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Abstract

This paper considers the welfare impacts of a range of franchising regimes for congestible
highways. For a single road in isolation, it is shown that a competitive auction with the level
of road use as the decision criterion produces the socially optimal road (in terms of capacity
and toll level), provided neutral scale economies characterize highway operations. The
auction outperforms various alternatives, in which the bidders are asked to minimize the toll
level or toll revenues, or to maximize capacity or the bid for the franchise. When second-best
network aspects are taken into account, the patronage-maximizing auction is no longer
optimal. With unpriced congestion on parallel capacity, the second-best highway would
generate losses and the auction produces a bel ow-optimal capacity. With unpriced congestion
on serial capacity, the auction produces an above-optimal capacity. However, the patronage-
maximizing auction does replicate the second-best optimum under a zero-profit constraint in
both cases. An inquiry into the degree of generality of this result shows that the first-order
conditions suggest that this similarity would carry over to generalized networks, of
undetermined size and shape. But second-order conditions are not fulfilled in general, and
also corner solutions may occur. A numerical example is used to illustrate that the patronage-
maximizing auction may then achieve the least efficient among the possible zero-profit roads.
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1. I ntroduction

The private supply of highway capacity offers onaywto deal with growing traffic
congestion in the face of insufficient public funidsfinance new capacity, and insufficient
support for public road pricing. Private involverheém highway supply is not exceptional.
Around one-third of the Western European highwatyvoek is currently under concession,
with a strong concentration in the more Southernntes of France, Spain, Italy and
Portugal. Some of the value pricing projects intf&involve private pay-lanes. And private
toll roads are an increasingly common phenomenaieueloping countries.

Proclaimed potential advantages of private oveblipuhighways include cost-
efficiency, innovativeness, and availability of élem A main disadvantage is the divergence
between the private objective of profit maximizatiand the social objective of welfare
maximization €.g. Edelson, 1971; Mills, 1981; Mohring, 1985). An ianfant question is
whether there are ways, particularly through thggteof auctions for highway concessions,
to make the private operator behave more closeljnewith welfare maximizing price and
capacity setting. Such strategies might presermgetlivantages of private involvement, while
limiting the potential disadvantages. Moreover,rapgrly designed auction would provide
incentives to minimize the cost of supplying thepaty chosen, and would give the
government an objective way to select a road opeshong a larger set of candidates. And
of course, the use of auctions or comparable dlmtanechanisms seems unavoidable in the
awarding of concessions for highways, anyway. Ithisrefore important to have a proper
understanding of the potential efficiency impadtthe design of such auctions.

This paper investigates one particular aspectustiens for highway concessions,
namely the extent to which the choice of the aoteused in the selection of the winning bid
affects the efficiency of the resulting highway.eThhoice of criterion becomes relevant
whenever the regulator is unsure about the optiraghcity and toll (schedules); possibly
because these depend in part on the (efficiencyhefpperator’s other choices, for example
during the construction phase. Under complete icdytaa criterion that awards the
concession only to a bidder offering the optimalamaty and toll (schedule) would of course
suffice to achieve the socially most desirable onte, and the auction becomes a formality.
We will mainly consider auctions in which privatiglteers are free to select highway capacity
and toll, but will also briefly consider more lirad auctions in which capacity is pre-
specified.

To focus attention, some simplifying assumption & made. First, we consider
stationary traffic conditions with homogeneous ss&econd, we ignore specific distortions
that might arise from strategic interactions betwéelders in the auction, by considering
competitive auctions only. There is agriori reason to expect that these interactions would
systematically affect the ranking of the variougecia that we will consider, although the
welfare gains (or losses) from each criterion wooldcourse be different under non-
competitive bidding. Third, we will not formally rdel demand uncertainty and contract
renegotiation. And fourth, we will assume that tp@vernment has sufficient power and
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credibility to enforce fulfilment of the bid, andam punish violations such that the net
profitability of winning the auction but not livingp to it would be negative and hence below
that of not winning. The set-up of the analysisimilar to that of Ubbels and Verhoef (2004),
but extends it by considering the impacts of anrigep complement (in addition to an
unpriced substitute); by considering maximum paigmas a candidate criterion and, for pre-
specified capacities, minimum toll revenues; andubyg a different (non-linear, BPR-type)
congestion cost function in the numerical modeltf@rmore, unlike Ubbels and Verhoef
(2004), this paper considers the (second-bestinajity of auctions in generalized networks,
of undetermined size and shape — and finds a cear@mple where a candidate second-best
optimal auction in fact produces a minimum of achlde surplus levels.

The plan of the paper is as follows. Section 2rtstavith some theoretical
backgrounds. Section 3 considers the performaneemimber of auctions for a single road,
while Section 4 moves on to introduce network atpegection 5 considers the second-best
optimality of the most promising auction on genized networks. Section 6 concludes.

2. Theoretical backgrounds

This section provides some theoretical backgrododeur analysis. Section 2.1 identifies the
conditions for surplus-maximizing and profit-maxmimg road capacities and tolls, and thus
identifies the direction in and extent to which aunction should ideally affect the private
operator's choices, compared to unrestricted free@osetting the toll and capacity. Three
cases are discussed: the benchmark of an isolatet] and two second-best cases allowing
for simple network spill-overs, namely where eitlaer unpriced substitute or an unpriced
complement is available. Section 2.2 addresseprtbfegability of surplus-maximizing roads,
and therewith identifies the desirability for aocis designed so as to push bidding companies
to a zero-profit bid. Throughout the section, wél westrict attention to interior solutions,
with positive capacities. We thus ignore corneusohs in which it is not attractive to build
the road at all, which may become important whesrehare strong economies of scale or
under certain network configurations (see alsoiSed).

2.1. Welfare maximizing and profit maximizing tolls and capacities

Sngleroad

Consider a single road with capacky which is used under stationary traffic conditidos
homogeneous drivers with an aggregate inverse deffuctionD(N), whereN denotes the
equilibrium flow of traffic. The average user castludes all variable costs incurred by the
user, including travel time, and depends, throughgestion, onN and K. It is denoted
c(N,K). The generalized price faced by road ugg(¥,K), is equal to the sum ofN,K) and a
toll 7 if levied. The per-unit-of-time capacity cost daege on the road’s capacity and is
denotedC®(K). Ignoring external costs other than congestiba, first-best optimal toll and
capacity, defined so as to maximize social sur@usan be determined by solving the
following Lagrangian:
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A :.N[D(n)dn—N [@(N,K) - C*(K) +ALc(N,K) +7-D(N)) (1)

where the first three terms represent the objectaral the fourth term the equilibrium
constraint g is the Lagrangian multiplier). The set of firsder conditions (w.r.tN, K ,7 and
A) can be solved to yield two familiar conditions:

T=Nlcy (2a)

-N[&, =C¢ (2b)

where subscripts denote partial derivatives. Equafa) shows that the optimal toll should
be set equal to the marginal external congesti@tscavhile (2b) shows that the marginal
benefits of capacity expansion (the I.h.s.) shdaélédqual to the marginal cost (the r.h.s.).

An unrestricted private road operator would mazemprofits by solving:

A =N -C°(K)+Adc(N,K)+7-D(N)) (3)

The set of first-order conditions now yield:
T=Nlcy, -NI[Dy (4a)

-N[&, =C¢ (4b)

The profit-maximizing toll includes the marginaltesnal congestion costs from (2a), but adds
to this a standard monopolistic mark-up that insesaas demand becomes less elastic. The
latter term has the conventional interpretatiom, ititernalization of congestion is motivated
by the fact that any reduction in congestion coats be turned into revenues for the operator
by increasing the toll accordingly. Internalizingpet congestion externality therefore
contributes to the profie(g., Edelson, 1971; Mills, 1981).

