that is exactly half 

the optimal capacity (as can be expected with a linear demand function and constant long-run 

marginal cost). The final row in Table 1 shows an efficiency indicator ω, which is for a 

particular equilibrium calculated as the social surplus in that equilibrium minus that in the 

benchmark, divided by social surplus in the optimum minus that in the benchmark. It 

therefore gives the share of first-best surplus gains relative to the benchmark that a particular 

auction achieves; a negative value denotes a surplus below the benchmark level. This is for 

example the case for the auction Bid. The poor performance of this policy is in accordance 
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with the rather pessimistic predictions of efficiency impacts of profit-maximizing congestion 

pricing in various earlier studies (e.g. Verhoef and Small, 2004). 

 A second auction, Cap, asks bidders to offer a capacity as large as possible. Because 

the toll is not restricted to be set optimally, the likely result is that capacity would exceed the 

optimal level: in the current numerical example it is nearly twice as large. The high capital 

costs are covered by a toll that is nearly as high as the profit maximizing toll, because it 

maximizes revenues given the capacity chosen. The resulting relatively small level of road 

use, in combination with the relatively large capacity, cause social surplus to be even lower 

than under Bid. Note that both auctions Cap and Bid will apply profit-maximizing tolls given 

the capacity chosen. But whereas in Bid, the capacity will be optimized given the inefficiently 

small use level, as implied by (4b), Cap will distort the capacity choice given the use level, by 

making capacity the bidder’s maximand. 
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Figure 2. Zero-profit toll (left panel) and relative efficiency (right panel) as a function of capacity 

 

For the auction ‘Toll-cap’, the results of course depend on the choice of pre-specified 

capacity. To identify the toll choice following a pre-specified capacity, consider the left panel 

of Figure 2, showing the zero-profit contour in the K-τ space. This contour can be denoted 

τzp(K): the correspondence between zero-profit tolls and capacity. First note that for all 

capacities below the maximum capacity that can be offered without a deficit (i.e., below the 

solution from auction ‘Cap’, around 5807 in the numerical model), there are in fact two toll 

levels that produce zero profits. For any capacity chosen, it is the lower of these two toll 

levels that would result with the criterion ‘Toll-cap’. The area bounded by the contour τzp(K) 

and the vertical axis corresponds with positive profits; the area outside the contour with 

negative profits. Sufficient conditions for a backward-bending pattern to arise is that the 

inverse demand function intersects both axes and that the absolute value of the elasticity of 

demand with respect to toll5, denoted ετ, decreases monotonously in N. All revenue levels 

below the maximum revenue for a certain capacity (at ετ = –1 for that capacity) can then be 

realized as a higher-toll – lower-demand combination (the upper segment of the contour 

                                                
5 The elasticity of demand with respect to toll ετ differs from the conventional demand elasticity ε because: (a) 
the toll τ differs from the generalized price p=c+τ, and (b) dN/dp ≠ dN/dτ  (because dc/dN ≠ 0). 
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τzp(K)) or as a lower-toll – higher-demand combination (the lower segment of τzp(K)). 

Because the profit-maximizing toll for a certain capacity lies between the two zero-profit 

tolls, and because of our assumption of ετ decreasing monotonously in N, profit is increasing 

in τ for a given capacity on the lower segment, and decreasing in τ on the upper segment.  

The right panel of Figure 2 depicts ωzp(K): the correspondence between capacity and ω 

under zero-profit tolling. The upper segment of ωzp(K) corresponds with the lower segment of 

τzp(K), and reversely. The first-best optimum is on the lower segment of the contour τzp(K). 

An auction that would pre-specify the optimal capacity and next use the minimum toll as the 

criterion therefore would in principle be successful in achieving the first-best optimum. The 

right panel of Figure 2 further shows that ω may be positive for a rather wide range of pre-

specified capacities, and the flatness near the first-best optimum suggests that small errors in 

defining pre-specified capacity need not be dramatic in terms of welfare implications.  

This auction ‘Toll-cap’ would be close to the one proposed by Engel, Fisher and 

Galetovic (1996), who propose an auction with as the criterion the minimization of the net 

present value of toll revenues (NPR) before the highway is to be transferred to the 

government. The setting of Engel et al. (1996) is rather different from that in this paper. They 

are primarily concerned with the promotion of cost-effectiveness in construction and the 

avoidance of renegotiation of contracts under demand uncertainty; but they treat the choice of 

capacity as exogenous and ignore the effect of toll setting on social welfare (in fact, they 

assume that the social objective is to minimize the expected value of tolls paid). Demand 

uncertainty and renegotiation are ignored in the present paper, but the impacts on social 

welfare are, in contrast, central.6 

 From that perspective, a number of observations can be made concerning Engel et 

al.’s NPR-auction. The first is that Figure 1 implies that over the relevant range of capacities, 

any target level of toll revenues below maximum revenues could be achieved by two toll 

levels, with strongly diverging welfare implications. A criterion that is phrased in terms of toll 

revenues – be it per-unit-of-time or in present value terms – cannot discriminate between 

these two tolls. As a consequence, there is no guarantee that whichever toll revenue is raised 

per unit of time, it is raised using the more efficient toll. In the numerical example, even for 

the optimal capacity would the higher-toll equilibrium produce only very limited benefits 

compared to the no-road situation (ω is close to –4). A second observation is that the NPR-

auction does not direct the operator towards an optimal toll revenue per unit of time: it is only 

the net present value that matters. If after transferring the road to the government, tolling is 

discontinued, the auction may cause pricing to be non-optimal both before and after the 

transfer. It is therefore uncertain whether an NPR-auction would indeed produce an optimal 

outcome, especially when social surplus would be the social objective. 

