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Abstract

This paper aims to clarify urban development potentiality in terms of the total number of trips generated, which can be taken as a control indicator for the authorities to plan urban transport and environment development. Under the constraints of environment regulations, CO2 emissions should not exceed a given cap for transport networks, namely road traffic network environment capacity. 

In order to examine the maximum possible increase in the total trips generated in association with urban economic activities, a bi-level optimization model is proposed. And the model is verified on a transport test-network. 
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1. Background and Introduction

Rapid motorization in developing countries has promoted economic and urban growth, and at the same time brought some urban problems, such as adverse effects of emissions from various vehicles.　It is reported that vehicles are responsible for 90% of the CO, 50% of the NOx and 25% of the CO2 generated worldwide (Button, K. 1990). And it is estimated that in developing countries, CO2 from the transport sector will more than double in the next two decades by an increase rate of 3.5% per year (World Energy Outlook, 2002). 

The impact of CO2 goes beyond country boundaries. Some measures of reducing CO2 at the urban level must be implemented in developing countries. The transport sector in developing countries has been recognized as a rapidly increasing emission source of CO2, the main greenhouse gases emissions from transport. Countries like China and India have increasingly significant levels of CO2 emissions. Since urban transport environment load is mainly affected by the number of trip by individual of vehicles, which use fossil fuels, reducing transport activities is seen to be an efficient way to lessen the environmental burden. 

For the long term consequence, the challenge for developing countries where highly economic growth stimulates motorization and urban spread is to reduce emissions. Air pollutants like NOx and CO generally can be reduced through tailpipe technology. However, a more effective emissions reduction is in limiting the number of individual vehicle use, especially for reducing CO2 emissions. Alternately, curbing motorization has its problems. It is not fair to restrict people from having vehicles, if not impossible. In order to develop a sustainable transport system at the urban level, it is important to probe for a way which allows motorization to grow under the conditions of minimizing negative environmental and social impacts of motorization through utilizing an integrated approach of transport, land use, and equity.

A series of interrelated policies and ideas employed in developed countries, including Compact City, Smart Growth, and Transit-Oriented Development (TOD), can provide implementation experiences for developing countries. These policies share the same desire of making an environmental friendly transport system to use land resources more efficiently, reduce private vehicle trips, promote non-motorized travel, and increase transit ridership. It is worthwhile to note that regardless of whether the country is developed or developing, there is a favorable way on which trips generated by the economic activities are satisfied as much as possible. While trying to minimize the load on the transport environment, it seems favorable to allow, up to a critical point, a maximum number of trips between origin and destination. This number can be taken as a control indicator for the authorities or decision makers on planning sustainable urban transport.

On the Kyoto Protocol framework, only developed countries have the commitments of reducing greenhouse gas emissions. Without developing country compliance, the goals of the Kyoto Protocol can hardly be met. Therefore, it is acceptable to assume that every city and every sector has corresponding maximum greenhouse emissions indicators for reaching their respective targets. 

It is valuable to predict how much can be accommodated by the urban road transport network while implementing environment capacity constraints. This task would provide useful information to authorities for establishing efficient measures and policies for transport and land use, especially for developing countries, where rapid traffic growth would end with a series of urban problem, if left without ready preparations.  

This paper aims to examine urban development potentials in terms of optimum number of trips generated between origin and destination to regulate CO2 emissions on traffic networks. It is known that travel and location patterns are directly related to regional socio-economic characteristics and land use patterns. Therefore, in order to speculate a maximum possible number of home-to-work trips, a bi-level optimization model which integrates transport, land use, and the environment is proposed. An algorithm for solving the optimization problems is showed based on the existing research. Finally, the model is verified on a test network which tries to simulate a developing city in a developing country.

The paper is organized as follows. In section 1 background and introduction are given, in section 2 related literature review is addressed and the proposed model is extracted, in section 3 the proposed model is formulated with necessary explanations, in section 4 an algorithm is expressed, in section 5 the proposed model is verified on a Sioux Falls test network with four different scenarios, and in section 6 the result of model test is explained, and finally in section 7 conclusion and further studies are presented. 

2. Literature Reviews

Bi-level programming is a branch of multi-level programming which reflects synchronically associated decision making behaviors between upper level and lower levels. It has a hierarchical structure in which upper-level and lower-level decision makers must select their strategies so as to optimize their respective objective functions. In recent years there has been increasing interest in employing bi-level programming for handling effective transport planning. 

