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Abstract: This paper investigates rivalry between congestible facilities and its effects on facility charges, capacities and congestion delays. By incorporating the downstream carriers into the analysis, we find that: (i) the duopoly facilities have lower prices than the monopolist, but they offer lower service quality only if capacity decisions are made prior to facility price decisions. When the capacity and price decisions are made simultaneously, the duopolists will provide the same service quality as the monopolist. (ii) Conditional on facility charges, the monopolist will have the same capacity investment rules as the central planner if and only if the downstream carrier markets are perfectly competitive at both facilities. If there is one carrier market that is imperfectly competitive, the monopoly capacity rules will be different from the socially optimal capacity rules. (iii) The monopolist will offer the same service quality at a facility as the central planner if the carrier market is perfectly competitive; otherwise, the monopolist offers a higher service level than the central planner. We also find that for given capacities, (a) the duopolists’ equilibrium prices increase with the time costs of either consumers or carriers, (b) entrance of a new carrier to any of the facilities depresses the prices charged by both facilities, and (c) lower marginal cost of the carriers at one facility induces a higher price at that facility but a lower price at the other facility.
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1. INTRODUCTION
This paper investigates the rivalry between two congestible facilities –such as airports and seaports– and its effect on facility charges, capacities and congestion delays. A number of authors have studied duopolistic interactions between congestible facilities: Braid (1986) and Van Dender (2005) examined competition between fixed-capacity facilities, whereas De Palma and Leruth (1989), Baake and Mitusch (2004) and De Borger and Van Dender (2006) examined the rivalry between facilities that are able to adjust capacities. All of these studies have considered the facilities as service providers to final consumers. In particular, De Borger and Van Dender (2006), hereafter DBVD, studied duopolistic interaction between congestible facilities that first decide on capacities and then on prices. They found, among other results, that (i) the duopolists offer lower prices but longer congestion delays –i.e., lower service quality– than the monopolist; (ii) conditional on facility charges, the monopolist has the same rules for capacity investment as a central planner who maximizes social welfare; and (iii) the monopolist offers the same service quality as in the social optimum. 
DBVD indicated that their analysis may apply to seaports, airports, internet access providers and roads. Whilst roads and internet access providers may provide services directly to final consumers, seaports and airports are input providers that reach final consumers only through carriers: these facilities are in an intermediate market and not in the final market. In this paper we extend the existing literature, especially the analysis of DBVD, by considering a ‘vertical structure’ setting: Each facility is an upstream firm that provides input service to downstream firms (‘carriers’ hereafter), which in turn produce output for final consumers.
 We shall allow that these carriers may possess market power in the output market: as argued by Brueckner (2002), Pels and Verhoef (2004) and others, airlines at congested airports usually are not atomistic and hence they are not price-takers. 
We find that (i) the duopoly facilities have lower prices than the monopolist (as in DBVD), but they offer lower service quality only if the facilities first decide on capacities and then on prices. When the capacity and price decisions are made simultaneously, the duopolists will provide the same service quality as the monopolist. (ii) Conditional on facility charges, the monopolist will have the same capacity investment rules as the central planner if and only if the downstream carrier markets are perfectly competitive at both facilities. If there is (at least) one downstream market that is imperfectly competitive, the monopoly capacity rules will be different from the socially optimal capacity rules. (iii) The monopolist will offer the same service quality at a facility as the central planner if the carrier market at that facility is perfectly competitive; otherwise, the monopolist provides a higher service level than the central planner. 

Importantly, since we have explicitly considered the carriers’ market, this allows us to see how the equilibrium prices change with characteristics of this intermediate market. We find that for given capacities, (a) the duopolists’ equilibrium prices increase with both the consumers’ value of time and the carriers’ cost sensitivity to delays, (b) entrance of a new carrier to any of the facilities depresses the prices charged by both facilities, and (c) lower marginal cost of the carriers at one facility induces a higher price at that facility but a lower price at the other facility. 
Several recent papers have incorporated the ‘vertical structure’ into the analysis of airport congestion, congestion pricing and capacity investment. These papers examine either the case of a single airport (e.g., Brueckner, 2002; Zhang and Zhang, 2006) or the case of non-competing airports. For the latter, Pels and Verhoef (2004), Brueckner (2005) and Basso (2005) considered multiple airports but these airports are complementary to each other: passengers travel from one airport to another (and back) so the airports produce complements, not substitutes; moreover, only Basso (2005) looked at the case of profit-maximizing airports. In general, very few papers in the airport literature have examined the case of competing airports analytically.
 This is understandable given the local monopoly nature of an airport. The situation is changing, however. The world has experienced a rapid growth in air transport demand since the 1970s, and many airports have been built or expanded as a result. This has led to a number of multi-airport regions such as greater London and the San Francisco Bay Area, within which airports may compete for air travelers.
 At the same time, the dramatic growth of low cost carriers (e.g., Southwest Airlines and Jet Blue in the United States) has enabled some smaller and peripheral airports to cut into the catchment areas of large airports. Taken together, these two developments have significantly increased the degree of competition between certain airports. Furthermore, airports susceptible to competition are usually prime candidates for congestion. In the U.S., for example, the three multi-airport markets –Chicago, New York, and Washington metropolitan areas– contain the four airports that are officially designated by the Federal Aviation Administration (FAA) as ‘slot controlled.’ The description also applies to several of the 23 airports identified by the FAA as ‘delay-problem airports’ –these airports are in the metropolitan areas containing one or more other airports with airline service (e.g., Dallas, Detroit, Huston, Los Angeles, and San Francisco). In this context, our paper intends to extend the recent airport congestion pricing literature that incorporates the vertical airport-airline structure to an environment of competing airports, and compare the results with those of the single-airport case. The competing-facilities case is also highly relevant in the study of ports, as there are many multi-seaport regions around the world. 

