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Abstract. In this paper a transportation network design model is proposed; it is based on the assumption of elastic demand. Generally, this assumption is not considered in most network design models found in the literature. In the proposed model we limit the elasticity of demand only to mode choice and it can therefore be classified as a multimodal network design model. The proposed model is particularised for solving the transit fare optimisation problem, for which the assumption of elastic demand is necessary, and tested on a real network.
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1. Introduction

Transportation network design problems consist in designing features of a (transit or road) network in order to optimise its performances; usually, these problems are formulated by a (non-linear) constrained optimisation model. Moreover, in any optimisation model it is necessary to identify decisional and descriptive variables, to formulate an objective function and consider some constraints. Among constraints, the assignment (or simulation) constraint plays an important role: it combines descriptive variables (user flows) with decisional ones, simulating user behaviour on the network. In most cases, transportation demand is assumed rigid: it does not change with network configurations and the users can choose only the path on a monomodal network; in this case changes in modal split cannot be simulated.

On the contrary, in any transportation network design model the demand should be assumed elastic because supply changes generally influence at least mode choice. Sometimes, the errors produced by the assumption of rigid demand are negligible (e.g. urban road network design problems), while in other cases demand cannot be assumed as rigid, especially if the design objective is to change the modal split (e.g. road or parking pricing design) or when transportation systems share elements of the network (e.g. buses and cars on shared lanes).

Nevertheless, in the literature monomodal design models, which analyse only one transportation system and consider everything else invariable, are fully discussed both for road and transit systems; these models are useful when projects chiefly affect the analysed system without major repercussions on other systems. Generally, these problems are commonly known as Network Design Problems (see also Magnanti and Wong, 1984).

Monomodal network design problems are extensively covered in the literature. Road network design was studied in the papers by Billheimer and Gray (1973), Los (1979), Boyce and Janson (1980), Poorzahedy and Turnquist (1982), and Solanki et al. (1998), who proposed heuristic solution algorithms, and in papers by Le Blanc (1975), Foulds (1981), Los and Lardinois (1982), and Chen and Alfa (1991), who proposed Branch and Bound solution algorithms. All these papers assumed the problem variables as discrete. Continuous variable models were formulated by Dantzing et al. (1979), Marcotte (1983), Harker and Friesz (1984), Le Blanc and Boyce (1986), Suwansirikul et al. (1987), and Meng et al. (2001), who proposed heuristic solution algorithms; Abdulaal and Le Blanc (1979), Davis (1994), and Cho and Lo (1999) proposed, instead, descent algorithms; a simulated annealing approach was suggested by Friesz et al. (1992).

As regards transit network design problems, amongst the many contributions to the subject we recall those by Pratt and Schultz (1972), Bly and Oldfield (1974), Hsu and Surti (1975, 1977), Last and Leak (1976), Bursey et al. (1979), Faulks (1981), Chua (1984), Schneider and Clark (1976), Rapp and Mattenberger (1977), Andreasson (1978, 1980), Hasselstrom and Harris (1980), Ceder and Wilson (1986), Tzeng and Shiau (1988), Chang and Schonfeld (1991), Baaj and Mahmassani (1990, 1991, 1995), Ceder and Israeli (1997), Pattnaik et al. (1998), Iman (1998), Montella et al. (1998), Soehodo and Koshi (1999), , and Chien and Yang (2000).

As highlighted above, a multimodal approach, which analyses several modes simultaneously, is required when developing plurimodal projects (combined design) or monomodal projects with major effects on other modes (for example pricing). This approach has received little attention due to computational difficulties inherent in the problem. A general framework for the Multimodal Network Design Problem is introduced in Montella et al. (2000).

Another paper on multimodal networks (Ferrari, 1999) provided a model for optimising road pricing fares and transit frequencies and proposed an assignment model based on separate modal networks (road and transit) and fictitious links for simulating modal choice implicitly.

Clegg et al. (2001) proposed a bilevel optimisation model for determining road pricing and signal setting parameters. The main multimodal features are that demand is elastic at mode choice level (even if the route and mode choice models are deterministic) and link costs depend on the sum of flows that utilize the same link.