Interestingly, the profit-maximizing optimality cdition for capacity choice (4b) is
the same as for the social optimum (2b). The iiowits that the operator can, as it were, turn
all savings in average user cost into toll reverareshence profits on a dollar-by-dollar basis
when increasing capacity while keeping the genszdlipricep and hence total demarid
fixed. The profit-maximizing trade-off is therefoi@gentical to the surplus-maximizing trade-
off. Of course, the difference between (2a) and Wt generally cause the profit-maximizer
to evaluate (4b) for a smalldrthan a surplus-maximizer would consider, produrgwer
optimal capacity. As a corollary, when demand idqudly elastic so that (4a) becomes equal
to (2a), a profit-maximizing operator would set itstruments such that the optimum is
achieved, and no further regulation is warrantegcaBise estimates of demand elasticity for
road transport usually indicate (in absolute termigsticities well below —1e(g. Hanly,
Dargay and Goodwin, 2002), this observation isroitéd use for practical policy making.

Under first-best pricing and capacity choice, assuaning no cost interdependencies
between links, equations (2a) and (2b) would holdeivery single link in a network. And a
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private operator would attempt to add to this a epatistic mark-up, as in (4a), for every
origin-destination pair in the network. Indeed,watk extensions become analytically more
challenging when second-best conditions apply disegvon the network. An important type
of second-best distortion would be the existencenmblled, congested links, with capacities
set arbitrarily. Solving the resulting second-begtimal or profit-maximizing tolls and
capacities for generalized networks, of undeterohiseze and shape, can yield tedious
expressions (see Verhoef, 2002ab) that elude etesypretation. More insightful expressions
can be obtained by considering two particular esitars of the one-link network considered
above: one with an unpriced parallel link (a subt), and one with an unpriced serial link (a
complement). Figure 1 shows these simple netwdrt#) serving a single origin-destination
pair OD and both assumed to consist of an unptiokdJ of given capacity, and a link for
which both a toll and capacity can be set.

(a) Unpriced substitute (b) Unpriced complement
Link T Link T Link U
o] mD Om _unk? M kY . mD
Link U

Figure 1. Smple two-link networks with an unpriced substitute (a) and an unpriced complement (b)

Unpriced substitute

The case of second-best congestion pricing withugoriced substitute, in Figure 1.a, has
been considered by various authors, including Léambert (1968). The inclusion of
capacity as a second policy instrument has beasnclemmon. Using superscrigtsandT to
denote the untolled and the tolled alternativepeetively, and assuming th&t” is to be
treated as given, the surplus-maximizing second4odist’ and capacitK’ can be found by
solving the following Lagrangian:

NY +NT
A= [D(mdn-N & (NY,KY) = NT &7 (N",KT)-C* (K¥) -CT(KT) -
0
£ 0 e (N, KY ) = D(NY +NT))+ A7 fc™ (NT,KT) +77 = D(N" +NT))
The set of first-order conditions (w.m”, N", K™ ,7", A" andA") can be solved to yield:
T _ NT T U U — Dy
T =N |]:NT -N |]:NU o (6a)
Cuu -Dy
-NT &, =Cf (6b)

whereDy denotes the slope of the (single) demand function.

The second-best optimal toll (6a) is the same asotie reported by Lévy-Lambert
(1968), and is therefore unaffected by the possibif also setting capacity for rouie A
more detailed interpretation of this toll expresstan be found in Verhoet al. (1996), but
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note that it is below the marginal external conigesbn routeT in order to optimize the
congestion spill-over onto routd. The second-best optimal capacity rule (6b) isilainto
the first-best rule (2b). Given the equilibrium useel of routeT (N') and the associated
generalized equilibrium price’=c’™+7", it is optimal to choose that combinationkfand '
that minimizes the social cost of carryi?é/. The optimality condition for capacity is
therefore the same as for a road without substitute

The profit-maximizing toll and capacity follow fru

/\ - NT D.T _CC,T(KT)

U U U U U T T T T T T U T (7)
+ 0 e’ (NY,KY)=D(NY + NT))+ A" ffc" (NT,KT) +77 ~=D(NV +NT))
The set of first-order conditions (w.m", N", K™ ,7", Y andA") now yields:
CU
rm=NT&], -N" D, [|—— 8a
N N I:ECEU _ DN J ( )
~-N" &, =CZf (8b)

The tax rule (8a) is again not affected by the iy to set capacity: the same rule was
found in Verhoef, Nijkamp and Rietveld (1996) wheek capacity fixed. Note that, in
contrast to the second-best toll in (6a), thisriar adds a positive term to the common first
term (that represents the marginal external coshertolled route). As for the single link, the
optimality conditions for surplus-maximizing andfit-maximizing capacity, (6b) and (8b),
are the same — and for the same reason. The eaquilitcapacities will differ only because
the point of evaluation differs.

Unpriced complements

Prior literature has paid considerably less atbentd second-best pricing with an unpriced
complement than with an unpriced substitute. Mamng the assumption of a single origin-
destination pair, and considering control overrinstents at one of the two links only, the
network of Figure 1.b emerges. The second-bestmati can be found by adapting (5) to the
new network configuration (note that all travellese both link&J andT):

A :TD(n)dn— N’ (N,KY) =N (N,KT)-C® (KY)-C°T(K")

)
£ A" (N,KY) +¢"(N,KT) +77 =D(N))
The set of first-order conditions (w.m, K™ ,7", and) can be solved to yield:
rm=Ne] +cY) (10a)

-N[E, =Cf (10b)
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Intuitively, the second-best optimal toll perfeciiyernalizes the marginal external congestion
costs for both links jointly. The rule that definegtimal capacity has the by now familiar
form. Again no welfare effects from lilld are present in this rule, which reflects that riedi
effects of changes iK™ upon congestion on linkl cancel because the toll in (10a) already
perfectly internalizes this congestion.

Finally, the profit-maximizing choice of instrunmsrcan be found from solving:

A=NO"-CT(KT)+ A’ (N,KY) +c"(N,KT) +77 = D(N)) (11)
The set of first-order conditions (w.m¥, K™ ,7", andA) now yields:

r" =Nrc] +c -D,) (12a)
-NEl, =C] (12b)

The profit-maximizing toll is a straightforward gmmalization of (4a), like the surplus-
maximizing toll (10a) was from (2a). And also instlinal network, the rule dictating profit-
maximizing capacity is the same as the one for Igsrpnaximization. The equilibrium
capacities will again differ only because the poinevaluation differs.

2.2.  Optimality, self-financing and maximized profits

Mohring and Harwitz (1962) showed that an optimalésigned road +e., with an optimal
capacity and an optimal toll — will be exactly skifancing, provided some technical
conditions are satisfied. These technical condstioan be summarized as follows: (1) road
capacity should be a continuous variable; (2) thereuld be constant returns to scale in
congestion technology (equiproportional changessi and capacity leave average user cost
unaffected); and (3) there should be constant en@®of scale in highway construction (the
cost per unit of capacity is independent of towparity): This ‘self-financing’ theorem has
been shown to extend to each road individually iinlbnetwork, and therefore also to the
network in aggregate, provided each link is optlgnpticed and all capacities are optimized
(Yang and Meng, 2002). The theorem also extendyri@amic models (Arnott, De Palma and
Lindsey, 1993); in present-value terms when allgwior adjustment costs and depreciation
(Arnott and Kraus, 1998); when maintenance andhilisaare considered (Newbery, 1988);
and when input markets are not competitive (Smiai99).

Empirical evidence suggests that conditions (2d g8) may hold at least
approximately: empirical estimates of the ratiolafig-run average and marginal costs of
vehicle-kilometres are often relatively close tatygSmall, 1992, Sections 3.4, 35profits

! More generally, the original result in fact statkat the degree of self-financing, measured asatie of toll
revenues to capacity cost, is equal to the elfgtidi capacity cost with respect to capacity. Tiniplies exact
self-financing under neutral scale economies.