The paper is organized as follows. Section 2 sets up the model. Section 3 examines rivalry between the two facilities, each of which chooses its capacity and price to maximize profit. Section 4 investigates the monopoly case and the social optimum, and compares them with the duopoly case. Section 5 contains concluding remarks.

2. THE MODEL

We consider an infinite linear city, where potential consumers are distributed uniformly with a density of one consumer per unit of length. There are two congestible facilities located at 0 and 1 with, respectively, N0 and N1 carriers offering services. The locations of the facilities, the number of carriers and the facility from which they produce are exogenous. At each facility, carriers are ex-ante symmetric and offer a homogenous good/service, which is to be referred to as a ‘product’ hereafter. We will use the term ‘fare’ to indicate the price of the final product, reserving the terms ‘price’ and ‘charge’ for the facilities’ price. Given the homogeneity and symmetry, the fare at a given facility will, in equilibrium, be the same for every carrier.

The vertical structure of facility-carrier behavior is represented by a multistage game: (i) the facilities choose their capacities and prices for the input to be used by carriers; (ii) given the facilities’ decisions, carriers compete with one another in the output market; and (iii) final consumers decide whether to consume the product and if so, which facility to go.

We investigate the subgame perfect Nash equilibrium of this facility-rivalry game. For this purpose, we first specify and solve the consumers’ problem. Potential consumers have unit demands for the product, and they care for its ‘full fare’. The full fare faced by a consumer located at 
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where 
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 is the (equilibrium) fare at facility 0, 
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 is the consumers’ value of time, and D is the congestion delay time which depends on total carriers’ production at the facility, 
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. Further, t/4 is a parameter capturing consumers’ transportation cost, and t is assumed to be positive.
 Thus the full fare is the sum of fare, facility congestion cost, and travel cost to the facility. If the product is consumed, the consumer derives a net benefit (utility): 
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with V denoting a gross benefit. Similarly, if the consumer goes to facility 1, then she derives a net benefit:
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This is an ‘address model’ with positive linear transportation costs, and the differentiation of the two facilities is captured by consumer transportation cost. Within a multi-airport region, for example, passengers may not necessarily choose an airport with cheaper fare, but may go to an airport that is nearer and has shorter total travel time. Indeed, total travel time has been shown empirically to be one of the main determinants of airport choice (e.g., Pels, et al., 2001; Ishii, et al., 2005; Fournier, et al., 2006).
 

Assuming that everyone in the [0,1] interval consumes and both facilities receive consumers from [0,1],
 then the indifferent consumer 
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Thus, the number of [0,1] consumers going to facility 0 (rather than facility 1) increases in 
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. Since with positive t, facility 0 also captures the consumers at its immediate left side, define 
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 as the last consumer on the left side of the city, who consumes and goes to facility 0. Similarly, define 
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 as the last consumer on the right side of the city, who consumes and goes to facility 1. With the uniformity and unit density of consumers, 
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These points, along with 
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, also define the catchment areas of each facility as shown in Figure 1. 

*** Insert Figure 1 about here ***

Hence, the consumer demands are given by 
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 from (1) and z l, z r from (2) then yields:
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where 
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. It is clear that the consumer demands depend not only on the fares, but also on the delays at the two facilities. Notice that in order to have both facilities receiving consumers from [0,1] we need 
[image: image26.wmf]4

/

0

0

1

1

t

D

f

D

f

<

-

-

+

a

a

, whereas in order to have everyone in the [0,1] interval consuming, we need 
[image: image27.wmf])

4

/

(

2

0

0

1

1

t

D

f

D

f

V

+

+

+

+

³

a

a

, both of which are our maintained assumptions.

In the output market we assume Cournot behavior in modeling carrier competition.
 Inverting the demand system (3) in 
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, we obtain the inverse demand functions faced by carriers at each facility:
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Thus, in the output market, although any given carrier faces direct competition from the other carries at the same facility, it would also take into account what happens at the other facility: the demands depend on both Q0 and Q1. From (4) it may also seem that carriers would care about the congestion only at their own facility, but this is not the case. Recall that in the direct demand system (3), the demands depend on the delays at both facilities.

Since we consider ex-ante symmetric carriers at each facility, the cost function of carrier i at facility h is given by:
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where ch is the (constant) marginal operating cost, Ph is the facility charge (an input price), and (h is the (positive) delay cost parameter for carriers at facility h. Thus, congestion at a facility affects not only its final consumers as discussed above, but its carriers as well. Further, the cost function 
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. It does not depend on the output of carriers at the other facility, however. 

Having specified demand and cost functions, we now turn to the delay function. We shall use the same delay function as the one in De Borger and Van Dender (2006):
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where a is a positive parameter. This function enhances comparability of our results with those of DBVD; it also makes the analytical work feasible. Use of this linear delay function may nevertheless lead to the problem of the first-order condition approach prescribing a solution in which capacity is exceeded, something that does not happen when delay functions are convex enough (e.g., when 
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, delays approach infinity when output approaches capacity). There are two ways around this problem: (i) we can assume an interior solution and later find conditions for this to be true; or (ii) we can impose a priori a capacity-rationing rule for the case in which capacity is reached. In this paper we shall take the first approach.