In fact, many transport problems can be explained through bi-level programming in which the upper-level—the leaders, the traffic planners, system managers, land use planners, administrators—make decisions regarding management, control, design, and improvement on the performance of the system. In certain conformity with these upper-level decisions, individual network users, at the lower level, make choices in terms of route, travel mode, origin, and destination of their travel. In addition, the administrators on the upper-level can influence, but not control, the lower-level user’s route, mode, and location choices. 

There have been several studies which applied bi-level programming to urban traffic problems, such as traffic restraint, road pricing, traffic control, and network design in terms of traffic signal setting and network capacity constraints. For example, Abdulaal, M. and Le Blank, J.L. (1979), and Marcotte, P. (1986) formed equilibrium network designs through bi-level programming, and examined the optimal cost of road capacity improvement through continuous equilibrium network design models which applied a Hook-Jeeves heuristic algorithm. Asakura, Y. and Kashiwadani, M. (1993) developed a bi-level model which aimed to examine a maximum traffic flow loaded to the network under the network link capacity constraint, and used a solution with the traffic assignment terminating at an OD travel time of infinity. Yang, H. and Yagar, S. (1994) presented a traffic assignment and traffic control solution, representing the upper-level problem of determining ramp metering rates. To optimize the system performance they took into account the behavior of drivers’ route choice in the lower level, traffic equilibrium model, involving explicit ramp queuing. Yang, H. and Bell, M.G.H. (1996) examined optimization of road toll to restrain traffic demand to within a desirable level. They substituted the queuing delay with an equivalent amount of toll on the elastic demand network equilibrium associated with link capacity constraints, and defined link capacity in physical and environmental terms. Tam, M.L. and Lam, W.H.K. (2000) examined future maximum zonal car ownership that generated road traffic at network capacity and with parking space constraints, by formulating the lower level model as an equilibrium of combined trip distribution and assignment. Yang, H. and Bell, M.G.H. (2000) presented a bi-level model that integrated land use and network capacity constraint for examining maximum trip generation, and explained flexibility of network capacity as a treatment of the physical, environmental, and economical conditions. Meng, Q. and Yang, H. (2000) combined land use and transport with a bi-level model. For finding future zonal maximum trips under the physical capacity of the network, they used the Lowry type land use model for supply and provided a simple heuristic algorithm for optimal solution. They represented the lower-level model as equilibrium of the combined distribution and assignment, and verified the model on the Sioux Falls test network. 

Regarding the algorithms for bi-level models applied in the transport sector, bi-level programming has been recognized as having problems due to the complexity of model formulation. That is, even if the optimum is obtained, there is no sure way of certifying whether or not the solution is the global optimum attributing to the nonconvexity found in bi-level programming (Suh, S. and Kim, T.J. 1992; Yang, H. and Bell, W.G.H. 1998). And, there are varieties of algorithms developed by large number of researchers. For example, Suwansirikul C., Friesz, T.L. and Tobin, R.L. (1987) developed a heuristic method known as the equilibrium decomposed optimization algorithm by approximating the derivative of the objective function in the upper-level. Tobin and Friesz, (1988) first applied the sensitivity analysis method of variational inequalities for urban networks, and proved the consistency between the results from restricted equilibrium methods and original problems, which provided a base for the use of bi-level programming. Yang, H. (1997) proposed a sensitivity analysis based on elastic demand network equilibrium in which used the derivative of user equilibrium link flow with respect to change in capacity. 

In this paper, we follow the research done by Meng, Q. and Yang, H. (2000) and extend their model for our attempt to determine the maximum number of trips generated by future economic activities that can be accommodated under the constraints of the road transport CO2 emissions capacity. Here, we treat network capacity as a CO2 emissions capacity, and extend the lower-level to an equilibrium model which combines users route, mode, and location choices in one objective function. The modal split combination in the lower-level model can contribute to examining the effects of public transport to the zonal trip generation. Also, we controlled for rate of zonal car ownership in the lower-level modal split model to address the fact that in developing countries, private vehicles owners, in most cases, use private vehicles for their trips, even though the cost for public transport is significantly cheaper. 

3. Model Consideration 

3.1Road Transport Environment Capacity

Michael J. (June 1997) characterized environment capacity in the following way.