2 More recently, Levinson and Gillen (1998) repopiaint estimate for the ratio between long-run agerand
marginal cost of 0.92 for auto, but 1.45 for singlecks and 1.96 for combination trucks, suggestimty
diseconomies for passenger cars but considerabtegtes for trucks.
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or deficits under optimal design and pricing obad will then be relatively small. Condition
(1) seems unrealistic for a single road becausentimeber of lanes is discrete. But capacity
per lane can be varied by widening lanes, by rasin§, or by re-grading or straightening a
stretch of road. And when this is not the caseg@imally designed road might still be self-
financing over the longer run, when periods of undpacity and overcapacity alternate as
demand grows over time.

We can illustrate the self-financing theorem im owdel by replacing the general cost
functionc(N,K) by the somewhat less geneté/K) (securing constant returns in congestion
technology), and the capacity cost funct@i(k) by y*-K, with ) denoting a constant cost per
unit of capacity (securing constant economies afesi highway construction). Observe that:

0c(N/K) _ N 9c(N/K)

13a
oK K oON (132)

All conditions for optimal capacity choice encouet thus far were of the same type, which
can be rewritten (using our assumption of a constast per unit of capacity) as:

N, =) (13b)

Multiplying both sides b yields:
-KINC, =C° (13c)

or, using (13a):

N[N &, =C° (13d)

The l.h.s. of (13d) gives total capacity cost wltapacity is set according to (13b), and is
equal to total toll revenues under the first-begtipg rule of (2a). This means that, whenever
(13b) is satisfied but the toll rule deviates frq@e), as in the two second-best cases
considered above, optimal capacity choice will keisuan unbalanced budget. There will be a
financial surplus if the toll exceeds the margieslernal congestion cost, and a deficit when
the reverse holds. For a road in isolation — odeé@d, a road in an otherwise optimally
managed network — equation (13d) confirms the fesdfcing theorem of Mohring and
Harwitz (1962).

These results have implications for the potentfat@mpetitive auctions to achieve
efficiency. At least when no subsidies are parth&f auction, a competitive auction would
drive profits to zero. For a road in isolation, aftit which the constant-returns-to-scale
assumptions are fulfilled, the optimal profit israetoo. This means that there could be
competitive auctions that would have the optimuradr@s an outcome. For a road with
unpriced complements or substitutes, this wouldgeoierally be the case.

3. Competitive auctionsfor an isolated road

A competitive auction can be defined as one in Wwhic sufficiently large number of
sufficiently equally efficient non-cooperative bi&td are active, so that there is no scope for
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strategic behaviour, and the bidders do not beltbeg will stand a chance of winning the
auction when submitting a bid with a lower thanitth®est score on the selection criterion
used in the auction. The assumption of a competdiction, while probably questionable in
the context of road supplyallows a ‘clean’ analysis of the performance iffiedent selection
criteria for an auction, without imperfections fretbidding process complicating the analysis.
Such imperfections would in reality of course bepotentially decisive importance for the
overall efficiency. However, the questions of taetly what extent the performance of an
auction would be affected, and of whether the nagkif the different selection criteria would
be systematically affected, are left for futurecash.

For a competitive auction thus defined, any s&actriterion that can be improved
upon as long as profits are positive would causédyis to be pushed closer towards a zero-
profit bid. We will call such criteria ‘profit-exhesting’. Bids for profit-exhausting criteria for
competitive auctions are formulated by maximizati@m minimization) of the criterion
subject to a zero-profit constraint. All criteri;gwvill consider in the sequel will be profit-
exhausting. A somewhat unrealistic example of xan that would not be profit-exhaustive
would be the criterion of ‘social surplus’ when ampriced congested complement is
available; compare equations (13d) and (10a) above.

Indeed, if information would be so complete thanaaningful auction with ‘social
surplus’ as the criterion were possible, it woutd be hard to define the optimal criterion for
an auction. In practice, more easily observablteida will have to be used. The set to be
considered below is based on practical examplebeeproposals in the literature, and on an
attempt to find a relatively efficient criterionh@& criteria to be considered are: a maximum
bid for the right to build and operate the roaBi¢"), a maximum capacity supplied@ap”);

a minimum toll charged for a pre-defined capacifjo{l-cap”) % and the maximization of the
use level or patronage of the new capaciBa(®).

If an auction is profit-exhausting, the occurren€a ‘winner’s curse’ is of course not
inconceivable: the winning bid is from the partytliinolds the most optimistic expectations
about market opportunities, and that thereforedstam considerable risk of incurring losses
once operation commences. We will not formalize #wstence of a dispersion of
expectations across potential bidders. But one @fagiealing with this problem in reality
would be to ask bidders to supply, along with thwéd, a detailed account of the predicted use
levels, travel times, toll levels, and road desidmis would allow verification of the
plausibility of the travel times as a function ofad characteristics (capacity) and patronage,
as well as patronage as a function of travel timeé @Il level. For the latter test, existing

 Worldbank (2006) for example state “Particulamythe case of large toll road concession projebtse is
often a relatively limited number of bidders” (Seat5; sub-page entitled “Attract bidders”). Reascould be
the specific knowledge required to build and operaiads, the lumpiness of projects, the requiréattsffor
composing bidsgtc.

* Another potential criterion would be a minimumltoharged (Toll”) without a pre-defined capacity. This
criterion was considered in an earlier versionhi$ paper, but is dropped here because it conflisteads to
zero-capacity bids.
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transport network models could be used; and furtiights can be obtained by comparing
bids with each other. With a deviation above aaterthreshold, the bid could be ignored to
protect the bidder from a winner’s curse, or cleaifion or revision could be demanded.

And finally, a credible and effective penalty shibwf course exist for under-
performance compared to the bid, if wining. Thisgéy should be such that the firm should
make a net loss from winning the auction and ureléopming afterwards, and might be
coupled to the government obtaining the right t¢ #& toll levels when persisting
underperforming occurs.

A numerical model: a single road

We will illustrate the discussion of the variousspibble selection criteria using the results of a
small numerical simulation model. The model is higstylized, but nevertheless calibrated
So as to be representative for a highway thatngested during peak times. The average user
cost function is modelled according to the well4kmoBPR-formulation (Small, 1992):

c(N/K) =a i, EE1+,BE€%JXJ (14)

where a is a parameter reflecting the value of time (4e7.8 in our model, according to
conventional Dutch estimates)js a parameter reflecting the free-flow traveldifset at 0.5,
implying 60 km for a 120 km/hr highway), afthnd y are parameters that are set at 0.15 and
4, respectively — conventional values for the BlRRetion.

The units of capacity are chosen such that oneverdional traffic lane would
correspond t&K=1500. This implies a doubling of travel times aise level of around 2400
vehicles per hour. This is roughly in accordancth&oflow at which, empirically, travel times
double for a single highway lane and the maximuowfbn a lane is reached.d. Small,
1992, Fig. 3.4, p. 66). A maximum flow, howeverna defined for BPR functions.

The price of capacity)y, is set equal to 7. With a unit of time of one hotlis
parameter ought to reflect the hourly capital codte derive a value from empirical
construction cost estimates, an assumption has t;mdéde on whether the model aims to
represent stationary traffic conditions throughautday, or during peak hours only. Our
parameterization concerns the latter. The value7 oivas then derived by dividing the
estimated average yearly capital cost of one highae kilometre in The Netherlands (€ 0.2
million) by 1100 (220 working days times 5 peak roper working day; assuming two
peaks) and next by 1500 (the number of units ofacép corresponding with a standard
highway lane), and finally multiplying by 60 (thember of kilometres corresponding with a
free-flow travel time of half an hour). Only wel&areffects in peak hours are therefore
considered in the numerical exercise, and it isirassl that off-peak travel is so modest that
both the optimal off-peak toll and the marginal &ftis of capacity expansion would be
negligible. To maintain consistency, all selectiorteria to be considered below, where
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relevant, would also apply to peak hours only. Aimdlly, no relevant welfare effects arise
outside the peak, and therefore no toll revenues@pposed to be raised.
Finally, it is assumed that a linear inverse dedfanction applies:

D(N)=4J,-6,[N (15)

A choice of & = 31.21 andd, = 0.00462, together witk = 3000, produced a reasonably
realistic benchmark equilibrium where an equilibniuroad use ofN = 5000 causes
equilibrium travel timé to be around two times the free-flow travel timevhile equilibrium
demand elasticity is equal to —0.35. Because there are no toll neegnprofit/zis negative

in the benchmark equilibrium. (This benchmark efuiim will not be interpreted as some
initial situation in the single-road analysis; thgtcapacity will be allowed to become smaller
than the benchmark level.)