With these specifications, the profit for carrier i at facility 0 is:
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and the carrier profits at facility 1 can be similarly written. As can be seen from (7), these profit functions depend on the outputs of carriers at both facilities.
 The Cournot equilibrium is characterized by first-order conditions, 
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(8)

Solving (8) we can obtain the derived demands for the two facilities. Specifically, the derived demand for facility 0 is:
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where 
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The expressions for facility 1 are analogous.
 Thus, the demands faced by the facilities depend directly on facility prices and capacities: they are linear in P0, P1, but non-linear in K0, K1. Notice that g0 consists of two parts: the first part is related to transportation cost t (which leads to the two facilities being differentiated), and the second part is related to K0. The term also depends on the carrier market structure: g0 is largest with a monopoly carrier (
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Taking the perspective of facility 0, we can characterize the facility demands through the following comparative statics:
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All the signs in (11)-(14) are as expected: e.g., inequality (11) is equivalent to the demand functions being downward sloping, whereas (12) shows that the facilities are ‘gross’ substitutes. The effects of carriers’ marginal costs on the facility demands are the same as those of prices; after all, for the carriers, the facility charge is part of its marginal cost. Further, (13) and (14) indicate that the demand for a facility increases in own capacity, but decreases in the rival’s capacity. Moreover, a facility’s demand rises the greater the number of carriers it has, and the less its carriers care about congestion (i.e., the lower the value 
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 is). Its demand also rises the fewer carriers there are at the other facility, and the more they care about congestion. These comparative-static results are sensible, and will be used in our subsequent analysis.
3. EQUILIBRIA OF DUOPOLY FACILITIES
Having characterized the output-market equilibrium and the facilities’ demands, we now analyze the facility market. This section investigates rivalry between the two facilities, each of which chooses its capacity and price to maximize own profit. Following DBVD we shall, initially, investigate a closed-loop game in which capacities are chosen prior to prices. We later compare this case with an open-loop game in which capacities and prices are decided simultaneously or, alternatively, to a game in which decisions are indeed sequential but the capacity decision is not observable by the rival.

Assume that the facilities’ operational and capacity costs are separable and their marginal costs are constant. Without loss of generality we further set the operational marginal costs to zero, so the profit of facility h can be written as:
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where 
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 denotes the marginal cost of capacity.

3.1 Closed-loop Duopoly 

Pricing Stage
The closed-loop game is solved by backward induction, that is, price rivalry is analyzed first. Specifically, given capacities 
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 to maximize profit (16). After taking the carriers’ competition into account (e.g., equation (11)), the first-order conditions lead to the following pricing rules: 
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Using (6) and (10) these pricing rules can be further written as, for facility 0:

[image: image64.wmf])

/

(

)

1

(

3

)

1

(

)

(

1

2

0

0

0

0

0

0

0

g

t

Q

s

tQ

s

D

P

-

+

+

+

+

=

b

a

                                      (18)
where 
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 is a carrier’s market share at facility 0. The first term on the RHS of equation (18) is a congestion toll. But note that here, the duopoly facilities charge more than just the pure un-internalized congestion of each carrier, which would have been factored by 
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 The second term in (18) is a mark-up from the exploitation of market power that arises from the locational preferences of consumers and travelling cost (positive t). The third term is a mark-down, owing to facility competition: As the other facility becomes more attractive –i.e., as K1 rises and hence 
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 falls– the mark-down for facility 0 increases, reducing its price.
 

Each pricing rule in (18) implicitly defines a ‘best reply’ function and the pricing equilibrium, denoted 
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that is, own-price effects on facility demand dominate cross-price effects. This condition is equivalent to the stability condition for 
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 and, together with downward-sloping demands (11), further implies the uniqueness of 
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 (see, e.g., Dixit, 1986). The uniqueness and stability of 
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 then allows us to conduct the comparative statics; the results are reported in Proposition 1.

Proposition 1: In a closed-loop duopoly,

(i) 
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, i.e., higher capacities imply smaller equilibrium prices;

(ii) For given capacities, (a) the (equilibrium) prices increase with the time costs –either consumers’ cost (() or carriers’ cost (
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), (b) entrance of a new carrier to any of the facilities depresses the prices charged by both facilities, and (c) lower marginal cost of the carriers at one facility induces a higher price at that facility but a lower price at the other facility.
Proof.  See the Appendix.   

One implication of Proposition 1 (i) is that the more congestible the system is, the higher the equilibrium prices are. This result was also found in the non-vertical setting of DBVD, which is not surprising because our derived demands for the facilities react to changes in prices and capacities in the same fashion as the demands they assumed in their final market. Another interesting result is that 
[image: image80.wmf]0

/

*

0

>

¶

¶

a

P

 –part (a) of (ii). From (15), higher time value 
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 will, in a fully symmetric case with respect to both facilities and carriers, reduce the demands for both facilities. However, the demand for a facility may increase with ( in asymmetric cases.
 Despite that the demand for a facility may increase or decrease in (, the equilibrium prices will always increase in (. Just as a more congestible system leads to higher facility prices, a higher consumer time cost also induces higher facility prices.

But perhaps more interesting results from Proposition 1 pertain to the price effects of changes in characteristics of the downstream market such as variables (h, Nh or ch, as this is our main departure from the literature. In particular, Proposition 1 suggests that for given capacities, a lower marginal cost of the carriers at a facility would induce a higher price at that facility, but a lower price at the other facility. For example, if we start from a situation in which airlines have the same marginal costs c0 = c1 and we replace the airlines of one facility by lower marginal-cost carriers, then the airport charge would rise at the airport with the lower cost carriers, while the charge at the other airport would fall. These results respond to the intuition that if carriers’ marginal cost at a facility falls, the facility would be able to partially –but not completely (see the proof in the Appendix)– capture the efficiency savings by increasing its own price, offsetting some of the airlines’ cost savings. Since the facility charge is part of the marginal cost of carriers, the overall result is that the marginal cost of carriers indeed falls at that facility. To compete, the rival facility must decrease its price so as to induce a fall in the marginal cost of its own carriers. These results might serve as testable implications for empirical studies. Note, here, that the number of carriers at each facility does not need to be the same. 