Huang (2002) proposed a (road and transit) fare optimisation model based on a simple bimodal system consisting of a transit line and a highway link where the path choice is univocal (there is only one path for each mode) and the mode choice model is a Logit Multinomial.

An extension of the marginal pricing principle in the case of a multi-user multimodal equilibrium constraint with elastic demand (up to trip generation) and asymmetric cost functions is proposed by Bellei et al. (2002), who showed that if the design variables are tolls associated to each path, the solution of the problem lies in marginal path tolls.

Gentile et al. (2005) worked out a road pricing design model based on marginal pricing application, in the case of the cordon price. Their model is applied in the case of a real dimension network by means of an algorithm developed by the authors themselves.

A theoretical dissertation on user surplus is provided by Ferrari (2005) where it is shown that the user equilibrium is not efficient because social costs are always greater than benefits. Hence, it is necessary to introduce a road pricing strategy in order to reduce these inefficiencies. In particular, the author concludes that if road pricing is not used to finance the transit system at least in part, it can cause only damage to the efficiency of the transportation system.

By contrast, papers on multimodal trips are much more numerous (see for instance, Fernandez et al., 1994; van Nes, 1999; Southworth and Peterson, 2000; Garcìa and Marìn, 2005; D’Acierno et al., 2006b). These papers are based on (multi-layer) network frameworks that allow the simulation of trips that use more than one mode (multimodal trips).

In section 2 the general multimodal network design model is formulated; in section 3 an application of the general model to the transit fare optimisation problem is proposed; in section 4 conclusions and research prospects are summarised. Finally, in Appendix A the assignment model adopted for simulating the multimodal system is described in depth; while in Appendix B some details of the proposed objective function are shown.

2. General multimodal network design model

In a previous paper (Montella et al., 2000), the authors proposed a general framework of the multimodal supply design model that can be expressed concisely as:
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where y is the decisional variable vector; 
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 is the optimal value of y; Sy is the feasibility set of y, that summarises all constraints on decisional variables; Z(() is the objective function; 
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] is the multimodal (equilibrium) flow vector of the road [transit] system; Cc [Cb] is the generalised path cost matrix referred to the road [transit] system; ((() is the multimodal assignment function that provides equilibrium flow vectors 
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The decisional variables, y, are different for specific problems; usually they may be classified into topological variables, performance variables and pricing variables. Another classification may concern the transportation system: transit variables and road variables.

As usually, the traffic flows, 
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, are descriptive variables: they are linked to decisional ones by assignment model (2).

In particular, eqn. (2) is the multimodal equilibrium assignment constraint; it constrains road and transit flows to be in multimodal equilibrium for each configuration of vector y. At equilibrium, the road and transit flows generate road and transit costs that generate a modal split and user path choices so that the same flows are reproduced.

In Appendix A we describe the assignment model proposed by the authors (D’Acierno et al., 2002) for solving the multimodal assignment problem. This model assumes that:

· the modal split is elastic and therefore depends on network costs;

· the road link costs depend on the number of (road and transit) vehicles on the link;

· the transit link costs are constant in exclusive bus lanes and depend on the number of (road and transit) vehicles on the link in the case of shared lanes.

Under these assumptions that allow the transportation system to be simulated more realistically, the model can be adopted to simulate the urban road network, where cross-congestion between road and transit systems should not be neglected: road and transit travel times depend on vehicle flows of both transportation systems.

As regards the objective function and constraints, it is worth noting that they have to be formulated differently for each multimodal network design problem. Generally, the objective function should consider all user costs (for both transit and road users), operational costs (if transit features are decisional variables), road and/or rail construction and maintenance costs (if they are present in the design problem) and external costs (environmental costs, congestion costs, etc.). The constraints to be considered depend on the specific problem; besides the multimodal assignment constraint, which is always necessary, technical and budget constraints are often considered.

Since the multimodal assignment constraint cannot be expressed in a closed form, but for its application it is necessary to solve a fixed point problem (see Appendix A), it is useful to consider the problem formulated by eqns (1) and (2) as a bilevel problem, where the upper level is the optimisation problem (1) and the lower level is the fixed-point assignment problem (2).

The proposed general multimodal model has already been applied to the parking pricing problem by the authors (D’Acierno et al., 2006a); this problem is a typical multimodal network design problem since parking fares are imposed just to influence the modal split (a monomodal design approach cannot be applied).