Benchmark Optimum Bid Cap Pat
t/t 2.16 1.37 1.37 1.01 1.37
€ -0.35 -0.52 -2.05 -1.29 -0.52
K 3000.00 3530.77 1765.39 5807.29 3530.77
T 0.00 5.58 15.82 13.78 5.58
N 5000.00 4430.50 2215.25 2949.19 4430.50
c 8.09 5.14 5.14 3.79 5.14
p 8.09 10.72 20.96 17.57 10.72
D 8.09 10.72 20.96 17.57 10.72
s -21000.00 0.00 22686.70% 0.00 0.00
S 36787.70 45373.40 34030.00 20104.80 45373.40
w 0 1 -0.32 -1.94 1.00

@ The figure shown in fact gives the bid. After makihis bid, profit will become equal to zero.
Table 1. Numerical results for a singleroad

The optimum configuration is depicted in the secoallmn of Table 1. As expected, profits
are exactly zero in the optimum. Optimal capakitis higher and optimal road ubkis lower
than in the benchmark. As a result, travel times lawer (1.37 times the free-flow travel
time, compared to 2.16 in the benchmark).

Let us now turn to the various criteria for auntoThe first of theseBid, forces the
private operator to set the profit-maximizing tatid capacity identified in (4a) and (4b) (the
net profit, after the sum promised in the bid hasrbpaid, will of course be zero). This leads
to a toll that is nearly three times as high asapimal toll, and a capacity that is exactly half
the optimal capacity (as can be expected withealimdemand function and constant long-run
marginal cost). The final row in Table 1 shows dficiency indicator «, which is for a
particular equilibrium calculated as the socialptus in that equilibrium minus that in the
benchmark, divided by social surplus in the optimaomnus that in the benchmark. It
therefore gives the share of first-best surplusgaglative to the benchmark that a particular
auction achieves; a negative value denotes a suljglow the benchmark level. This is for
example the case for the auctiBrd. The poor performance of this policy is in accoma
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with the rather pessimistic predictions of effiaggrimpacts of profit-maximizing congestion
pricing in various earlier studies.§. Verhoef and Small, 2004).

A second auctionCap, asks bidders to offer a capacity as large asilpes8ecause
the toll is not restricted to be set optimally, thkely result is that capacity would exceed the
optimal level: in the current numerical examplésitnearly twice as large. The high capital
costs are covered by a toll that is nearly as laghhe profit maximizing toll, because it
maximizes revenues given the capacity chosen. &heltmg relatively small level of road
use, in combination with the relatively large capacause social surplus to be even lower
than undeBid. Note that both auctiorS8ap andBid will apply profit-maximizing tolls given
the capacity chosen. But wherea®id, the capacity will be optimized given the inefénily
small use level, as implied by (4l8ap will distort the capacity choice given the usediby
making capacity the bidder’'s maximand.

TZp wzp

25

20 3000 4000 500
15

10
5

1000 2000 3000 4000 5000

Figure 2. Zero-profit toll (left panel) and relative efficiency (right panel) as a function of capacity

For the auctionToll-cap’, the results of course depend on the choice efgpecified
capacity. To identify the toll choice following agpspecified capacity, consider the left panel
of Figure 2, showing the zero-profit contour in #ker space. This contour can be denoted
(K): the correspondence between zero-profit tolls aapacity. First note that for all
capacities below the maximum capacity that canfferedl without a deficiti(e., below the
solution from auctionCap’, around 5807 in the numerical model), there aréaict two toll
levels that produce zero profits. For any capackigsen, it is the lower of these two toll
levels that would result with the criteriofidll-cap’. The area bounded by the contadi(K)
and the vertical axis corresponds with positivefigpthe area outside the contour with
negative profits. Sufficient conditions for a backd-bending pattern to arise is that the
inverse demand function intersects both axes aadttie absolute value of the elasticity of
demand with respect to tlldenoteds, decreases monotonously M All revenue levels
below the maximum revenue for a certain capacitye{e —1 for that capacity) can then be
realized as a higher-toll — lower-demand combimatfthe upper segment of the contour

® The elasticity of demand with respect to tglldiffers from the conventional demand elasticitpecause: (a)
the toll 7 differs from the generalized prigec+7, and (b) &/dp # dN/d7 (becauseadN # 0).
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™®(K)) or as a lower-toll — higher-demand combinatighe(lower segment of®(K)).
Because the profit-maximizing toll for a certainpaaity lies between the two zero-profit
tolls, and because of our assumptiorepfiecreasing monotonously My profit is increasing
in rfor a given capacity on the lower segment, andedesing inr on the upper segment.

The right panel of Figure 2 depict$’(K): the correspondence between capacity @nd
under zero-profit tolling. The upper segmentdi(K) corresponds with the lower segment of
(K), and reversely. The first-best optimum is on liweer segment of the contouf’(K).

An auction that would pre-specify the optimal capaand next use the minimum toll as the
criterion therefore would in principle be successfuachieving the first-best optimum. The
right panel of Figure 2 further shows thatmay be positive for a rather wide range of pre-
specified capacities, and the flatness near tegbgst optimum suggests that small errors in
defining pre-specified capacity need not be dramatterms of welfare implications.

This auction Toll-cap’ would be close to the one proposed by Engel, dfisind
Galetovic (1996), who propose an auction with as dhterion the minimization of the net
present value of toll revenues (NPR) before thehway is to be transferred to the
government. The setting of Enggtlal. (1996) is rather different from that in this papEney
are primarily concerned with the promotion of ceffectiveness in construction and the
avoidance of renegotiation of contracts under demarcertainty; but they treat the choice of
capacity as exogenous and ignore the effect ofsetling on social welfare (in fact, they
assume that the social objective is to minimize é¢Rpected value of tolls paid). Demand
uncertainty and renegotiation are ignored in thesent paper, but the impacts on social
welfare are, in contrast, centfal.

From that perspective, a number of observatioms e made concerning Engetl
al.’s NPR-auction. The first is that Figure 1 implibst over the relevant range of capacities,
any target level of toll revenues below maximumerayes could be achieved by two toll
levels, with strongly diverging welfare implicati®nA criterion that is phrased in terms of toll
revenues — be it per-unit-of-time or in presentueaterms — cannot discriminate between
these two tolls. As a consequence, there is ncagtee that whichever toll revenue is raised
per unit of time, it is raised using the more eéit toll. In the numerical example, even for
the optimal capacity would the higher-toll equilion produce only very limited benefits
compared to the no-road situatiow i close to —4). A second observation is thatNIRR-
auction does not direct the operator towards amaptoll revenue per unit of time: it is only
the net present value that matters. If after tremisfy the road to the government, tolling is
discontinued, the auction may cause pricing to be-optimal both before and after the
transfer. It is therefore uncertain whether an NRRtion would indeed produce an optimal
outcome, especially when social surplus would leestitial objective.

® Cost-effectiveness in construction is not considezxplicitly in this paper, and firms are assurtedlways
operate on the capacity cost functioh A competitive profit-exhausting auction wouldwever, always secure
cost-effectiveness in construction. Explicit comsation of cost-effectiveness in construction wotkldrefore
not affect the conclusions.
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The final auction we consider iPat’: the auction that awards the concession to the
operator that offers the highest patronage. Thal feolumn in Table 1 shows that the
outcome of this auction coincides with the firssb@ptimum. Again, this result can be
expected to carry over to more general settingsloag as the constant-returns-to-scale-
assumptions are fulfilled. The intuition is as @olis. We want to compare the maximization
of social surplus with the maximization of patroeafN). Social surplus is the sum of
consumer surplus and profits, so given the zerditpronstraint social surplus is maximized
when consumer surplus is maximized. The latterirequmaximization of.’