Capacity Stage

In the closed-loop game, each facility chooses its capacity taking price equilibrium 
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[image: image83.wmf](

)

K

K

P

K

),

(

)

(

*

h

h

p

º

P

, 
  h = 0,1

(19)
where 
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 is given by (16). The capacity equilibrium is characterized by first-order conditions, 
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(where the second equality follows from the envelope theorem) and 
[image: image86.wmf]0

1

1

=

P

. We assume the second-order conditions 
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 hold for the entire range of interest. 

Notice that equation (20) can be rewritten as:
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The bracketed term in (21) contains the direct effect of capacity: At cost 
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, a marginal increase in capacity will enhance own demand –recall 
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 by (13)– and hence own revenue. The indirect effect –the first term in (21)– indicates that a marginal increase in own capacity will lead to a reduction in the rival facility’s price (recall Proposition 1) which in turn will, by (12), reduce own demand. As indicated, this ‘strategic’ effect is negative to the facility’s profit.  

A major point stressed by DBVD is that their capacity reaction functions are non-linear, which introduces the possibility of multiple equilibria. Furthermore, they showed with a numerical example that, even starting from an ex-ante symmetric setting, asymmetric equilibria may occur. In that case, the facility that invests more in capacity also charges a higher price, inducing –overall– a smaller delay at the facility than that at the other facility. In our case, our capacity reaction functions are obviously also non-linear and, therefore, the possibility of multiple equilibria also arises. And although we have by construction an asymmetric ex-ante setting, even if we impose ex-ante symmetry, the non-linearity of the best-reply mapping also introduces the possibility of non-symmetric equilibria, just as in the final-market case.

3.2 Open-loop Duopoly and Comparison with Closed-loop Duopoly 

In an open-loop game, the problem faced by facility h is:
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 is given by (16). The corresponding first-order conditions will give rise to the pricing and capacity rules. The pricing rules remain the same as those given in (17) or (18), whereas the capacity rules can be derived, using (13), as:
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where superscript o stands for the open-loop game. Note here that, since our (derived) demand system in (9) is non-linear in (P, K), the possibility of multiple equilibria may also arise in this open-loop setting. This implies that, even if we impose ex-ante symmetry, asymmetric equilibria may arise under certain parameterizations. But equations (22) imply that in equilibrium, the delay time at facility h equals:
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which shows that, even if multiple equilibria exist, the service levels will always be the same at each facility. Further, even if we impose ex-ante symmetry and asymmetric equilibria in prices and capacities arise, the resulting delay levels will be equal at both facilities. At the open-loop equilibrium, then, congestion delay at facility h increases in 
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 (facility h carriers’ time cost). Equations (23) also define a sufficient condition for an ‘interior solution:’ that 
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Hence, if the capacity costs are low enough, or if the time costs are high enough, the open-loop game will have an interior solution. 

Next, compare the results between the closed- and open-loop games. We first show that the facilities invest less in capacity in the closed-loop game than in the open-loop game. Recall that the closed-loop capacity rule is given by (20), that is, 
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In (25), the second equality follows from the capacity first-order condition in the open-loop game, whereas the inequality has already been indicated in (21). Then 
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 follow by the concavity of the profit functions. 

The intuition behind the above result is clear. In the closed-loop game, according to the nomenclature of Fudenberg and Tirole (1984), the facilities invest less in capacity following ‘puppy dog’ strategies: Investment in capacity would make a facility tough, in that it decreases the facility’s price hurting the rival (recall that prices are higher in more congestible systems). But that would trigger a harsh pricing reaction from the rival facility, since the prices are strategic complements. Hence, the facilities will try to soften the price competition by committing to smaller capacities in the first stage: they want to look small and inoffensive. This also directly leads to higher prices. 
However, the fact that capacities are smaller when they are chosen prior to prices does not directly imply that delays will also be longer. This is because, on one hand, capacity levels directly affect demands and, on the other hand, we now have higher prices. Yet, it can be shown that the delays do increase. From (25) and (21) we have, at the closed-loop equilibrium, 
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Since equation (17) must hold at this equilibrium, we can replace 
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 with (10), and rearranging, (26) becomes:


[image: image110.wmf])

,

(

 

)

,

(

  

   

)

1

)(

(

 

 

0

0

0

0

2

/

1

0

0

0

0

0

0

o

o

c

c

c

c

K

Q

D

K

Q

D

N

N

m

a

K

Q

a

>

Þ

÷

÷

ø

ö

ç

ç

è

æ

+

+

>

b

a

           (27)

where (23) is used in the second part of (27). The above comparisons thus lead to:

Proposition 2: A closed-loop duopoly invests less in capacity, charges higher facility prices, and has longer congestion delays than an open-loop duopoly.
Thus, in terms of facility price and service quality, the open-loop duopoly dominates the closed-loop duopoly as it has both lower facility prices and shorter delays. 

4. MONOPOLY AND THE SOCIAL OPTIMUM
Having examined the duopoly case, we shall in this section investigate the monopoly case –in which a monopolist owns both facilities– and the social optimum, emphasizing comparisons among the three cases. Note that in both the monopoly case and the social optimum, the results remain the same whether the capacity and price decisions are made simultaneously or sequentially.