In the following section, the proposed multimodal network design model is formulated for solving the transit fare optimisation problem, where the decisional variables are the transit fares. This problem is also typically multimodal, since transit fares affect modal split and cannot be optimised without taking into account the effects on road network users.

3. Transit fare optimisation

In many European countries, as well as in Italy, fares on public transit services are generally determined by central and/or local administrations (State, Regions, Provinces, Municipalities, etc.), in accordance with transit firms.

Fares are nearly always fixed below the profitability threshold and ticket revenues are able to cover only part of the operational costs, while the other part is covered by society (transit subsidies). Recently, transportation laws have sought to limit transit subsidies; for example, Italian legislation sets a minimum value for ticket revenues that must be at least 35 % of total operational costs.

From a formal point of view, the subsidies can be seen as external costs of the transit system (the uncovered operational costs), since they are not paid by users but by society. The society pays these costs to facilitate travel (at acceptable prices) for those people who have no other transportation systems at their disposal and to promote the use of the transit system (thereby reducing the use of private vehicles).

Reducing the use of private cars lowers the environmental costs of road transportation which account for most of the total external costs of the transportation system (see for instance UNITE, 2003; INFRAS/IWW, 2004). Therefore, considering the whole multimodal transportation system, transit subsidies could lead to a reduction in total external costs.

Various aspects of the transit fare problem have been reported in the literature. Obeng (1981, 2000) proposed a methodology for optimising public subsidies and Parry and Bento (2002) considered the subsidies as a congestion tax; other studies on transit financing were developed by Chapleau (1995), and Hodge (1998). More generally, models for studying the effects of transit pricing policies were proposed by Ballou and Mohan (1981), Ferrari (1999), and Karkaftis and McCarthy (2002). The interdependence between transit pricing and road congestion was highlighted by Sherman (1971), Parry (2002), and Krauss (2003). The effects of free fare policies in some time intervals or for some user classes were studied by Studenmund and Connor (1982), and Brown et al. (2003) respectively.

A general formulation of the pricing problem was provided by Cascetta (2001), and the multimodal nature of the problem was highlighted by Tabuchi (1993), Potter et al. (1999), and Huang (2000, 2002); Osula (1998) showed how changes in transit fares can also modify trip generation.

In practical applications, transit fares are often established without a systematic approach. Below we analyse the problem and propose an optimisation model that formalises it. Moreover, we study methods for solving the problem.

3.1.
The model

The optimisation of transit fares requires some preliminary phases that can differ from case to case; generally, they depend on the extent and nature of the geographical area concerned. First of all, the area involved in the fare project has to be identified, which should be at least the area covered by the transit system. It can be a town, with or without its suburbs, a province or a region. If the area is so large that it is necessary, useful or equitable to providing different fares for different origin-destination trips, it has to be subdivided into zones; the fare for each origin-destination generally depends on trip length or on the number of zones that are crossed.

In the literature, several methods for fare zoning have been proposed; they are based on distances (Cervero, 1982; Daskin et al., 1988), time intervals (Cervero, 1981) or average travel times (Phillips and Sanders, 1999). Generally, zoning methods adopt three kinds of zones (fig. 1):

· concentric zones;

· circular rings and sector zones;

· alveolar zones.

The effectiveness of each zoning method can depend on areal features. Concentric zones are adopted mainly when there is an important centre that attracts and/or generates most of trips (e.g. a capital town). In this case, fares depend on the distance (in term of crossed zones or path length) between the centre and the destination (or origin) of the trip. In general, this method provides other fares for tangential trips. When tangential trips are numerous, the subdivision into circular rings and sector zones is a better choice; in this case fares depend on the number of crossed zones.

When there is no main centre or there are many centres of similar importance, the area can be subdivided into alveolar zones. In this case, fares depend on the number of crossed zones as well.

As specified below, due to the multimodal nature of the problem, the objective function has to take all costs of the transportation systems into account. The objective function therefore has to estimate explicitly operational costs, traffic revenues, system user generalized costs and social, political and environmental costs. The proposed formulation is the following:
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(3)

where tb is the transit fare vector to be optimised; ONC is the Operational Net Cost term; UGC is the User Generalized Cost term; EC is the External Cost term.