                                                
6 Cost-effectiveness in construction is not considered explicitly in this paper, and firms are assumed to always 
operate on the capacity cost function Cc. A competitive profit-exhausting auction would, however, always secure 
cost-effectiveness in construction. Explicit consideration of cost-effectiveness in construction would therefore 
not affect the conclusions. 
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 The final auction we consider is ‘Pat’: the auction that awards the concession to the 

operator that offers the highest patronage. The final column in Table 1 shows that the 

outcome of this auction coincides with the first-best optimum. Again, this result can be 

expected to carry over to more general settings, as long as the constant-returns-to-scale-

assumptions are fulfilled. The intuition is as follows. We want to compare the maximization 

of social surplus with the maximization of patronage (N). Social surplus is the sum of 

consumer surplus and profits, so given the zero-profit constraint social surplus is maximized 

when consumer surplus is maximized. The latter requires maximization of N.7 

 The perhaps counter-intuitive conclusion is therefore that, provided the constant-

returns-to-scale conditions are fulfilled, the competitive profit-exhausting auction that 

maximizes social surplus is the one that maximizes traffic flow.  

4. Second-best network effects 

An important simplification of the above analysis concerns the neglect of network effects. 

This is acceptable when studying a road in isolation, or under the hypothetical assumption of 

first-best pricing throughout the rest of the network. It can also be considered instructive to 

deliberately ignore network complications, because doing so allows concentration on the 

primary efficiency impacts of the various auctions, independent of second-best network spill-

overs. But network effects are likely to be important in reality, and may, as we shall see 

below, have significant impacts on the performance of auctions. To maintain focus and keep 

the exposition transparent, we will first consider two very simple networks in what follows, 

which would represent the most important types of second-best network issues that could 

arise. Section 4.1 considers the situation where an unpriced perfect substitute for the new road 

is available (i.e., a parallel road), while Section 4.2 considers an unpriced complement (i.e., a 

serial road).  

 

4.1. Unpriced substitute 

The existence of an unpriced substitute road naturally reduces the potential profitability of the 

new road. This effect can be substantial, which is illustrated by the fact that when interpreting 

the rather heavily congested benchmark road from the previous section as pre-existing initial 

capacity, no profitable capacity-toll combination for additional, priced capacity appears to be 

possible. Also the second-best optimum, for which the capacity of and toll on the tolled new 

parallel is optimized under the constraint that initial capacity remains untolled, consequently 

produces a financial deficit. With φT defined as the degree of self-financing of link T, Table 2 

show that only 7% of the capacity cost for the second-best optimal toll road would be covered 

by the revenues from the second-best toll. 

 Under this parameterization, no bids can be expected in an auction if it does not 

include the possibility of subsidies. Ubbels and Verhoef (2004) explore the possibilities for 

and properties of auctions with subsidies. In the present paper, we do not consider such 

                                                
7 I owe this intuition to an anonymous referee. 
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auctions, motivated by the observation that if the required subsidy would be so large (93% of 

the construction costs in the numerical example), a government would most likely prefer to 

carry 100% of the construction costs and keep the road in public hands altogether. An auction 

that raises only 7% of the construction cost and hence requiring a 93% subsidy, while 

meaning loss of (direct) control over the highway operation, does not seem to be a very 

attractive option when social surplus maximization is the overall objective. 

 
 Benchmark Optimum Second-best 
KU 3000.00 3000.00 3000.00 
KT 0.00 530.77 1227.48 
K 3000.00 3530.77 4227.48 

τU 0.00 5.58 0.00 

τT
 n.r.a 5.58 0.40 

NU 5000.00 3764.47 4010.11 
NT 0.00 666.03 1540.27 
N 5000.00 4430.50 5550.38 
cU 8.09 5.14 5.55 
cT n.r.a 5.14 5.14 

πT 0.00 0.00 -7974.39 
S 36787.70 45373.40 42235.80 

ω 0 1 0.63 

φT 0 1 0.07 

a Not relevant. 

Table 2. Numerical results for an unpriced substitute: original parameterization 

 

In order to get an idea of the performance of zero-subsidy auctions in the presence of an 

unpriced substitute, the parameterization has to be adjusted, so as to create the possibility of 

zero-profit bids with positive capacity. This was achieved in the numerical model by reducing 

the initial capacity from 3000 to 1500. As a result, the benchmark equilibrium travel time 

becomes 4.3 times as high as the free-flow travel time. For such a heavily congested road, 

zero-profit bids for additional priced capacity do become possible, and the results for the 

different criteria are shown in Table 3. 