4.1 Monopoly

The monopolist’s problem is:
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Taking the first-order conditions for prices, and using (6), (10) and (11), we obtain (superscript M stands for monopoly):
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and the expression for facility 1 is analogous. These monopoly pricing rules can be compared to the duopoly pricing rules (18). The first two terms on the RHS of (28) are the same as those in (18), although they are evaluated at different prices (and capacities). The first term is related to the congestion toll, but the monopoly facilities, like the duopolists, charge more than just the pure un-internalized congestion of each carrier (which would have been 1 – s0, rather than 1 + s0). The second term is the mark-up from the exploitation of market power, which arises from the consumers’ locational preferences and their traveling cost. As for the third term in (28), contrary to what happens with the duopoly, the monopoly has a mark-up –rather than a mark-down as in (18)– owing to the absence of facility competition. Here, when raising the price for one facility, the monopolist takes into consideration that it is actually increasing the demand for the other facility, with the resulting profit accruing to itself. In other words, the monopolist has internalized the interrelation of demands, and hence the facility competition.  

From (28) and (18) it is not immediate, however, to conclude that monopoly facility charges are higher than duopoly charges. The reasons are two-folds. First, both (28) and (18) are actually a system of fixed points, since Q0 and Q1 depend on both P0 and P1. Second, perhaps more fundamentally, capacities will likely differ in the two cases; prices and capacities are decided simultaneously. Prices can therefore be compared in two ways (see Spence, 1975; Basso, 2005): (i) compare prices as if capacities were fixed; and (ii) compare actual prices, taking the capacity difference (if any) into consideration. The first one is useful because it may represent a short-term case, but it is also useful in performing the second comparison. In what follows we will, when feasible, perform both comparisons. The same goes for capacities; we can compare them for given prices or we can compare their actual values. As it will be seen below, capacity comparisons are not simple. However, given the linearity of the delay function used, actual service levels can be compared. This is useful because we will be able to order actual prices and delays for the three different cases.

Hence, prior to the price comparisons, let us first look at the capacity rules under monopoly. Taking the first-order conditions for capacities, and using (10), (13) and (28), we get:
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The monopoly capacity rule (29) is identical to the open-loop duopoly capacity rule (22). Obviously, since their pricing rules are different, the consumption levels, and hence actual capacities, will be different in the two cases. Delay times will be equal however. From (29) we have:
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where the last equality follows from (23). Note that the sufficient condition for an interior solution in the monopoly case remains the same as (24). De Borger and Van Dender (2006) found that the duopolists offer lower service quality, in terms of longer delays, than the monopolist. Here we find that this is the case only if capacity decisions are made prior to price decisions (which is the situation analyzed in DBVD). When the capacity and price decisions are made simultaneously, or when capacity investments are not observable prior to price decisions, the duopolists will provide the same service quality as the monopolist.

Next, compare the monopoly and duopoly prices for given capacities. Obtaining monopoly prices for given capacities involves solving system (28), which leads to:
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Thus, given the capacities, the monopoly prices are, somewhat surprisingly, actually independent of the capacities! This means that the monopolist would charge prices (31) independently of whether it can choose capacities or not (provided, of course, that it leads to an interior solution).
 This result allows us to show that the monopoly prices are indeed higher than the actual duopoly prices. The monopoly-duopoly comparisons are reported in Proposition 3:

Proposition 3: For facility h (h = 0,1),

(i) 
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, i.e., an open-loop duopoly has lower facility prices than a closed-loop duopoly, which in turn has lower facility prices than a monopoly; and

(ii) 
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, i.e., duopoly facilities offer lower service quality, in terms of longer delays, than the monopolist only if capacity decisions are made prior to price decisions. If the capacity and price decisions are made simultaneously, the duopolists offer the same service level as the monopolist.
Proof.  See the Appendix.   

Thus, in terms of facility price and service quality –and therefore in terms of consumer surplus–, the open-loop duopoly dominates monopoly as it has both lower prices and shorter delays. It is not clear, however, whether the closed-loop duopoly is superior to monopoly: while having lower prices, it has longer delays than monopoly.

4.2 The Social Optimum
The social optimum arises when a central planner chooses facility prices 
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 and capacities 
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to maximize social welfare. Since our setting extends DBVD’s by introducing the downstream carriers, we now have the surplus of three types of agents to consider –namely, facilities, carriers, and final consumers– rather than just two types of agents (facilities and final consumers as in DBVD).
 This gives rise to the following social-welfare function:
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where CS is consumer surplus, 
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 is the aggregate (equilibrium) profit for carriers at facility h, and 
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 is the (equilibrium) profit of facility h. 
The first-order conditions with respect to 
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 give rise to the social pricing rules. The derivation is long but straightforward and hence is given in the Appendix. We obtain:
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where superscript W stands for welfare maximization. This pricing rule for each facility is conceptually similar to the ones obtained by Brueckner (2002), Pels and Verhoef (2004), Basso (2005) and Zhang and Zhang (2006). The socially optimal price at a facility consists of a congestion term –by which the facility charges each carrier for the un-internalized congestion it produces– and a mark-down, the market-power term, by which the facilities ‘subsidize’ carriers so as to countervail the exploitation of market power by monopoly or oligopoly carriers and induce the allocatively efficient output. One consequence of such subsidy is that the facilities may not recover their costs if the carriers’ market power, and hence the market-power term, is large, even though we have constant returns to scale in the provision of capacity and linear delay functions. This is in contrast to DBVD, and earlier studies (e.g., Morrison, 1983; Zhang and Zhang, 2006), that have shown that under the constant returns to scale and linear delay functions, the optimal pricing and optimal provision of capacity lead to exact cost recovery for a congestible facility (e.g., airport). These studies did not consider imperfect competition in the carriers’ market.