The perhaps counter-intuitive conclusion is themefthat, provided the constant-
returns-to-scale conditions are fulfilled, the catifive profit-exhausting auction that
maximizes social surplus is the one that maximieag§ic flow.

4, Second-best networ k effects

An important simplification of the above analysisncerns the neglect of network effects.
This is acceptable when studying a road in isatatar under the hypothetical assumption of
first-best pricing throughout the rest of the netwdt can also be considered instructive to
deliberately ignore network complications, becadséng so allows concentration on the
primary efficiency impacts of the various auctiomglependent of second-best network spill-
overs. But network effects are likely to be impattén reality, and may, as we shall see
below, have significant impacts on the performaofcauctions. To maintain focus and keep
the exposition transparent, we will first consido very simple networks in what follows,
which would represent the most important types exfosd-best network issues that could
arise. Section 4.1 considers the situation whernengmiced perfect substitute for the new road
is available i(e., a parallel road), while Section 4.2 considersiapriced complement.¢., a
serial road).

4.1.  Unpriced substitute

The existence of an unpriced substitute road niguieduces the potential profitability of the
new road. This effect can be substantial, whidHustrated by the fact that when interpreting
the rather heavily congested benchmark road frarptievious section as pre-existing initial
capacity, no profitable capacity-toll combinatiar fidditional, priced capacity appears to be
possible. Also the second-best optimum, for whiah ¢apacity of and toll on the tolled new
parallel is optimized under the constraint thatiahicapacity remains untolled, consequently
produces a financial deficit. Witlx defined as the degree of self-financing of lihkTable 2
show that only 7% of the capacity cost for the selcbest optimal toll road would be covered
by the revenues from the second-best toll.

Under this parameterization, no bids can be ewgeat an auction if it does not
include the possibility of subsidies. Ubbels andhéef (2004) explore the possibilities for
and properties of auctions with subsidies. In thesent paper, we do not consider such

” | owe this intuition to an anonymous referee.
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auctions, motivated by the observation that ifrenguired subsidy would be so large (93% of
the construction costs in the numerical examplep@ernment would most likely prefer to
carry 100% of the construction costs and keepdhd in public hands altogether. An auction
that raises only 7% of the construction cost andcherequiring a 93% subsidy, while
meaning loss of (direct) control over the highwegyeration, does not seem to be a very
attractive option when social surplus maximizai®the overall objective.

Benchmark Optimum Second-best
KY 3000.00 3000.00 3000.00
K" 0.00 530.77 1227.48
K 3000.00 3530.77 4227.48
v 0.00 5.58 0.00
T n.r.?2 5.58 0.40
NY 5000.00 3764.47 4010.11
N" 0.00 666.03 1540.27
N 5000.00 4430.50 5550.38
cV 8.09 5.14 5.55
c' nr.2 5.14 5.14
T 0.00 0.00 -7974.39
S 36787.70 45373.40 42235.80
%) 0 1 0.63
@ 0 1 0.07

% Not relevant.
Table 2. Numerical results for an unpriced subgtitute: original parameterization

In order to get an idea of the performance of zerosidy auctions in the presence of an
unpriced substitute, the parameterization has tadpested, so as to create the possibility of
zero-profit bids with positive capacity. This washeeved in the numerical model by reducing
the initial capacity from 3000 to 1500. As a restiie benchmark equilibrium travel time
becomes 4.3 times as high as the free-flow trawe.tFor such a heavily congested road,
zero-profit bids for additional priced capacity decome possible, and the results for the
different criteria are shown in Table 3.

The first-best optimum (for which pricing on batbads is allowed) is of course the
same as that for the road in isolation. Becaudmlninpriced capacity is relatively small, the
second-best equilibrium achieves a relative efficye of w=0.91, which is substantial.
However, because of the second-best nature ofetjudibrium, the toll is set according to
equation (6a), producing a toll that is only 16%dlu# first-best toll. As a result, a substantial
deficit will occur on the operation of the tolledlad: the cost coverage for the new road in the
second-best equilibrium is only 16%, despite tlet flaat tolled capacity makes up nearly two
thirds of total capacity. Again, it would seem mat&active to keep the road in public hands
than to design an auction that would, if successfukeproducing the second-best optimum,
require a subsidy of 84% of total construction cost
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Benchmark  Optimum Second- Bid Cap Pat Second-

best best zp.
KY 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00
K" 0.00 2030.77 2649.79 633.25 1430.90 1287.74 1287.74
K 1500.00 3530.77 4149.79 2133.25 2930.90 2787.74 2787.74
™ 0.00 5.58 0.00 0.00 0.00 0.00 0.00
T 0.00 5.58 0.87 8.27 6.95 5.58 5.58
NY 3251.72 1882.24 2124.34  3053.85 2868.88 2814.60 2814.60
NT 0.00 2548.26 3325.02 794.61 1441.85 1615.90 1615.90
N 3251.72  4430.50 5449.36 3848.46  4310.73 4430.50  4430.50
¢V 16.17 5.14 6.01 13.41 11.28 10.72 10.72
c’ n.r. 5.14 5.14 5.14 4.33 5.14 5.14
o 0.00 0.00 -15661.60 2138.11°% 0.00 0.00 0.00
S 13941.20 45373.40  42480.00 25873.10 32453.50 34873.40 34873.40
W 0 1 0.91 0.38 0.59 0.67 0.67
& 0 1 0.16 1 1 1 1

 The figure shown in fact gives the bid. After mrakithis bid, profit will become equal to zero.
® Not relevant.
Table 3. Numerical results for an unpriced substitute: adjusted parameterization

If insufficient public funds are available to finr@nthis investment, the question rises of how
attractive zero-profit roads might be. The finaluron in Table 3 shows the second-best
optimum under an additional zero-profit constraistl, the best achievable benchmark
outcome for zero-profit auctions. The toll is sadtally higher and capacity lower than in
the second-best optimum. Howevew, still reaches a level of 0.67 when the zero-profit
constraint is added to the second-best problem.&eds of 7' andc' are the same as for the
first-best equilibrium, which is caused by the fathat the auction induces the operator to
minimize total cost for any giveN™ while keeping capacity self-financing. This means
selecting the sami¢/N ratio, and the saneandz, as for the first-best optimum.

The auction Pat’ again achieves the second-best optimum (underz#ve-profit
constraint). MaximizingN" under a zero profit constraint requires minimiaatof average
user cost plus capital cost per user. Because efn#twork equilibrium condition, the
minimization of the generalized price on roRdmplies that average user cost on rhadre
also minimizedNY, andN" + NV, are therefore maximized — and so is thereford tmnefit’

For a givenk", and givens’ = 0, these are the same conditions that defines¢send-best
zero-profit equilibrium.

We can be brief on the other criteriBid' still does not perform very gooduJ£0.38),
which is caused by the large discrepancy betweenptofit-maximizing and the surplus-
maximizing second-best toll; compare (6a) and (8&ap performs relatively good
(w=0.59), because there is now not much scope toneixpapacity of the new road beyond

8 The outcome of the auctioRat’ appears to be independent of whether it is theopage of the new capacity
(N") or of both roads togetheN{ + NY) that is used as the criterion. Maximizihg through minimizing the
generalized price on that road also maximi¥esbecause the generalized prices on both road$eviiqualized
in equilibrium.
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the second-best zero-profit level without runningpilosses. Note that allis are positive.
The reason is that road users as a group can amigfib from the supply of additional
capacity that is to be used voluntarily, while potvill be zero. Social surplus, therefore, can
only increase. Toll-cap’ will always coincide with the second-best zeroffir outcome
provided capacity is pre-specified optimally, andl or that reason be ignored from this
point onwards.