 The first-best optimum (for which pricing on both roads is allowed) is of course the 

same as that for the road in isolation. Because initial unpriced capacity is relatively small, the 

second-best equilibrium achieves a relative efficiency of ω=0.91, which is substantial. 

However, because of the second-best nature of this equilibrium, the toll is set according to 

equation (6a), producing a toll that is only 16% of the first-best toll. As a result, a substantial 

deficit will occur on the operation of the tolled road: the cost coverage for the new road in the 

second-best equilibrium is only 16%, despite the fact that tolled capacity makes up nearly two 

thirds of total capacity. Again, it would seem more attractive to keep the road in public hands 

than to design an auction that would, if successful in reproducing the second-best optimum, 

require a subsidy of 84% of total construction cost. 
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 Benchmark Optimum Second-
best 

Bid Cap Pat Second-
best zp. 

KU 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 

KT 0.00 2030.77 2649.79 633.25 1430.90 1287.74 1287.74 

K 1500.00 3530.77 4149.79 2133.25 2930.90 2787.74 2787.74 

τU 0.00 5.58 0.00 0.00 0.00 0.00 0.00 

τT
 0.00 5.58 0.87 8.27 6.95 5.58 5.58 

NU 3251.72 1882.24 2124.34 3053.85 2868.88 2814.60 2814.60 

NT 0.00 2548.26 3325.02 794.61 1441.85 1615.90 1615.90 

N 3251.72 4430.50 5449.36 3848.46 4310.73 4430.50 4430.50 

cU 16.17 5.14 6.01 13.41 11.28 10.72 10.72 

cT n.r. 5.14 5.14 5.14 4.33 5.14 5.14 

πT 0.00 0.00 –15661.60 2138.11 a 0.00 0.00 0.00 

S 13941.20 45373.40 42480.00 25873.10 32453.50 34873.40 34873.40 

ω 0 1 0.91 0.38 0.59 0.67 0.67 

φT 0 1 0.16 1 1 1 1 
a The figure shown in fact gives the bid. After making this bid, profit will become equal to zero. 
b Not relevant. 

Table 3. Numerical results for an unpriced substitute: adjusted parameterization 

 

If insufficient public funds are available to finance this investment, the question rises of how 

attractive zero-profit roads might be. The final column in Table 3 shows the second-best 

optimum under an additional zero-profit constraint; so, the best achievable benchmark 

outcome for zero-profit auctions. The toll is substantially higher and capacity lower than in 

the second-best optimum. However, ω still reaches a level of 0.67 when the zero-profit 

constraint is added to the second-best problem. The levels of τT and cT are the same as for the 

first-best equilibrium, which is caused by the facts that the auction induces the operator to  

minimize total cost for any given NT while keeping capacity self-financing. This means 

selecting the same K/N ratio, and the same c and τ, as for the first-best optimum.  

 The auction ‘Pat’ again achieves the second-best optimum (under the zero-profit 

constraint). Maximizing NT under a zero profit constraint requires minimization of average 

user cost plus capital cost per user. Because of the network equilibrium condition, the 

minimization of the generalized price on road T implies that average user cost on road U are 

also minimized. NU, and NT + NU, are therefore maximized – and so is therefore total benefit.8 

For a given KU, and given τU = 0, these are the same conditions that define the second-best 

zero-profit equilibrium. 

 We can be brief on the other criteria. ‘Bid’ still does not perform very good (ω=0.38), 

which is caused by the large discrepancy between the profit-maximizing and the surplus-

maximizing second-best toll; compare (6a) and (8a). ‘Cap’ performs relatively good 

(ω=0.59), because there is now not much scope to expand capacity of the new road beyond 

                                                
8 The outcome of the auction ‘Pat’ appears to be independent of whether it is the patronage of the new capacity 
(NT) or of both roads together (NT + NU) that is used as the criterion. Maximizing NT through minimizing the 
generalized price on that road also maximizes NU, because the generalized prices on both roads will be equalized 
in equilibrium. 
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the second-best zero-profit level without running into losses. Note that all ω’s are positive. 

The reason is that road users as a group can only benefit from the supply of additional 

capacity that is to be used voluntarily, while profits will be zero. Social surplus, therefore, can 

only increase. ‘Toll-cap’ will always coincide with the second-best zero-profit outcome 

provided capacity is pre-specified optimally, and will for that reason be ignored from this 

point onwards. 

 The absence of subsidization possibilities combined with the absence of pricing on 

initial capacity causes the maximum achievable welfare gains to be around two thirds of those 

from first-best pricing and capacity choice. The size of the relative loss, around one third in 

this example, evidently depends on the assumed initial conditions, and may in some cases 

become so large that the overall efficiency gain from the auction becomes unacceptably small. 