Details of the above terms are reported in Appendix B. Moreover, for the external cost term we propose the following formulation:
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where 
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 is the transit user value that expresses the average value that society associates to a user who travels on the transit system (instead of the road system), reducing externalities and/or facilitating social equity; and 
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 is the transit travel demand of users of category j that travel from origin o to destination d.

The parameter 
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 can be estimated as a function of the fares applied today, reproducing the value that society assigns to externalities. In the next section the method adopted for calibrating this parameter for the test case will be described.

Therefore, with the above relation, eqn. (3) can be formulated as:
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and the multimodal assignment constraint can be expressed as:
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The innovation in the proposed model, as well as the multimodal simulation and assumptions on the elasticity of transportation demand, lies in cost evaluation since term (4) of objective function (3) also takes into account benefits for society of “transfer” users from the private to the public transportation system. Indeed, each user that chooses to travel by transit system and does not use road system, generates lower externalities (expressed by eqn. 4) because in this case either the number of operating vehicles (buses or trains) are independent of the number of users or, if the level of generated travel demand needs an increase in vehicle numbers, it is lower than the decrease in the number of cars due to the very different occupancy indexes (a car generally can carry up to 5 people, even if the average occupancy index is 1.3, while a bus or a train/metro coach can carry respectively up to 80 and 250 people). These considerations show that the use of transit systems not only reduces transport system externalities (in terms of environment pollution, congestion, etc.) but also allows transit fare revenues to increase and hence may reduce the amount of public subsidies (covered, obviously, by society). Moreover, if these subsidies are kept constant, the increase in transit travel demand (i.e. the increase in revenues) allows the quality of transit systems to be improved in terms of, for instance, number of vehicles per hour (frequency), vehicle cleaning and maintenance, purchase of more modern and comfortable vehicles. Obviously, in this context the use of pedestrian mode rather than any motorised system allows externalities to be reduced and decreases travel time for the road system (there are fewer cars on the roads) and transit systems when buses travel in shared lanes.
3.2.
Solution algorithm and first results

The proposed model can be adopted to solve several practical problems regarding fare determination in Local Public Transit, such as:

· modification of current fare zoning;

· optimisation of crossing zone fares;
· optimisation of fares with different parameter (TU;
· introduction of new ticket types.

In particular, the last two applications are implemented in this paper.

In the case of transit fare optimisation, the multimodal assignment model proposed by D’Acierno et al. (2002) and described by constraint (2) has to be modified for several reasons. Indeed, since different ticket types are often available for the same Origin-Destination pair and therefore each user chooses the best ticket type according to his/her own needs, it is necessary to formulate a ticket choice model that has to be included in the multimodal assignment model (2) as indicated below.

The monetary cost 
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where 
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where parameters 
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 and (T have to be calibrated by means of survey data. Besides, if transit fares are integrated, that is they depend only on the number of crossed zones and not on the number of transit systems or firms utilised, fares may be assumed to depend only on origin and destination zones. This hypothesis neglects the dependence of transit fares on trip paths and is as much plausible as zone size increases; indeed in real contexts, user paths rarely cross a number of zones greater than the number crossed by the minimum path. With the above assumption and with the use of a system of models where the total demand is split first between the two modes and then among paths and ticket types, it is possible not to consider transit fares in the route choice model (because all paths with the same origin and destination zones have the same fare set) but only in the modal choice model via an EMPU (Expected Maximum Perceived Utility) variable associated to the ticket choice model that expresses the disutility perceived by users in consequence of transit fares. With the use of a Multinomial Logit model for the ticket choice model, the EMPU fare variable used in the modal choice model can be expressed as:
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In order to apply the proposed methodology in the case of a real dimension network, it is necessary to determine 
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 values in order to calculate the contribution of the external cost term (4) in the objective function (3). In particular, we propose to estimate 
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 as a function of current transit fares in the analysed context such that this term reproduces the value which society “currently” attributes to externalities. Hence, it is sufficient to solve the following optimisation problem:
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subject to:


[image: image36.wmf](

)

(

)

(

)

(

)