The absence of subsidization possibilities combingth the absence of pricing on
initial capacity causes the maximum achievable avelfyains to be around two thirds of those
from first-best pricing and capacity choice. Theesof the relative loss, around one third in
this example, evidently depends on the assumemligibnditions, and may in some cases
become so large that the overall efficiency gamfithe auction becomes unacceptably small.
Would there, in such cases, be a possibility teaenh the social benefits from the auction by
changing its set-up? One possible strategy, bareithed observation that the source of the
reduced efficiency gains is the existence of ihitigriced capacity, would be to stipulate that
the winning bidder will have to buy the existingatbagainst the best estimate of the current
construction costs for the same capacity, and towakhe winning bidder to apply a
congestion toll on this existing capacity. Providlkd implied capital cost per unit of capacity
for the initial capacity are the same as a biddeo'st per unit of new capacity, and provided
the initial capacity is smaller than the capacitgidder would choose in an auction, he will
then in fact face the same problem as for the hoasolation. The auctionPat’ would
consequently again achieve the first-best optimtinerefore, there certainly may be ways to
avoid particularly unattractive network spill-overthrough auctions, by making the
compulsory purchase of the associated links patietoncession.

4.2.  Unpriced complement

The logical companion problem to the existenceroliapriced substitute is the existence of
an unpriced complement. Table 4 shows the numensailts, for which in order to maintain
comparability, the assumption was made that hafrtad’'s length would remain unpriced
and at the benchmark capacity (3000). This segnikens functions as the unpriced
complementJ, while the other halfT) would be subject to the auction. The free-floavl
timest; and prices of capacity therefore become 0.25 and 3.5 for both links, @etipely.
Equations (10ab) already showed that there wilabdgancial surplus in the second-
best optimum, because the second-best optimadlsalinternalizes the congestion externality
on the unpriced complement. The third column in |[&a® shows that in the numerical
example, the revenues will consequently be mone tivice as large as the capacity cost. The
second-best optimum with an additional zero-prafiinstraint defines the best possible
outcome for profit-exhausting auctions. The finaluenn in Table 4 shows thab drops to
0.67 (the similarity with the unpriced-substitugese in Table 3 is a coincidence). Again, the
auction Pat’ is the only auction that reproduces the secorst-lzero-profit equilibrium:
maximization ofN under a zero-profit constraint apparently agaiplies maximization of
the social surplus under that same constraint engtite inability to adjust”. The reason is
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that under zero-profit pricing the generalized @ris equal to average total cost (that is:
average user cost and per-user capital cost foifliointly; capital cost for linkJ are ignored
but are fixed anyway). Social surplus is therefgreen by consumer surplus, and this is
maximized wherN is maximized by minimizing the generalized price.

Benchmark Optimum  Second- Bid Cap Pat Second-
best best zp.
KY 3000.00 3530.77 3000.00 3000.00 3000.00 3000.00 3000.00
KT 3000.00 3530.77 3276.57 2005.84 11440.40 3816.79 3816.83
e 0.00 2.79 0.00 0.00 0.00 0.00 0.00
T 0.00 2.79 6.76 14.98 14.07 2.79 2.79
=1+ 0.00 5.58 6.76 14.98 14.07 2.79 2.79
N 5000.00 4430.50 4111.52 2516.98 2845.70 4789.46 4789.46
cV 4.05 2.57 2.87 2.01 2.10 3.70 3.70
c' 4.05 2.57 2.57 2.57 1.88 2.57 2.57
c 8.09 5.14 5.44 4.59 3.98 6.27 6.27
m -10500.00 12357.70 16318.40 30690.60% 0.00 0.00 0.00
S 36787.70 45373.40 44893.50 34834.40 8218.64 42523.50 42523.50
w 0 1 0.94 -0.23 -3.33 0.67 0.67
& 0 1 2.42 1 1 1 1

2 The figure shown in fact gives the bid. After mrakithis bid, profit will become equal to zero.
® Not relevant.
Table 4. Numerical results for an unpriced complement

The relative ranking ofBid" and ‘Cap’ has reversed compared to the unpriced-substitute
case. Bid' leads to the profit maximizing outcome and theref avoids the potentially
substantial overinvestment in linKs capacity that the revenues from implicit congast
pricing of link U allow. IndeedK" could be expanded up to more than three timeseitend-
best level without running into losses; compaag’ and ‘Second-best’ in Table 4. Because
‘Cap’ aggravates this distortion, its efficiency isaiely low.

Apart from making the compulsory purchase of thericed link part of the auction,
as for the unpriced-substitute case, a simplertisoluo the problem of over-investment
appears possible in this case, and that would bddan the bidders that they will be charged
a toll equal to the marginal external congestiost om linkU for every user passing that link.
This would take away the ‘excess profits’ and ledlve private bidders facing the same
conditions as in Section 3, meaning tHzdt' would again reproduce the optimum.

5. Towar ds gener alized networks

The results so far look promising for thieat’ auction. Given the restriction to zero-profit

configurations, Pat’ was seen to reproduce the associated second#sestprofit) outcome

in all three networks considered so far. The qoasis how general this result is. There is
reason to doubt whether it carries over to moreegdmetworks, because it is then no longer
true that the link under consideration serves alewant origin-destination pairs. The

maximization of the patronage of that link may tleract raise travel costs for OD-pairs not
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served by it, through induced congestion elsewher¢he network. This could cause a
deviation between théat’ auction and the zero-profit second-best road.

The generality of the second-best optimality of tRat’ auction can be assessed
analytically by comparing the first-order conditorfor two constrained optimization
problems, both defined for generalized networksimdietermined size and shape. The first
problem considers the second-best optimum of camsid maximization of social surplus
when the toll and capacity can be optimized on amlg single link. The other considers the
‘Pat’ auction and has the link’s flow as the objectiuveder the same constraints. If the two
Lagrangians produce optimality conditions that pwesibly mutually inconsistent, similarity
of the two equilibria can be rejected for geneedinetworks.

The Appendix to this paper solves these two Lagearsy and concludes that for both
problems the conventional investment rule applegtie link under consideration. If this rule
can be satisfied for only one unique zero-proffagzty-toll combination (which is not proven
to be true in general in the Appendix, but is shdwrbe plausible for the constant-returns
case), the sets of first-order conditions to batibfems produce the same equilibrium. At this
point, we should not jump to the conclusions tlinat Pat’ auction therefore reproduces the
second-best zero-profit outcome. It certainly midbtso, but we should not forget that the set
of first-order conditions for a Lagrangian need m@bvays define a global (constrained)
maximum. In other words, and as we shall illustrbdow, the Pat’ auction may also
produce a local but not global maximum of sociaphis only, or even a local minimum. In
both cases, the global second-best zero-profitmapti could be the corner solution in which
no capacity is supplied: it is best not to openlithieat all.

These results can be illustrated in a network #duals a second OD-pair, only using
link U, in the serial-roads network of Figure 2(b). Fegy@ shows the assumed network. The
two groups have the same destinatibmut different origingd”* and OF, where the original
OD-pair is now distinguished with superscriptand the new pair witB.

Two links, two OD-pairs

. OB .
o'm I_|n—k'l'.____l__|[1I_<_L_J _____ mD

Figure 3. A simple two-link network for studying local versus global maxima

The demand parameters were recalibrated such whiht,base capacities of 3000 for both
links, both OD-pairs have an equilibrium demandb000 and a demand elasticity of —0.35.
This was achieved by settingf' =156.8, ;" = 0.0232, J; =141.2, andd = 0.0209.