Would there, in such cases, be a possibility to enhance the social benefits from the auction by 

changing its set-up? One possible strategy, based on the observation that the source of the 

reduced efficiency gains is the existence of initial unpriced capacity, would be to stipulate that 

the winning bidder will have to buy the existing road against the best estimate of the current 

construction costs for the same capacity, and to allow the winning bidder to apply a 

congestion toll on this existing capacity. Provided the implied capital cost per unit of capacity 

for the initial capacity are the same as a bidder’s cost per unit of new capacity, and provided 

the initial capacity is smaller than the capacity a bidder would choose in an auction, he will 

then in fact face the same problem as for the road in isolation. The auction ‘Pat’ would 

consequently again achieve the first-best optimum. Therefore, there certainly may be ways to 

avoid particularly unattractive network spill-overs through auctions, by making the 

compulsory purchase of the associated links part of the concession.  

 

4.2. Unpriced complement 

The logical companion problem to the existence of an unpriced substitute is the existence of 

an unpriced complement. Table 4 shows the numerical results, for which in order to maintain 

comparability, the assumption was made that half the road’s length would remain unpriced 

and at the benchmark capacity (3000). This segment thus functions as the unpriced 

complement U, while the other half (T) would be subject to the auction. The free-flow travel 

times tf and prices of capacity γc therefore become 0.25 and 3.5 for both links, respectively. 

 Equations (10ab) already showed that there will be a financial surplus in the second-

best optimum, because the second-best optimal toll also internalizes the congestion externality 

on the unpriced complement. The third column in Table 4 shows that in the numerical 

example, the revenues will consequently be more than twice as large as the capacity cost. The 

second-best optimum with an additional zero-profit constraint defines the best possible 

outcome for profit-exhausting auctions. The final column in Table 4 shows that ω drops to 

0.67 (the similarity with the unpriced-substitute case in Table 3 is a coincidence). Again, the 

auction ‘Pat’ is the only auction that reproduces the second-best zero-profit equilibrium: 

maximization of N under a zero-profit constraint apparently again implies maximization of 

the social surplus under that same constraint – given the inability to adjust KU. The reason is 
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that under zero-profit pricing the generalized price is equal to average total cost (that is: 

average user cost and per-user capital cost for link T jointly; capital cost for link U are ignored 

but are fixed anyway). Social surplus is therefore given by consumer surplus, and this is 

maximized when N is maximized by minimizing the generalized price. 

 
 Benchmark Optimum Second-

best 
Bid Cap Pat Second-

best zp. 
KU 3000.00 3530.77 3000.00 3000.00 3000.00 3000.00 3000.00 
KT 3000.00 3530.77 3276.57 2005.84 11440.40 3816.79 3816.83 

τU 0.00 2.79 0.00 0.00 0.00 0.00 0.00 

τT
 0.00 2.79 6.76 14.98 14.07 2.79 2.79 

τ = τU+τT 0.00 5.58 6.76 14.98 14.07 2.79 2.79 
N 5000.00 4430.50 4111.52 2516.98 2845.70 4789.46 4789.46 
cU 4.05 2.57 2.87 2.01 2.10 3.70 3.70 
cT 4.05 2.57 2.57 2.57 1.88 2.57 2.57 
c 8.09 5.14 5.44 4.59 3.98 6.27 6.27 

πT -10500.00 12357.70 16318.40 30690.60a 0.00 0.00 0.00 
S 36787.70 45373.40 44893.50 34834.40 8218.64 42523.50 42523.50 

ω 0 1 0.94 -0.23 -3.33 0.67 0.67 

φT 0 1 2.42 1 1 1 1 
a The figure shown in fact gives the bid. After making this bid, profit will become equal to zero. 
b Not relevant. 

Table 4. Numerical results for an unpriced complement 

 

The relative ranking of ‘Bid’ and ‘Cap’ has reversed compared to the unpriced-substitute 

case. ‘Bid’ leads to the profit maximizing outcome and therefore avoids the potentially 

substantial overinvestment in link T’s capacity that the revenues from implicit congestion 

pricing of link U allow. Indeed, KT could be expanded up to more than three times its second-

best level without running into losses; compare ‘Cap’ and ‘Second-best’ in Table 4. Because 

‘Cap’ aggravates this distortion, its efficiency is relatively low. 

 Apart from making the compulsory purchase of the unpriced link part of the auction, 

as for the unpriced-substitute case, a simpler solution to the problem of over-investment 

appears possible in this case, and that would be to inform the bidders that they will be charged 

a toll equal to the marginal external congestion cost on link U for every user passing that link. 

This would take away the ‘excess profits’ and leave the private bidders facing the same 

conditions as in Section 3, meaning that ‘Pat’ would again reproduce the optimum. 

5. Towards generalized networks 

The results so far look promising for the ‘Pat’ auction. Given the restriction to zero-profit 

configurations, ‘Pat’ was seen to reproduce the associated second-best (zero-profit) outcome 

in all three networks considered so far. The question is how general this result is. There is 

reason to doubt whether it carries over to more general networks, because it is then no longer 

true that the link under consideration serves all relevant origin-destination pairs. The 

maximization of the patronage of that link may then in fact raise travel costs for OD-pairs not 
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served by it, through induced congestion elsewhere in the network. This could cause a 

deviation between the ‘Pat’ auction and the zero-profit second-best road. 