*

b

*

c

b

b

*

b

*

c

c

*

b

*

c

f

,

f

,

t

C

,

f

,

f

C

Λ

f

,

f

=


(8)

where 
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As stated above, the proposed methods were applied in a real case on the Salerno (Italy) network (whose features are described in Tab. 1) in order to verify their applicability, their performances and the plausibility of yielded solutions. In particular, with the use of a single fare zone (the same fares for each possible trip) and with the assumption that 
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the optimisation problem (7) turns into a monodimensional problem that can be solved with simple algorithms, such as a bisection algorithm where at each iteration it is necessary to solve the fixed-point problem (the assignment constraint) described by eqn. (8) via the equilibrium (steady-state hypothesis) multimode assignment model (see Appendix A). However, the implementation of this problem, depending on current fares, provided a 
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 value (i.e. the “current” value of (TUV ) equal to 11.06 €/user(h.

TABLE 1

On the same (real dimension) network, the optimisation problem described by eqn. (1) subject to eqn. (6) was applied in order to evaluate the fare for a weekly pass (a ticket type no longer existing). Optimization results, being calculated with different parameter (TUV values, are shown in Tab. 2. In particular, the case of (TUV equal to 0 represents the use of an objective function which neglects external costs.

TABLE 2

Results are consistent with theoretical considerations. Indeed, a non-null (TUV value yields a lower ticket value because the presence of external costs promotes transit system against road system use.

In both applications, described in Tab. 2, other ticket types have been set at current values that implicitly take into account the current value of the external term. Hence, since different values of (TUV affect only the new ticket, being constant for other (current) ticket types, the results are very similar. Indeed, differences in values are lower than 12.4%.

Obviously, since current fares are all determined with a (TUV equal to 11.06 €/user(h (this is its implicit value estimated by the optimisation problem 7) only the pass value of 4.29 € can be considered feasible, yielding in the other case an inconsistency in the model since some fares (the current ones) are calculated with a non-null (TUV value and only one fare (the design fare) is calculated with a null (TUV value.
4. Conclusions and research prospects

The multimodal approach to network design problems is useful when transportation demand cannot be assumed rigid; in practical applications, it occurs for all pricing design problems, since the monetary leverage directly acts on user modal split. In this paper, a general formulation of the multimodal network design model is provided; this model is particularised for optimising transit fares and is tested on a real urban network in order to design a new transit fare.

In this context, the aims of the paper were two-fold:

· to formulate an optimisation model based on assumptions which allow transportation systems to be simulated more realistically and hence generate design solutions based on the true forecast of transportation system performances;

· to define an objective function that takes into account external costs generated by the transportation system (in particular the road system) and utilises pricing strategies (in the application these are the transit fare definition) for managing travel demand, directing users towards transit and pedestrian systems.
The first objective was achieved by means of the optimisation model (described in eqn. 1) whose assignment constraint is based on realistic assumptions described in details in Appendix A. Likewise, the latter goal can be obtained by eqn. (4) which introduces external costs into the objective function (described in eqn. 3) via a term that expresses the bias of society toward the use of transit or pedestrian systems (instead of road). The achievement of these two targets is highlighted by results obtained from applying the proposed model in the case of a real dimension network.

Future research will be addressed to specify the general model for other multimodal network design problems; in particular, analysis of the road pricing design problem is currently in progress. Moreover, application of the transit fare optimisation model to a regional case, where there are several faring zones, will be performed.
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Appendix A. The multimodal assignment model

This appendix briefly describes the multimodal assignment model proposed by D’Acierno et al. (2002) and its solution algorithms. Hence, the assignment model adopted in this paper is based on the following assumptions:

1.
the mode choice model is elastic (obviously, the path choice model is elastic as well);

2.
the road costs are equal to a function depending on travel times along a section, waiting times (e.g. at the final intersection, at the tollbooth, etc.) and parking fares;

3.
the transit costs are equal to a function depending on walking times (from the origin to the initial stop/station and from the final stop/station to the destination or between two intermediate stops/stations), waiting time (the average time that users spend between their arrival at the stop/station and the arrival of the line that they board), on-board travel times (the time spent aboard transit vehicles), boarding/alighting times and transit fares;

4.
the pedestrian costs are equal to a function depending on travel times along a section and waiting times (e.g. at the final intersection);