Figure 4 shows for this network the courses ofaasurplusS and patronag&l® as
functions of 7’ when capacity’ (not shown) is adjusted for eachto maintain zero profits
(SandN" are both normalized at their maximized valueschetie subscripmorm’ in the
Figure). Both curves reach their maximum at theesaofl level of 7' = 2.79, the by now
familiar level consistent with operations along thag run cost function (witt=0.25 and
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¥=3.5). The associated equilibria are then, of cquat® identical in terms of variabl&§'
(4958.3) N® (5016.6) K" (3951.4), ands.

zp A,zp
Snorm’Nnorm

0.995
0.99
0.985
0.98
0.975
0.97

Figure 4. Surplus (solid) and patronage (dashed) for zero-profit equilibria as a function of toll
(Both normalized at maximum = 1)

We can build upon this same example to illustrage the local extremum of social welfare at
the Pat outcome need not always be a globally maximizediasosurplus (given the
constraints). One possibility would be that a laoalximum of social surplus is dominated by
a global maximum at the corner solution where thk under consideration is completely
eliminated. A second possibility is that we endima local (and possibly global) minimum
social surplus. The extension we make to the pusvexample to illustrate these possibilities
is to allow the value of time for grou) not using the link under consideration, to excted

of groupA. This raises the externalities that grodwause on group. We consider three
casesvot®=vot” as in Figure 4 above (case ¥)t*=2-vot* (case 2), andot®=3-vot" (case 3).

In the latter two cases, the demand parametergréapB are adjusted so as to maintain the
same equilibrium use levels and demand elasti@isas case 1.

Zp

w
0.04
0.02 e
—
.
.

1 2 3 4 5
-0.02
-0.04

Figure5. Local vs. global maxima and minima: relative efficiency for zero-profit equilibriaasa
function of toll for vot®=vot”* (black), vot®=2-vot” (dark grey), and vot®>=3-vot™ (light grey)

Figure 5 shows for each of these cases the relaffi@ency by toll level under zero-profit
capacity setting. First of all it can be verifiewally (and was checked numerically) that
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each curve yields an extremum at the focal tokleV = 2.79, which maximizes patronage of
link T for each of these cases.

For case 17" = 2.79 is a local and a global maximum, so thatR&t auction indeed
produces the second-best zero-profit outcome.

In case 2,7 = 2.79 again entails a local maximum. However, tomgestion
externality imposed by typA-drivers upon typ& drivers has become more important. A
sufficiently large reduction i’ (to a value just below 1) brings us to a point rehiénk T is
operated so inefficiently (in terms of user cosisptapacity cost) that the social benefit of
reducing the patronage of liAkfurther, in terms of reduced externalities impogpdn group
B, outweighs the loss in benefits for the inefficigrserved groupA. This effect is strong
enough to make the highest possible surplus oecguwhen linkT is effectively shut down (a
toll level 7' = 0.733 corresponds with a zero capacity).

In case 37" = 2.79 entails a local minimum. It still maximizeatronage of link, but
this minimizes social surplus because the congestidernality imposed upon grou is
now the dominant welfare effect. In other word= finst-order conditions of the associated
Lagrangians now define a local minimum for sociaiptus versus a local maximum for
patronage.

The three cases thus illustrate the limitationsrd§ comparing first-order conditions
for Lagrangians: this may lead to a neglect of gldbonstrained) optima when these occur at
a corner of the feasible space, and may also le#ukt selection of a local minimum when a
local maximum is strived for. Both limitations maguse the success of tHeat’ auction in
achieving the second-best zero-profit outcome ¢éakdown.

A guestion that remains open for further reseasdioiwv likely such cases are to occur
in reality. Note in particular that the examplesandthe Pat’ auction does not lead to a local
and global second-best zero-profit auction all lmgocases where the link under
consideration is relatively unattractive from aiabperspective. In this respect, the examples
resemble the famous Braess (1968) paradox. Ouysisdlas shown that, provided the link is
selected carefully in the sense that its patrordamgs not produce excessive external costs
elsewhere in the network, thBdt' auction keeps its attractive properties indepenad the
shape and size of the network. As long as linkset@uctioned are selected with certain care,
the potential problems indicated need not becomafes in actual applications.

6. Conclusion

Shortage of funds for road expansion, political aoegtability of public road pricing, and
perhaps expectations of higher efficiency from giévoperations may all be factors that cause
the private provision of toll roads to become araative option to cope with growing traffic
congestion. Concessions for private road operatidhtypically be auctioned. This paper
showed that the selection criterion used in suatti@us may have a decisive impact on the
efficiency of the resulting winning bid. A maximupossible bid for the right to build and
operate the road pushes the bidders towards at-prakimizing design, which is typically
quite different from a surplus-maximizing road. Tinaximization of capacity typically leads
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to excessive capacity, in combination with a reemaximizing toll given that capacity;
both reducing surplus below achievable levels. H@rean auction that asks to maximize
patronage appeared to reproduce the first-best mabsence of network spill-overs and
under neutral-scale-economies. It results in theors#-best zero-profit configuration when
network spill-overs exist. This was shown to be tiue few simple networks, but (in the
Appendix) also to carry over to generalized networkf undetermined shape and size,
provided the external costs caused by the linkersiglsewhere on the network are not so
large that a complete shut-down of the link isdotfpreferable to any zero-profit combination
of toll and capacity.

Does the success d?at’ in the present set-up imply it is a good guidelin practice?

It is probably too early to judge. One issue to dmmsidered concerns the treatment of
heterogeneous users, with different values of tilnseems plausible that, still under a zero-
profit constraint, a maximization of unweightedalopatronage might lead to a different
outcome than the maximization of social surpluslthoagh the answer may depend on
whether differentiated congestion tolls are chargetbther issue concerns the application of
the auction in a non-stationary environment, whéadfic grows over time. A third
consideration arises under pre-existing taxationoafl users (be it fuel tax or labour tdx).
Before considering these issues, and probably atbeplications, it is dangerous to draw
any further conclusions, beyond the observationt tha choice of criterion indeed does
matter a lot for efficiency of the auction, andhgrefore important to consider, and that for
the model considered her®at’ did a very good job.

Many other important questions that need furtr@rsaeration can be identified. A
first one is whether a credible and efficient pgnalystem can be thought of that would
guarantee the winning bidder to live up to the Bidsecond one is whether a mechanism can
be developed to cope with demand uncertainty amidaenegotiation of contracts. A third
one involves extension of the current analysisitduide information and/or cost assymetries.
A fourth one involves strategic behaviour and iat¢ions during the bidding process. The list
could probably be extended easily, and illustrdabed there is still sufficient potential for
future research.
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Appendix: Similarity of first-order conditions for patronage-maximizing auctions and
second-best zer o-profit equilibria in generalized networ ks
We extend the notation from the main text as foovihere areVl markets or OD-pairs,
distinguished by indexn; there arel links or arcs, distinguished by indéxand there ar&
routes or paths, distinguished by indicesr p (when a second index is required). We use
dummiesdm (dm) to denote, when equal to 1, that rout@) serves OD-paim, andd; (d,)
to denote (also when equal to 1) that lir& part of route (o). Furthermore, a dummyg” is
used to indicate, when equal to 1, that route potentially ‘active’, meaning that in the
equilibrium considered it is among the least casites for the associated OD-pair, which
itself has a positive flow. Finally, the link undesnsideration, for which the toll and capacity
can be set, is denoted by

The second-best optimal choice for the toll andacap under a zero-profit constraint
can then be found by solving the following Lagramginote that OD-flows and link-flows
are all expressed in terms of route flows):

R

2. omN'
A= Z [D™(n)dn~ 229 ENrE:[ZleENp,K'j > co(K")

r=1 1=1

* R * * *
+/1| I:Ezél*r ENr B.I _CC,I (KI )j

r=1

+i5ﬁm' Eﬁidﬂﬁ (25 [N”, K] J_idrm Dm(fdmﬂ\l”j} (A1)