The generality of the second-best optimality of the ‘Pat’ auction can be assessed 

analytically by comparing the first-order conditions for two constrained optimization 

problems, both defined for generalized networks of undetermined size and shape. The first 

problem considers the second-best optimum of constrained maximization of social surplus 

when the toll and capacity can be optimized on only one single link. The other considers the 

‘Pat’ auction and has the link’s flow as the objective, under the same constraints. If the two 

Lagrangians produce optimality conditions that are possibly mutually inconsistent, similarity 

of the two equilibria can be rejected for generalized networks. 

The Appendix to this paper solves these two Lagrangians, and concludes that for both 

problems the conventional investment rule applies for the link under consideration. If this rule 

can be satisfied for only one unique zero-profit capacity-toll combination (which is not proven 

to be true in general in the Appendix, but is shown to be plausible for the constant-returns 

case), the sets of first-order conditions to both problems produce the same equilibrium. At this 

point, we should not jump to the conclusions that the ‘Pat’ auction therefore reproduces the 

second-best zero-profit outcome. It certainly might do so, but we should not forget that the set 

of first-order conditions for a Lagrangian need not always define a global (constrained) 

maximum. In other words, and as we shall illustrate below, the ‘Pat’ auction may also 

produce a local but not global maximum of social surplus only, or even a local minimum. In 

both cases, the global second-best zero-profit optimum could be the corner solution in which 

no capacity is supplied: it is best not to open the link at all. 

These results can be illustrated in a network that adds a second OD-pair, only using 

link U, in the serial-roads network of Figure 2(b). Figure 3 shows the assumed network. The 

two groups have the same destination D but different origins OA and OB, where the original 

OD-pair is now distinguished with superscripts A and the new pair with B.  

 

 

 

 

 

Figure 3. A simple two-link network for studying local versus global maxima 

 

The demand parameters were recalibrated such that, with base capacities of 3000 for both 

links, both OD-pairs have an equilibrium demand of 5000 and a demand elasticity of –0.35. 

This was achieved by setting 8.1560 =Aδ , 0232.01 =Aδ , 2.1410 =Bδ , and 0209.01 =Bδ . 

 Figure 4 shows for this network the courses of social surplus S and patronage NA as 

functions of τT when capacity KT (not shown) is adjusted for each τT to maintain zero profits 

(S and NA are both normalized at their maximized values, hence the subscript ‘norm’ in the 

Figure). Both curves reach their maximum at the same toll level of τT = 2.79, the by now 

familiar level consistent with operations along the long run cost function (with tf=0.25 and 

Two links, two OD-pairs 

OA D Link U Link T OB 
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γc=3.5). The associated equilibria are then, of course, also identical in terms of variables NA 

(4958.3), NB (5016.6), KT (3951.4), and S.  
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Figure 4. Surplus (solid) and patronage (dashed) for zero-profit equilibria as a function of toll 

(Both normalized at maximum = 1) 

 

We can build upon this same example to illustrate that the local extremum of social welfare at 

the Pat outcome need not always be a globally maximized social surplus (given the 

constraints). One possibility would be that a local maximum of social surplus is dominated by 

a global maximum at the corner solution where the link under consideration is completely 

eliminated. A second possibility is that we end up in a local (and possibly global) minimum 

social surplus. The extension we make to the previous example to illustrate these possibilities 

is to allow the value of time for group B, not using the link under consideration, to exceed that 

of group A. This raises the externalities that group A cause on group B. We consider three 

cases: votB=votA as in Figure 4 above (case 1), votB=2·votA (case 2), and votB=3·votA (case 3). 

In the latter two cases, the demand parameters for group B are adjusted so as to maintain the 

same equilibrium use levels and demand elasticities as in case 1. 
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Figure 5. Local vs. global maxima and minima: relative efficiency for zero-profit equilibria as a 

function of toll for votB=votA (black), votB=2·votA (dark grey), and votB=3·votA (light grey) 

 

Figure 5 shows for each of these cases the relative efficiency by toll level under zero-profit 

capacity setting. First of all it can be verified visually (and was checked numerically) that 
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each curve yields an extremum at the focal toll level τT = 2.79, which maximizes patronage of 

link T for each of these cases. 

For case 1, τT = 2.79 is a local and a global maximum, so that the Pat auction indeed 

produces the second-best zero-profit outcome. 

In case 2, τT = 2.79 again entails a local maximum. However, the congestion 

externality imposed by type-A drivers upon type-B drivers has become more important. A 

sufficiently large reduction in τT (to a value just below 1) brings us to a point where link T is 

operated so inefficiently (in terms of user cost plus capacity cost) that the social benefit of 

reducing the patronage of link T further, in terms of reduced externalities imposed upon group 

B, outweighs the loss in benefits for the inefficiently served group A. This effect is strong 

enough to make the highest possible surplus occurring when link T is effectively shut down (a 

toll level τT = 0.733 corresponds with a zero capacity). 

In case 3, τT = 2.79 entails a local minimum. It still maximizes patronage of link T, but 

this minimizes social surplus because the congestion externality imposed upon group B is 

now the dominant welfare effect. In other words, the first-order conditions of the associated 

Lagrangians now define a local minimum for social surplus versus a local maximum for 

patronage. 