Equations (33) also show that when there is a single carrier at a facility (
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), the congestion term at that facility becomes zero. This is because the monopoly carrier perfectly internalizes congestion and consequently there is no need to correct for congestion. On the other hand, with atomistic carriers (
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) the market-power term at facility h will vanish. These results have already been obtained by Brueckner (2002) and others in the context of non-competing airports. Finally, (33) is easily comparable to both the monopoly pricing equation (28) and the duopoly pricing equation (18).

The first-order conditions with respect to 
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 give rise to the following social capacity rules (the derivation is given in the Appendix):
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These capacity rules can be compared to the monopoly capacity rules (29), giving rise to:

Proposition 4: Conditional on facility charges, the monopoly capacity rules are the same as the socially-optimal capacity rules if and only if 
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, i.e., the downstream carrier markets are perfectly competitive at both facilities. 

Thus, if there is (at least) one downstream market that is imperfectly competitive, the monopoly capacity rules will be different from the social capacity rules. This is in contrast to what was found by DBVD in their analysis without an intermediate carrier market; they found that the monopoly and socially optimal capacity rules are identical. Their result had a precedent in Oum, et al. (2004) who analyzed the price and capacity decisions by a single congestible airport. Since they did not formally derive the airport’s demand from the equilibrium of the airline market, their setting is actually quite close to DBVD’s, with the exception that DBVD had two facilities with interdependent demands. Proposition 4 shows that, when one takes into consideration that the congestible facilities may be input providers, which is the case for airports, seaports, and perhaps railroad tracks or telecommunication networks, the monopoly capacity rules will coincide with the socially optimal rules only when carriers are atomistic.
 

Both Oum et al. and DBVD correctly pointed out that, since the pricing rules are different, the consumption levels and, hence, actual capacities will be different. However, taking advantage of the assumption of a linear delay function, DBVD showed that, in their case where the facilities interact directly with final consumers, the monopolist offers exactly the same service quality –i.e., the same level of delays– as welfare-maximizing facilities. In our case, from (34) and (30) it follows that
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and 
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. Thus, DBVD’s result emerges as a special case of our comparison (i.e., when carriers are atomistic). Proposition 5 summarizes the result: 
Proposition 5: The monopolist will offer the same service quality –in terms of congestion delays– at a facility as the central planner if the carrier market at that facility is perfectly competitive; otherwise, the monopolist offers a higher service level than the central planner.
Proposition 5 shows that, unless the carrier market is perfectly competitive, monopoly will result in a lower level of delays than the social optimum. Monopoly prices will, however, evidently higher: by construction, monopoly will lead to a lower level of social welfare. Now, given that monopoly prices are higher but delays are smaller, one can reasonably wonder whether the monopoly capacity levels and the induced delay levels are second best or not, that is, whether there are extra-distortions in capacity, above and beyond what is induced by the well-known monopoly pricing distortion. This question was explicitly examined by Basso (2005), but there is a simple way here to see that, in fact, there are extra distortions. To see this, consider the case when 
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, i.e., if the monopolist is to provide the same service level as the central planner, it would levy a higher charge. It is obvious then that in the alternative in which a social planner is constrained to use the monopolist’s higher price, its service level would rise, proving that the monopoly introduces not only distortions on prices but also extra-distortions in capacity investments: difference in capacities are not only a by-product of monopoly pricing.
5. CONCLUDING REMARKS
Our main objective in writing this paper is to contribute to the understanding of rivalry between congestible facilities, but for the case in which the facilities provide an input for downstream firms that sell the final product to consumers. This is the case for airports, seaports, and perhaps railroad tracks or telecommunication networks. By explicitly incorporating the behaviour of oligopolistic downstream carriers and final consumers into the analysis of a duopolistic facility rivalry, we found that for given capacities, (a) the duopolists’ equilibrium prices increase with both the consumers’ value of time and the carriers’ cost sensitivity to congestion delays; (b) entrance of a new carrier to any of the facilities depresses the prices charged by both facilities; and (c) lower marginal cost of the carriers at one facility induces a higher price at that facility but a lower price at the other facility.
We further found that: (i) although the duopoly facilities have lower prices than the monopolist, they offer lower service quality only if capacity decisions are made prior to the facility pricing decisions (i.e., if the duopoly rivalry is a closed-loop game, as in DBVD). When the capacity and pricing decisions are made simultaneously (i.e., an open-loop game), the duopolists will provide the same service quality as the monopolist. (ii) A closed-loop duopoly invests less in capacity and charges higher facility prices than an open-loop duopoly. Here, the closed-loop duopolists follow a ‘puppy dog’ strategy: they try to soften the price competition by committing to smaller capacities in the first stage, leading to higher prices. (iii) Conditional on facility charges, the monopolist will have the same capacity rules as the central planner if and only if the downstream carrier markets are perfectly competitive at both facilities. If there is (at least) one downstream market that is imperfectly competitive, the monopoly capacity rules will be different from the socially optimal capacity rules. (iv) The monopoly facility will offer the same service quality as the central planner, provided that the carrier market is perfectly competitive. This does not, however, imply that the monopolist will provide the socially optimal service: while providing the same service level as the central planner, the monopolist would levy a higher charge than the central planner. 
The paper has also raised a number of other issues and avenues for future research. First, we used specific functional forms for production costs and congestion delays, and we assumed that consumers are uniformly distributed along an infinite linear city. It was clear from the above analysis that even with all these simplifying assumptions, the problem became quite complex given both the horizontal and vertical strategic relations presented in the model. Using non-linear delay functions or a non-uniform distribution of consumers would have been hard –if not impossible– to manage analytically. The flip side is that some of our results, as indicated in the text, are indeed dependent on these assumptions, particularly on the linearity of the delay function. What does seem to be an interesting and feasible avenue for future research though, is to consider non-symmetric locations of the facilities, that is, to analyze what happens when one of the facilities is endowed with a better location (e.g., a central airport versus a secondary, more distant airport). Obviously, such a model would require that the infiniteness of the city be assumed away.