The first three main terms define the objective otial surplus. The constraints with
multipliers A" are Wardropian equilibrium conditions, which Wik invoked in the optimality
conditions below only for active routes (withi* =1). The final constraint, with multiplieﬂ'* :
gives the zero-profit condition for link. Apart from this constraint, the Lagrangian in (A.1
is similar to those considered in Verhoef (2002&ald)o studies second-best tolling on a sub-
set of links, but for given capacities. These aefitst-order conditions:
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=35, de @+ )-8, D=0 Or: 0% =1 (A.2d)
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6/1I r=1 T
while
54 =0 g deO+r')-3 8, (>0 (A.2f)
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These first-order conditions are now to be compaoethose characterizing theat auction
equilibrium, which can be derived from the Lagramgithat useN' as the objective and
otherwise has the same constraints as (1):
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The first-order conditions are:
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The two sets of equations (A.2) and (A.4) will gextly not produce the same solutions for
the Lagrangian multipliers, which might suggestfiest glance, a discrepancy between the
associated tolls and capaciti@ddowever, there is an essential similarity betwt#ensets of
equations (A.2) and (A.4). Equations (A.2c) and4@.both imply the following relation
between! and the multipliers” for the routes passing

* * R
A IN' = —Z:l:o“/* 8. O (A.5)

(N'* is a shorthand for the total link flow on litk. Equation (A.5) means that the second-
best investment rule of (A.2b) can be rewritten as:

(1_'_/]|‘ )[E— N - Eacr (m ~ acc,r*(D]j =0 (A.2b)
oK' oK'

and thePat investment of (A.4b) rule as:

/]I* I:E_ NI' E?Cl (m _ 0(:(;I (mJ =0 (A4b’)

K" K"

For both conditions (A.2b and (A.4), the term between the large brackets repeats the
conventional investment rule first encounteredqonation (4b) in the main text. Becaude
in (A.4b) reflects the marginal effect upon the optimizégeotive (N'*) from a relaxation of
the zero-profit constraini.€., from increasing the infrastructure budget), itl wipically be
positive, so that the conventional investment mutaild be optimal when the objective is to
maximize patronage under a zero-profit constrdihe intuition is as before: to maximize the
use of the link, the generalized price should beimized, which under zero-profit conditions
means that the sum of capacity and user cost bémmed. Note that no neutral-scale-
economies assumption is required for this to be &igo in generalized networks. The result
is a consequence of the assumed absence of dwsttinteractions between links, and
appeared earlier imnter alios, Arnott and Yan (2000).

More surprising, also for the second-best probieis typically optimal to apply the
conventional investment rule. Only wheh would happen to be exactly equal to —1 in the
second-best optimum would the capacity choice s@mmaterial for the value of the

19 For example, in the numerical example of Figuie the main text, the Lagrangian multipliers differvalue.

In the second-best case, we fitftl= 2628.2 andi® = 2918.7 for the two routes andB, andA™ = —-0.53006 for
the zero-profit constraint on the tolled lihkT. For patronage maximization the values dftes —31.713A° =
12.599, andl’ = 0.006396. Note that not only the values of thdtipliers but also their ratios and even sign
patterns differ between the two sets. These difiege illustrate that the similarity between theugohs for the
two Lagrangians (16) and (18) derives from the fhat (20) applies for both cases, and not fromesonplicit
equivalence between the two objectives. Note Ahathe multiplier associated with the zero-profinstaint, is
negative in the second-best equilibrium. This &ethat the second-best tall would be higher without this
zero-profit constraint (as high as= 59.7 atk" = 2472.0, with\* = 3102.0 and\® = 5675.0 in the second-best
optimum). A relaxation of the constraint (settireyenues higher than capacity cost) would therefedeice
social surplus; hence the negative multiplier. Tumslerlines that also under neutral scale econgrthieszero-
profit constraint will generally be binding wheretle is unpriced congestion elsewhere in the network
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objective that can be achieved. with continuous, the probability that this occurs (ekac
in the second-best optimum would seem to be zaeydtis no particular reason Whﬂ} =-1
should occur with a greater probability than aryeotvalue)' — and even if it does occur, the
conventional investment rule would still be optimal

What makes the conventional investment rule appt in this case? The
explanation starts with a reminder that the fingtes conditions (A.2) only define an
extremum, not necessarily a maximum. The resulttbas be interpreted as follows: when
the conventional investment rule is applied, a nmalgchange in capacity under zero-profit
tolling does not change social surplus. This resalturn, can be understood after separating
the possible effects on social surplus into two ponents: social surplus for all users passing
the link considered (including the link’s capaattyst), and social surplus for all other users.
When the conventional investment rule is appliéd, first component is maximized, for the
same reason as given for the simpler networks deresil earlier. The rule minimizes the total
cost and the generalized price for this first groaupd therefore maximizes their benefits. The
first surplus component, involving all users of timk, is therefore insensitive with respect to
small changes in capacity when the conventiona¢stment rule is applied. But also the
second surplus component, involving all other ugsrmsensitive. These other users can only
be affected through congestion effects, which waddur when a small change in capacity of
the link would lead to a small change in patrond&t because patronage is maximized at
this capacity (because zero-profit tolling appkesl implies that minimization of total costs
on the link leads to minimization of the generalizgice), no such indirect effects on surplus
for other users will occur. Therefore, applicationthe conventional investment rule under
zero-profit pricing leads to an extremum in sosiatplus. Whether it is always a maximum
still needs to be determined, but if there is arerior maximum, it requires use of the
conventional investment rule unleds= -1 would happen to apply.

In both cases (A.2pand (A.4b), therefore, the road operator will expand cayamit
the link under control up to that point where, givbat zero-profit tolling applies, the direct
marginal benefit of capacity expansion (on linkitself) equals the marginal cost. If this
equality occurs on one unique point along the &rgero-profit contour in thi-7 space (such
as shown in the right panel of Figure 2), the twaikbria must entail the same combination
of K" and 7' . Whether this would be the case in general issoat, as this may depend on
the specific assumptions on the cost functionsdad use and capacity provision. But for the
constant returns-to-scale case, uniqueness offasdiizn of (A.2b) and (A.4b) along the
zero-profit contour is easily established undeather mild additional assumption. First note
that when increasing along the zero-profit contour in the left panélFigure 2, the ratio

1 Also note that the interpretation af =—1 makes it unlikely to be true in a second-bgsinmum: it would
mean that a marginal increase in the capacity kduftgethe link under consideration, above the zerafit
budget, would lead to an equally large loss ina@asirplus. This appears unlikely to be the casthéndirect
vicinity of the second-best optimum when the road sach is desirable. The equilibrium values of the
Lagrangian multipliers associated with the zerdipiaonstraint for the thregot's considered in Figure 5 are -
0.53 in case 1, -0.80 in case 2, and -1.06 in 8askhis is consistent with the hypothesis that quilérium
value exactly equal to —1 is unlikely to occur iglabal second-best zero-profit optimum.
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N/K on the link is gradually decreasing (superscriptsare dropped for convenience):
otherwise the toll could not rise while keepingfjisoconstant at zertf. Because the marginal
cost for capacityCy is now constant, uniqueness of satisfaction-® [¢, =C; along the
zero-profit contour is guaranteed if the left-haside is monotonously decreasing along the
zero-profit contour when moving in the direction af increasing For this, in turn, to be
true, it is more than sufficient to assume tt&t0: the derivative of the user cost function
with respect to the ratioN/K is not falling in that ratio. We can then write
- N[&, =dc/d(N/K)IN?/K?), which clearly increases WK and hence decreases when
moving along the zero-profit contour in the direatiof increasing.

In conclusion, the conventional investment rul@legs both for an interior second-
best optimum under a zero-profit constraint, andnfi@aximizing patronage under the same
constraint. If this rule can be satisfied for onlye unique zero-profit capacity (which was not
proven to be true in general but was shown to bagible for the constant-returns case), the
sets of first-order conditions (A.2) and (A.4) puoce the same equilibrium. Provided
equations (A.2) correspond to an interior maximtima, second-best optimality under a zero-
profit constraint ofPat found for simple networks in Section 4 would thedeed carry over
to generalized networks. This does not require #ggilibrium values of individual
Lagrangian multipliers to be equal in the two ojitiation problems, as can be verified when
comparing conditions (A.2a) and (A.4a), and as lse saw in the numerical example below.

12 This would be true for any not perfectly elastezided demand for the use of the link, regardldsshether it
would produce a backward-bending zero-profit contmishown in Figure 2, a rising one, or a fallmg.