 The three cases thus illustrate the limitations of only comparing first-order conditions 

for Lagrangians: this may lead to a neglect of global (constrained) optima when these occur at 

a corner of the feasible space, and may also lead to the selection of a local minimum when a 

local maximum is strived for. Both limitations may cause the success of the ‘Pat’ auction in 

achieving the second-best zero-profit outcome to break down. 

A question that remains open for further research is how likely such cases are to occur 

in reality. Note in particular that the examples where the ‘Pat’ auction does not lead to a local 

and global second-best zero-profit auction all involve cases where the link under 

consideration is relatively unattractive from a social perspective. In this respect, the examples 

resemble the famous Braess (1968) paradox. Our analysis has shown that, provided the link is 

selected carefully in the sense that its patronage does not produce excessive external costs 

elsewhere in the network, the ‘Pat’ auction keeps its attractive properties independent of the 

shape and size of the network. As long as links to be auctioned are selected with certain care, 

the potential problems indicated need not become manifest in actual applications. 

6. Conclusion 

Shortage of funds for road expansion, political unacceptability of public road pricing, and 

perhaps expectations of higher efficiency from private operations may all be factors that cause 

the private provision of toll roads to become an attractive option to cope with growing traffic 

congestion. Concessions for private road operation will typically be auctioned. This paper 

showed that the selection criterion used in such auctions may have a decisive impact on the 

efficiency of the resulting winning bid. A maximum possible bid for the right to build and 

operate the road pushes the bidders towards a profit-maximizing design, which is typically 

quite different from a surplus-maximizing road. The maximization of capacity typically leads 
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to excessive capacity, in combination with a revenue-maximizing toll given that capacity; 

both reducing surplus below achievable levels. However, an auction that asks to maximize 

patronage appeared to reproduce the first-best road in absence of network spill-overs and 

under neutral-scale-economies. It results in the second-best zero-profit configuration when 

network spill-overs exist. This was shown to be true in a few simple networks, but (in the 

Appendix) also to carry over to generalized networks, of undetermined shape and size, 

provided the external costs caused by the link’s users elsewhere on the network are not so 

large that a complete shut-down of the link is in fact preferable to any zero-profit combination 

of toll and capacity. 

 Does the success of ‘Pat’ in the present set-up imply it is a good guideline in practice? 

It is probably too early to judge. One issue to be considered concerns the treatment of 

heterogeneous users, with different values of time. It seems plausible that, still under a zero-

profit constraint, a maximization of unweighted total patronage might lead to a different 

outcome than the maximization of social surplus – although the answer may depend on 

whether differentiated congestion tolls are charged. Another issue concerns the application of 

the auction in a non-stationary environment, where traffic grows over time. A third 

consideration arises under pre-existing taxation of road users (be it fuel tax or labour tax).9 

Before considering these issues, and probably other complications, it is dangerous to draw 

any further conclusions, beyond the observation that the choice of criterion indeed does 

matter a lot for efficiency of the auction, and is therefore important to consider, and that for 

the model considered here, ‘Pat’ did a very good job. 

 Many other important questions that need further consideration can be identified. A 

first one is whether a credible and efficient penalty system can be thought of that would 

guarantee the winning bidder to live up to the bid. A second one is whether a mechanism can 

be developed to cope with demand uncertainty and avoid renegotiation of contracts. A third 

one involves extension of the current analysis to include information and/or cost assymetries. 

A fourth one involves strategic behaviour and interactions during the bidding process. The list 

could probably be extended easily, and illustrates that there is still sufficient potential for 

future research. 
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Appendix: Similarity of first-order conditions for patronage-maximizing auctions and 
second-best zero-profit equilibria in generalized networks 
We extend the notation from the main text as follows. There are M markets or OD-pairs, 

distinguished by index m; there are L links or arcs, distinguished by index l; and there are R 

routes or paths, distinguished by indices r or ρ (when a second index is required). We use 

dummies δrm (δρm) to denote, when equal to 1, that route r (ρ) serves OD-pair m, and δlr (δlρ) 

to denote (also when equal to 1) that link l is part of route r (ρ). Furthermore, a dummy Arδ  is 

used to indicate, when equal to 1, that route r is potentially ‘active’, meaning that in the 

equilibrium considered it is among the least cost routes for the associated OD-pair, which 

itself has a positive flow. Finally, the link under consideration, for which the toll and capacity 

can be set, is denoted by l=l*. 