The environment capacity is the property of the natural environment. If environment has certain physical features which are determined when environmental change is unacceptable or unsustainable…
 Environment capacity is concerned with the maximum permissible level of development within the limits of the environment. If environment capacity is taken seriously and assessed carefully, it will generate specific and quantifiable constraints in the volume and location of development. However, determining environment capacity is not an easy task. A broadly accepted view on environment capacity is a determination based on political judgment and social values. And these judgments have been emerged in the wide range of goals, standards, and designations that are set down either in legislation or in policy. Any policy reflects the government view that its targets can be used as a proxy for environment capacity.
Based on the Kyoto Protocol, the CO2 emissions from developed countries are bound to be reduced by certain rates during the first commitment period (2008-2012). It is expected that in the post Kyoto Protocol, there will be CO2 emission constraints for developing countries, like China and India, where the increasing energy consumption with rapid economic growth generates huge amounts of CO2 emissions. Such levels would make the efforts of developed countries on mitigating global warming meaningless because of the fact we mentioned previously that global warming is a global issue, and the effects of CO2 emissions follows no country boundaries. Also, many researches have insisted on the importance of setting an emission threshold for the transport sector emission load to establish environmentally friendly transport systems. Therefore, it is worthwhile to discuss the environment capacity for the transport sector. 

The transport environment capacity is the environment capacity assigned for transport system. And two types of transport environment capacity are classified. The one is transport environment pollution capacity, which is the maximum amount of pollutants allowed in the environment capacity. The other one is transport environment resource capacity, which means the maximum amount of infrastructure resources provided by a region or city for transport system, such as the ratio of land and energy use, and so on. 

In this paper, urban transport environment capacity is specified as road transport CO2 emission capacity and environmental sustainability here also is specified to refer mitigating global warming. And the Kyoto Protocol can provide institutional and practical promises to decide an urban CO2 emission capacity. In this paper, how to decide the urban environment capacity is not our main purpose. We assume that there is an urban CO2 emission capacity and corresponding CO2 emission weight for road transport.

There were much research related to deciding road transport emission load in terms of traffic flow, vehicle kilometers of travel (VKT) and urban road conditions factors. From those researches for reference, we introduce a generalized urban vehicle emission model to decide CO2 emission capacity. The model was proposed by Lyons, T. J. (2003) and explained as below.
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The model uses 
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as a surrogate for vehicular emissions from a strong relationship between 
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and urbanized area, determined through analyzing the data from cities across the world. The model provides a simple and transparent method for deciding CO2 capacity through readily available data like vehicle ownership growth, urban land use growth rates, and so on. 

3.2 Model Structure

3.2.1 Upper-level problem
The Lowry-type spatial interaction land use model enables us to distribute total trips for each zone. The conventional Lowry type spatial interaction model considers three land use groups: basic employment, service employment and household sector. Consistent with existing research, we considered two land use groups, employment and residential. Though, the kind of special interaction models has been seen to ineptly address the unique characteristics of location and decision making process due to their deterministic and aggregate structure. However, they have duel advantages of being conceptually simple but comprehensive.

The model formulations are shown as below. 

Maximize
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referring to the maximum amount of vacant land or development that is suitable for residential use, and maximum number of job opportunities, parking capacity, and leisure facilities, respectively.

The upper-level model may be described as two aspects. First, travel choice was determined by location choices resulting from zonal land use opportunities and zone-to-zone accessibility, and location choices made by considering the quality of residence, which was determined by residential and employment zonal attractiveness. Second, trip distribution is directly linked to both the residential and employment locations, as well as to the impedance of the transport networks.

3.2.2 Lower Level Problem

In order to obtain cross zonal travel activities that satisfy user needs for choice of residential and employment location, a combined user equilibrium model, which combined trip distribution, model split and, trip assignment (Abrahamsson, T. and Lundqvist, L. 1999), was proposed for the lower-level which reflects the users’ behavior resulting from maximizing location utility and minimizing travel cost.

The zonal trip production and attraction corresponding to the total trips generated by urban economic activities can be obtained from the upper-level. The output will be treated as input to the lower-level model, then distributed to each zone, loaded into each mode, and assigned to each link through the lower-level model.  

The mathematical equivalent of the lower-level model, and the user equilibrium conditions of the relationship between link flow and path flow, as well as the relationship between path, and OD flow on the road network, are defined as follows. 
Minimize

[image: image36.wmf] 

]

ln

[

1

)

ln

(

1

)

(

)

(

\

\

2

\

1

0

1

1

å

å

å

å

å

å

å

å

ò

Î

Î

Î

Î

Î

Î

Î

Î

+

+

+

I

i

J

j

M

m

ij

m

ij

m

ij

I

i

J

j

ij

ij

I

i

J

j

i

m

ij

ij

m

ij

a

A

a

x

a

P

P

t

t

t

u

P

t

d

x

u

a

q

q

w

            (8) Subject to


[image: image37.wmf]I

i

k

O

t

I

i

i

ij

Î

=

å

Î

      

,

                                               (9) 
[image: image38.wmf]J

j

k

D

t

J

j

j

ij

Î

=

å

Î

   