5.
the supply model considers that (road and pedestrian) travel times, (road and pedestrian) waiting times and (transit) on-board times depend on three transportation system flows;

6.
the supply model considers that road fares, transit on-board times in the case of exclusive lanes or in the case of rail/metro systems, and all other transit times/costs do not depend on user flows;

7.
road and pedestrian users choose a predetermined path (pre-trip behaviour);

8.
transit users do not choose a predetermined path but rather a travel strategy, where a strategy is defined by a set of predefined choices and behavioural rules to follow during the trip to adapt to random or unknown events (en route strategy);

9.
the occupancy indexes of the road system are assumed constant for all vehicles;

10.
the transit capacity constraints are not considered.

The first assumption implies that a supply variation can determine a different modal split. The second, third and fourth assumptions are the generalized transportation cost definitions. The fifth assumption makes (according to definitions by Cantarella, 1997, and Cascetta, 2001) the analysed assignment model a multimodal model because it implies that mode choice depends on congested costs of all transportation systems. The sixth hypothesis underlines that obviously not all costs depend on user flows. The seventh and eighth assumptions show the criteria adopted to identify path choice sets and that when a user arrives at a bus stop/station he/she does not know which line (belonging to a given set of useful lines) will arrive first. Hence, a hyperpath approach (Nguyen and Pallottino, 1989) must be adopted for the transit system. Finally, the last-but-one hypothesis implies that the ratio of road user flows to road vehicle flows is a constant, while the last overlooks the possibility that some users may be unable to board the first arriving run because it is too crowded and have to wait longer for a subsequent one.

It is worth noting that the first eight assumptions provide a proper description of user behaviours and transportation system performances and, hence, allow model to describe the real world more realistically.

The ninth hypothesis, concerning a constant occupancy index for all private vehicles, allows the model to be significantly simplified even if it slightly modifies the results in terms of real behaviour of the system. However, if this value is set equal to the average of real surveyed values, differences in terms of results yielded by the model can be neglected. Thus, this assumption allows us to obtain reliable results, also reducing the complexity of the model.

Finally, the last assumption, even if it can be considered unrealistic, is necessary to avoid explicit simulation of queue phenomena and hence an excessively complex simulation model that could entail an increase in calculation times of the optimal (or the sub-optimal) solution.

However all assumptions, except for the tenth, allow the optimisation model, described by eqn. (1), to simulate the behaviour of the transportation systems and its components (vehicle and users) in a reasonable time and in a more realistic way.

Importantly, the assignment model proposed by D’Acierno et al. (2002) does not explicitly consider combined modes (e.g. park-and-ride) even if these modes can be easily considered.

With the above assumptions the multimodal supply model may be expressed through path cost definitions. In general, a path cost of mode m can be obtained by summing the corresponding link costs (i.e. term 
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Likewise, the multimodal demand model can be expressed through link flow definitions. In general, a link flow of mode m can be obtained by summing the corresponding path flows which are equal to the path choice probability multiplied by the corresponding travel demand.

According to random utility theory, a mode choice probability of mode m depends on path costs of the same mode m through EMPU vector sm  (see for instance Cascetta, 2001), whose generic component is expressed by:
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where Uk is the perceived utility of path k; Ck is the cost of path k; (k is the random residual of path k; and Imo,d is the set of paths connecting the o-d pair.

In this case, the demand model is multimodal because travel demand for mode m is a function depending on road, transit and pedestrian EMPU variables. Therefore, in vector notation the demand model can be formulated as:
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By combining eqn. (A.1) with eqn. (A.2) it is possible to obtain the following system of equations:
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The system of equations (A.3) (or similarly eqn. (2)) can be considered a fixed-point problem because link flow vectors depend on themselves. This fixed-point problem can be expressed concisely by means of a multimodal assignment function (eqn. 2).

It may be stated (Cantarella, 1997; Cascetta 2001) that the solution of fixed-point problem (3) exists and is unique if:

· all functions are continuous;

· each OD pair is connected;

· route choice models are expressed by additive, continuous with continuous first partial derivatives, non-increasing monotonic function with respect to path cost vectors;

· demand functions are non-negative, upper bounded and non-decreasing with respect to EMPU variables;

· link cost functions are increasing with respect to link flows.