 The second-best optimal choice for the toll and capacity under a zero-profit constraint 

can then be found by solving the following Lagrangian (note that OD-flows and link-flows 

are all expressed in terms of route flows): 
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The first three main terms define the objective of social surplus. The constraints with 

multipliers λr are Wardropian equilibrium conditions, which will be invoked in the optimality 

conditions below only for active routes (with Arδ =1). The final constraint, with multiplier 
*lλ , 

gives the zero-profit condition for link l*. Apart from this constraint, the Lagrangian in (A.1) 

is similar to those considered in Verhoef (2002ab), who studies second-best tolling on a sub-

set of links, but for given capacities. These are the first-order conditions: 

0

1:
)()(

)(
)()(

*

*

*

1 1

1 111

=⋅⋅+

=∀








∂
⋅∂⋅⋅−

∂
⋅∂⋅⋅⋅⋅+

∂
⋅∂⋅⋅⋅−⋅⋅−⋅⋅=

∂
Λ∂

∑ ∑

∑∑∑∑

= =

= ===

l

rl

l

A
r

R

r

m

mrm

L

l
r

l

llr
A

L

l

R

r

l

llr

L

l

l
lr

M

m

m
rmr

r
N

D

N

c

N

c
NcD

N

τδλ

δδδδδλδ

δδδδ

ρ
ρρ

ρ
ρ

ρ

ρ
ρ

 (A.2a)  

0
)()()()(

*

*

*

*

*

**

*

*

*

**

,,

1

=
∂

⋅∂⋅−
∂

⋅∂⋅⋅⋅+
∂

⋅∂−
∂

⋅∂⋅⋅−=
∂

Λ∂
∑∑

=
l

lc
l

R

r
l

l

rl

rA
rl

lcR

r
l

l
r

rll K

C

K

c

K

C

K

c
N

K
λδλδδ  (A.2b) 

0
11

*

*** =⋅⋅+⋅⋅=
∂

Λ∂
∑∑

==

R

r

lr

rl

R

r

r

rl

A
rl

N λδλδδ
τ

 (A.2c) 



Second-best road pricing through highway franchising 24 

( )( ) ( ) 1:0
11

=∀=⋅⋅−+⋅⋅=
∂

Λ∂
∑∑

==

A
r

M

m

m
rm

L

l

ll
lrr

rDc δδτδ
λ

 (A.2d) 

0)(
***

**

,

1

=−⋅⋅=
∂

Λ∂
∑

=

llc
R

r

lr

rll
KCN τδ

λ
 (A.2e) 

while: 

( )( ) ( ) 0iff0
11

>⋅⋅−+⋅⋅= ∑∑
==

M

m

m
rm

L

l

ll
lr

A
r Dc δτδδ  (A.2f) 

These first-order conditions are now to be compared to those characterizing the Pat auction 

equilibrium, which can be derived from the Lagrangian that uses 
*lN  as the objective and 

otherwise has the same constraints as (1):  
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The first-order conditions are: 
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The two sets of equations (A.2) and (A.4) will generally not produce the same solutions for 

the Lagrangian multipliers, which might suggest, at first glance, a discrepancy between the 

associated tolls and capacities.10 However, there is an essential similarity between the sets of 

equations (A.2) and (A.4). Equations (A.2c) and (A.4c) both imply the following relation 

between 
*lλ and the multipliers rλ  for the routes passing l*:  

∑
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r
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ll N
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**
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(
*lN  is a shorthand for the total link flow on link l*). Equation (A.5) means that the second-

best investment rule of (A.2b) can be rewritten as: 
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and the Pat investment of (A.4b) rule as:  
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For both conditions (A.2b′) and (A.4b′), the term between the large brackets repeats the 

conventional investment rule first encountered in equation (4b) in the main text. Because 
*lλ  

in (A.4b′) reflects the marginal effect upon the optimized objective (
*lN ) from a relaxation of 

the zero-profit constraint (i.e., from increasing the infrastructure budget), it will typically be 

positive, so that the conventional investment rule would be optimal when the objective is to 

maximize patronage under a zero-profit constraint. The intuition is as before: to maximize the 

use of the link, the generalized price should be minimized, which under zero-profit conditions 

means that the sum of capacity and user cost be minimized. Note that no neutral-scale-

economies assumption is required for this to be true also in generalized networks. The result 

is a consequence of the assumed absence of direct cost interactions between links, and 

appeared earlier in, inter alios, Arnott and Yan (2000). 

 More surprising, also for the second-best problem it is typically optimal to apply the 

conventional investment rule. Only when 
*lλ  would happen to be exactly equal to –1 in the 

second-best optimum would the capacity choice seem immaterial for the value of the 

                                                
10 For example, in the numerical example of Figure 4 in the main text, the Lagrangian multipliers differ in value. 
In the second-best case, we find λA = 2628.2 and λB = 2918.7 for the two routes A and B, and λT = –0.53006 for 
the zero-profit constraint on the tolled link l*=T. For patronage maximization the values are λA = –31.713, λB = 
12.599, and λT = 0.006396. Note that not only the values of the multipliers but also their ratios and even sign 
patterns differ between the two sets. These differences illustrate that the similarity between the solutions for the 
two Lagrangians (16) and (18) derives from the fact that (20) applies for both cases, and not from some implicit 
equivalence between the two objectives. Note that λT, the multiplier associated with the zero-profit constraint, is 
negative in the second-best equilibrium. This reflects that the second-best toll τT would be higher without this 
zero-profit constraint (as high as τT

 = 59.7 at KT = 2472.0, with NA = 3102.0 and NB = 5675.0 in the second-best 
optimum). A relaxation of the constraint (setting revenues higher than capacity cost) would therefore reduce 
social surplus; hence the negative multiplier. This underlines that also under neutral scale economies, the zero-
profit constraint will generally be binding when there is unpriced congestion elsewhere in the network. 
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objective that can be achieved. With 
*lλ  continuous, the probability that this occurs (exactly) 

in the second-best optimum would seem to be zero (there is no particular reason why 
*lλ = –1 

should occur with a greater probability than any other value)11 – and even if it does occur, the 

conventional investment rule would still be optimal.  