Second, the present paper has, in the particular case of airports, confined the analysis to runway congestion. Airport congestion can also arise at gates and terminals. Extending the analysis to both the runways and the gates and terminals would complicate the analysis because it could introduce possible strategic behaviour by carriers through their own capacity and pricing decisions, but should nevertheless be undertaken in future research. Third, again for the airport case, the paper has abstracted away concession operations from the analysis, although today concession revenues generally represent an important share of an airport’s revenue. Analytical work on the effect of concession revenues on airport pricing and capacity is rare; the two recent exceptions are Oum et al. (2004) and Czerny (2006). Oum et al. found that concession revenues would reduce the runway charge but this decrease would be larger for welfare-maximizing airports than for profit-maximizing airports. Czerny found, on the other hand, that concession revenues would actually increase the runway charge. However, these two papers analyze the effects of concession revenues for a single airport, and without formally modeling the vertical relations between the airport and the airlines (see Basso and Zhang (2007) for a more detailed discussion of these and other papers that look at the issue). We see analysis of concession services in a setting such as the one we proposed here as an interesting project, particularly regarding the effects that competition may bring about on the behaviour of airports with respect to their concessions, although beyond the scope of what the present paper attempts to achieve.
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Appendix
Proof of Proposition 1:  (i) Solving (17) for 
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 is the vector of exogenous parameters. Differentiating 
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where the inequalities arise from 
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 and the use of (10).

(ii) From (A.1) we can show, for h=0,1,
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which give rise to parts a) and b). Part c) follows from the following inequalities:
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Q.E.D.

Proof of Proposition 3:  Part (ii) has been proved in the text and by using Proposition 2. For the proof of part (i), it is sufficient, using Proposition 2, to prove 
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. From (A.1) and (31) we can easily show that for given capacities, the duopoly prices are, as expected, smaller than the monopoly prices:
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Hence,
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where the first inequality follows from (A.3), and the equality 
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 follows from (31), i.e., the monopoly pricing rules do not depend on capacities.

Q.E.D. 

Derivations of Social Pricing and Capacity Rules:  We first specify the welfare function. With consumers being uniformly distributed with density one per unit of length, the consumers’ surplus is given by (see Figure 1):

[image: image155.wmf][

]

[

]

[

]

[

]

ò

ò

ò

ò

-

-

-

-

-

+

-

-

-

+

-

-

-

+

-

-

-

=

1

0

1

1

0

1

~

1

0

1

1

0

1

~

0

0

1

0

0

0

0

1

0

0

)

)

,

(

)

)

,

(

         

)

)

,

(

)

)

,

(

r

l

z

z

z

z

dz

tz

D

Q

Q

p

V

dz

tz

D

Q

Q

p

V

dz

tz

D

Q

Q

p

V

dz

tz

D

Q

Q

p

V

CS

a

a

a

a


Note that Q0 and Q1 –which are given by (3)– do not depend on z, whereas z l, z r and 
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 depend on Q0 and Q1. Hence, we will obtain an expression dependent on Q0 and Q1. Using (4) to replace p0 and p1 both in the integrands and in z l, z r and 
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It might seem that CS increases in t, and it is negative if there is no consumption. However, it is important to recall that both Q0 and Q1 are equilibrium values, so they depend on the level of congestion and on the value of t. Indeed, an examination of (3) reveals that Q0 and Q1 will rise as t falls, so the overall result is that CS actually falls as t increases, as expected. Also, recall that the maintained assumption has been that V is sufficiently large so that everyone in the [0,1] interval consumes. This implies that the minimum values of Q0 and Q1 for which the above CS expression is valid are when both are equal to 1 (each facility gets ½ consumer from each side, left and right). Therefore, CS is never less than 2t.  

Regarding the carriers’ profit, it is straightforward, from (7), (4) and symmetry, to obtain:
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With CS, 
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 and the facilities’ profits by (16), the welfare function (32) can be written as:
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Notice that SW above is not directly a function of prices; instead, it is a function of Q0, Q1 and, through them, a function of P0, P1.

The first-order condition with respect to 
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Calculating this –noticing 
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 and using (A.7), (A.1), (11) and (12) – we get:
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Similarly, the first-order condition with respect to P1 leads to: 
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Since the bracketed terms on the LHS of (A.8) and (A.9) are the same, the bracketed terms on the RHS of (A.8) and (A.9) are the same, 
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, equations (A.8) and (A.9) hold only if each of the bracketed terms is zero. Using (6), this gives rise to the social pricing rules (33).

To derive the social capacity rules, it is useful to point out that the pricing rules (33) are obtained as if we were maximizing directly in terms of (Q0, Q1) rather than (P0, P1), because the pricing rules are in fact derived from 
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(A.10)

From (A.10), (A.7), it follows immediately that the social capacity rules are given by (34).