,

                                               (10) 
[image: image39.wmf]å

Î

=

R

r

ij

r

ij

t

f

1

,

                                                     (11) 
[image: image40.wmf]R

r

A

a

f

x

ar

R

r

r

ij

a

Î

Î

=

å

Î

 

,

   

,

d

                                        (12) 
[image: image41.wmf]R

r

J

j

I

i

f

t

r

ij

ij

Î

Î

Î

>

>

,

,

   

0

   

,

0

                                    (13) 
[image: image42.wmf]å

Î

Î

Î

=

M

m

ij

m

J

j

I

i

P

,

      

,

1

\
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                         (21) The following emission model (Suzuki, T. 2002), is applied for the calculation of network CO2 emission.
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The proposed land use and transport integrated bi-level model promises to examine the maximum number of trips restricted by both land use and CO2 emission. It included a model split, taking into account the effect of public transport. 

4. Model Algorithm
Meng, Q. and Yang, H. (2000) reported a simple heuristic algorithm to solve the bi-level type model proposed above. This paper follows the algorithm they used, and the algorithm is explained as below.
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Solve combined network equilibrium through a partial linearization algorithm to get link and path flow for both modes, then obtain
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5. Model Test
The model is tested on the Sioux Falls network, which is shown in figure 1. The network consists of 24 nodes and 76 links; each node stands for both an origin (residence) and destination (employment) zone. We assume that the test network simulates a developing city. The model requires that network flow associated with current transport demand is below a network physical capacity, and keeps open the potential land use for further urbanization. We applied the Bureau of Public Roads (BPR) link performance function with respective values of 
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,

at 0.15 and 4.00. The general costs for buses and cars were based on the average value of time (VOT) in Chinese cities. In addition, taking into account the frequent stops made by buses, and the fondness that people have for owning cars, we treated general cost for buses as twice as that as for cars. Table 1 shows the data for test network. 
The CO2 emission capacity for road transport is assumed to be 3000 tons per hour and the model was tested in four different scenarios. Scenario one had cars only, with the values for
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and 
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at both 10. Scenario two had cars and buses coexisting, with 30% car ownership, the same values for
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and 
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as before. Also it is assumed that there is fixed number of buses and that enough for future traffic demand. Scenario three had the same conditions as those of scenario two, except that the values for
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and 
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 were varying combinations between either 10 or 15. Scenario four was the same as scenario two, except with the car ownership at 35%. 
6. Results

The result of scenario one showed that the total trips numbered 51,520. Figure 2 shows the trips generated from and attracted to each zone in morning rush hour.
In scenario two, total trips generated 73,984. This result implies that public transport existence provided more trips for people under the same environment constraint. Figure 3 and 4 show the results of scenario two and comparison of result between scenario one and two, respectively.
In the case of scenario three, simply by increasing
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from 10 to 15 decreased the number of total trips slightly, while simply increasing 
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q

from 10 to 15 increased the total trips significantly. Simultaneous increasing
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and 
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from 10 to 15 slightly increased the total trips. This result is consistent with the research of Meng, Q. and Yang, H. (2000), where the effect of 
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on the total trip generation is more significant than that of
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. However, the effect of an increase on 
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 on the total trips was reversed, resulting in a slight decrease, which in this case was contrary to the findings of Meng, Q. and Yang, H. (2000). The figure 5 shows the result of scenario three.

In scenario four, by increasing car ownership from 30% to 35%, the number of total trips decreased. It is obvious that the more people use cars, the fewer total trips obtained due to per person CO2 emission from car is higher than that of bus, the more are used the more CO2 emission will give generate. The result of scenario four is shown in figure 6.

7 Conclusion 
The proposed combined transport and land use model was tested on test-network; the result of numerical tests showed the obvious effects of public transport on yielding more urban development potential in terms of total number of trips generated from urban economic activities, under land use and environmental constraints. The result further made clear the key issues in sustainable urban transport that focuses on moving people rather than moving vehicles around cities. Public transport can provide more access for people doing their activities, and saves valuable space and energy compared to private transport.

Parameters sensitive to the total trip generation was seen to be a remedy on practical application of the model. However, concerning CO2 emissions from road transport, all modes of vehicles on the network must be taken into consideration. And how to define the attractiveness of residential and employment zones is a key issue. This model showed the bigger the value of residential and employment attractiveness, the more trips generated from and attracted to corresponding zones.
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Figure 1.Sioux Falls test network
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Figure 2. Trips in each zone in scenario one
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Figure 3. Trips in each zone in scenario two
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Figure 4. The comparison of scenario one and two
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Figure 5. The result of scenario three


Figure 6. The comparison of number of total trips between scenarios
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