 What makes the conventional investment rule appropriate in this case? The 

explanation starts with a reminder that the first-order conditions (A.2) only define an 

extremum, not necessarily a maximum. The result can thus be interpreted as follows: when 

the conventional investment rule is applied, a marginal change in capacity under zero-profit 

tolling does not change social surplus. This result, in turn, can be understood after separating 

the possible effects on social surplus into two components: social surplus for all users passing 

the link considered (including the link’s capacity cost), and social surplus for all other users. 

When the conventional investment rule is applied, the first component is maximized, for the 

same reason as given for the simpler networks considered earlier. The rule minimizes the total 

cost and the generalized price for this first group, and therefore maximizes their benefits. The 

first surplus component, involving all users of the link, is therefore insensitive with respect to 

small changes in capacity when the conventional investment rule is applied. But also the 

second surplus component, involving all other users, is insensitive. These other users can only 

be affected through congestion effects, which would occur when a small change in capacity of 

the link would lead to a small change in patronage. But because patronage is maximized at 

this capacity (because zero-profit tolling applies and implies that minimization of total costs 

on the link leads to minimization of the generalized price), no such indirect effects on surplus 

for other users will occur. Therefore, application of the conventional investment rule under 

zero-profit pricing leads to an extremum in social surplus. Whether it is always a maximum 

still needs to be determined, but if there is an interior maximum, it requires use of the 

conventional investment rule unless 
*lλ = –1 would happen to apply. 

 In both cases (A.2b′) and (A.4b′), therefore, the road operator will expand capacity on 

the link under control up to that point where, given that zero-profit tolling applies, the direct 

marginal benefit of capacity expansion (on link l* itself) equals the marginal cost. If this 

equality occurs on one unique point along the link’s zero-profit contour in the K-τ space (such 

as shown in the right panel of Figure 2), the two equilibria must entail the same combination 

of 
*lK  and 

*lτ . Whether this would be the case in general is not sure, as this may depend on 

the specific assumptions on the cost functions for road use and capacity provision. But for the 

constant returns-to-scale case, uniqueness of satisfaction of (A.2b′) and (A.4b′) along the 

zero-profit contour is easily established under a rather mild additional assumption. First note 

that when increasing τ  along the zero-profit contour in the left panel of Figure 2, the ratio 

                                                
11 Also note that the interpretation of λl*=–1 makes it unlikely to be true in a second-best optimum: it would 
mean that a marginal increase in the capacity budget for the link under consideration, above the zero-profit 
budget, would lead to an equally large loss in social surplus. This appears unlikely to be the case in the direct 
vicinity of the second-best optimum when the road as such is desirable. The equilibrium values of the 
Lagrangian multipliers associated with the zero-profit constraint for the three vot’s considered in Figure 5 are -
0.53 in case 1, -0.80 in case 2, and -1.06 in case 3. This is consistent with the hypothesis that an equilibrium 
value exactly equal to –1 is unlikely to occur in a global second-best zero-profit optimum. 
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N/K on the link is gradually decreasing (superscripts l* are dropped for convenience): 

otherwise the toll could not rise while keeping profits constant at zero.12 Because the marginal 

cost for capacity c
KC  is now constant, uniqueness of satisfaction of c

KK CcN =⋅−  along the 

zero-profit contour is guaranteed if the left-hand side is monotonously decreasing along the 

zero-profit contour when moving in the direction of an increasingτ. For this, in turn, to be 

true, it is more than sufficient to assume that c′′≥0: the derivative of the user cost function 

with respect to the ratio N/K is not falling in that ratio. We can then write 

)/()/(d/d 22 KNKNccN K ⋅=⋅− , which clearly increases in N/K and hence decreases when 

moving along the zero-profit contour in the direction of increasing τ. 

 In conclusion, the conventional investment rule applies both for an interior second-

best optimum under a zero-profit constraint, and for maximizing patronage under the same 

constraint. If this rule can be satisfied for only one unique zero-profit capacity (which was not 

proven to be true in general but was shown to be plausible for the constant-returns case), the 

sets of first-order conditions (A.2) and (A.4) produce the same equilibrium. Provided 

equations (A.2) correspond to an interior maximum, the second-best optimality under a zero-

profit constraint of Pat found for simple networks in Section 4 would then indeed carry over 

to generalized networks. This does not require the equilibrium values of individual 

Lagrangian multipliers to be equal in the two optimization problems, as can be verified when 

comparing conditions (A.2a) and (A.4a), and as we also saw in the numerical example below. 

 

                                                
12 This would be true for any not perfectly elastic derived demand for the use of the link, regardless of whether it 
would produce a backward-bending zero-profit contour as shown in Figure 2, a rising one, or a falling one. 