[image: image171]
Figure 1. Consumer distribution and facilities’ catchment areas
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FOOTNOTES





� As to be elaborated in the text, two other major departures from DBVD are: First, while DBVD considered that facilities supply perfect substitutes in the eyes of final consumers, we shall consider that competing facilities provide differentiated services. Second, while DBVD looked at a closed-loop duopoly game where capacities are decided prior to prices, we investigate both the closed-loop game and the open-loop game (in which capacities and input prices are decided simultaneously) and compare their results.  



� One exception is Gillen and Morrison (2003), who examined two competing airports in the context of a full-service carrier and a low cost carrier. But they did not address the issue of congestion and capacity decisions, nor airline competition within each airport. 



� De Neufville (1995) identified 26 multi-airport regions in different parts of the world as of the early 1990s. These multi-airport regions cover large territorial size, with some spanning over 100 kilometres, and have high passenger generating capacity (10 million or more annual originating air passengers).



� The parameter t/4 is chosen for it will simplify most of the equations in the paper (see, e.g., equations (4)). 



� In addition to distance, other aspects of facility differentiation may be captured by extending the present formulation. For instance, Pels, et al. (2000, 2001, 2003) have shown, using a hypothetical example and later the San Francisco Bay Area case study, that ground accessibility of an airport is the most important factor in affecting airport choices in a multi-airport market. We could further address the differential ground access costs by introducing a parameter to the net-benefit function such that � EMBED Equation.3  ���, where � EMBED Equation.3  ��� (� EMBED Equation.3  ���, respectively) if facility 1 has a higher (lower, respectively) access cost  for consumers than facility 0.



� For the conditions for both assumptions to hold, see the analysis below.



� Earlier studies that have incorporated imperfect competition of carriers at a congestible airport (e.g., Brueckner, 2002, 2005; Pels and Verhoef, 2004; Basso, 2005; Zhang and Zhang, 2006; Basso and Zhang, 2006) have assumed Cournot behavior. Brander and Zhang (1990, 1993), for example, find some empirical evidence that rivalry between duopoly airlines is consistent with Cournot behaviour.



� Since each consumer in the model consumes one unit of the carriers’ products, this would imply, in the airport-airlines case, one flight per person. The simplest way to obtain the real case of many passengers per flight would be through a ‘fixed proportions’ assumption: let S be the number of consumers in a flight and then assume S is constant and the same across the airlines. The only change in our results would be that a parameter S would be included. The fixed-proportions condition has been assumed in Brueckner (2002, 2005), Pels and Verhoef (2004), Basso (2005), Zhang and Zhang (2006), and Basso and Zhang (2006).

� To save notations, in what follows various expressions may be written for facility 0 only, rather than for both facilities 0 and 1. If this is the case, the corresponding expressions for facility 1 will be analogous.



� In general, which of these two settings is more relevant will depend on the industry subject to scrutiny. In the context of airports for example, while sequential decisions may seem to be the more relevant description of airport behavior in the current situation where the majority of airports are public owned or closely regulated, we believe that the alternative assumption of sequential but unobservable decisions (analytically equivalent to simultaneous decisions) may become more relevant as commercialization, privatization and deregulation of airports increase. This is so because, while capacity expansions through runway construction would be easily observable, airport capacity expansions through technological improvements of air traffic control systems would not be observed as easily. And more commercialized airports may be more dynamic innovators in discovering new technologies, but they would have no incentive to share them with its competitor.



� As is to be seen in Section 4, this coordination failure is not resolved even if both facilities are owned by a single firm (monopolist). But one can show that it would be resolved by a vertical integration of facilities and carriers.



� This expression has a different flavor than the one obtained in a non-vertical setting, e.g., De Borger and Van Dender (2006) (equation (9)). In the non-vertical case, the third part would be positive, although a less attractive facility 1 would reduce the mark-up.



� For example, if everything is symmetric except for carriers’ marginal costs, and (c0 – c1) is large enough, then higher c0 implies that carriers at facility 0 would have, ceteris paribus, higher fares and hence the facility will have a smaller demand but also less congestion. A marginal increase in ( would induce a shift by consumers towards the less congested facility, thereby increasing its demand.



� Although it was not explicitly stressed in the paper, this result also holds in the final-market setting of De Borger and Van Dender (2006). This is interesting because we have found then that this fact is not dependent on whether the prices of the monopoly are set in a final market or in an intermediate market. However, as noted correctly by an anonymous referee, the result is indeed dependent on the linearity assumption in congestion delay function and may not be generalized.



� As demonstrated by Basso (2005, 2006), this distinction is relevant and important in the derivation of welfare-maximization results. This is also seen from the analysis below.



� The non-cost recovery result has also been obtained by Brueckner (2002), Basso (2005) and Zhang and Zhang (2006) under different model settings. All of these studies have explicitly considered imperfect competition in the carriers’ market. The issue of budget adequacy is further discussed by Zhang and Zhang (2006) for the single-airport case and by Basso (2005) in the context two distant airports, but the conclusions there apply to this competing-facilities case as well: two-part tariffs, or cost-recovery two-part tariffs if the carriers do not make enough profits, may resolve the problem. If fixed fees are not feasible for some reason, the less efficient alternative of Ramsey-Boiteux prices is called for. 

� See also Basso (2005) and Zhang and Zhang (2006) for a similar result in the context of non-competing airports.



� Note that the sufficient condition for an interior solution at the social optimum remains the same as (24), that is, � EMBED Equation.3  ���.
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