D’Acierno et al. (2002) stated that the proposed model satisfies the above conditions with most demand and supply models proposed in the literature if a condition on EMPU variables is verified.

The described multimodal assignment models were tested on a real network, adopting three algorithmic approaches (external approach, internal approach and hyper-network approach) for its solution and comparing their performances in terms of calculation speed. Solution algorithms for all approaches are based on an MSA-FA framework (see, for example, Cascetta, 2001). In this case, the stochastic network loading routine is based on algorithms proposed by Dial (1971) and Nguyen et al. (1998).

Once a starting modal split has been fixed, the external approach algorithm calculates EMPU variables by monomodal MSA-FA algorithms. These EMPU variables are used to calculate a new modal split, and so recalculate link flows and EMPU variables. When a stop test on modal split is satisfied the algorithm ends.

The internal approach algorithm fixes a zero starting vector and calculates EMPU variables. The EMPU variables are utilized for calculating modal splits, and for recalculating link flows and EMPU variables. In this case the algorithm ends when a test on link flows is verified.

The hyper-network approach algorithm performs a rigid demand assignment model on a multimodal supply network model (hyper-network) that allows the simulation of the mode choice on a network by the use of specific dummy links (modal diversion links). Therefore this algorithm consists in using a rigid demand MSA-FA algorithm.

These algorithms were applied on a real network (consisting of 1,133 road links, 529 road nodes, 1,326 pedestrian links, 7,124 transit links, 3,779 transit and pedestrian nodes and 75 transit lines) and results indicated that they converge to the same solution, though it was not possible to state the general convergence of the algorithms on real networks. In the case of the above real network, in terms of calculation time (see table 3) the external approach algorithm requires much lower times than other approaches (almost three-fold higher). The internal and hyper-network approaches coincide both in terms of iterations and results but in the hyper-network, the calculation times are slightly higher, since the dummy links increase the number of total links in the network.

TABLE  3

Appendix B. Objective function details

This appendix describes some details of the objective function shown in eqn. (3).

In particular, the operational net cost of the transit system (ONC) is expressed as the difference between operational costs of transit firms (OTC) and ticket revenues (TR):
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where operational costs are equal to the sum of standard operational costs (
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and ticket revenues are equal to the sum of the transit travel demand (
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The user cost is equal to the sum of two terms: time cost and monetary cost. The former term is equal to the sum of user flows (
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and the latter term is equal to the sum of road vehicle flow (that is equal to the ratio between the road user flow 
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 and the occupancy index (c) multiplied by the road monetary cost (
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and is equal to ticket revenues (TR) in the case of transit systems. Hence the user cost term can be expressed as:
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Therefore, with the above relations and eqn. (4), eqn. (3) can be formulated as:
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which in the paper is synthetically described by eqn. (5).

Tables

Table 1

Features of the Salerno network

	
	Supply parameters

	
	Links
	Line links
	Pedestrian links
	Nodes
	Bus lines
	Railway lines

	Road system
	1,133
	–
	–
	529
	–
	–

	Transit system
	7,124
	3,216
	1,326
	3,779
	71
	4

	
	Demand parameters

	
	Centroid nodes
	OD pairs
	Peak-hour trips
	Number of inhabitants

	Road system
	62
	3,844
	40,746 (all modes)
	about 140,000

	Transit system
	65
	4,225
	
	


Table 2

Results of transit fare optimisation

	
[image: image81.wmf]TUV

β

 value
	New ticket value

	0.00 € /(user(h)
	€ 4.82

	11.06 € /(user(h)
	€ 4.29


Table 3

Comparison among multimodal algorithm approaches

	Approach
	Stochastic

Network Loading
	Maximum

percentage error
	Pentium III – 800 MHz

elaboration time [min.]

	External
	13
	4.45 %
	7.02

	Internal
	18
	Reference
	19.25

	Hyper-network
	18
	0.00 %
	19.33


Footnotes

1
Generally, the 
[image: image82.wmf]j

i

TSE

term may be included in the systematic trip utility expression for all but one ticket typology, as shown by many authors (such as Cascetta 2001).
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Figure 1 –
Fare zone typology
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