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Abstract

Models for traffic assignment to transportation networks simulate how demand and supply interact in transportation systems. These models allow the calculation of performance measures and user flows for each supply element (network arc), resulting from origin-destination demand flows, path choice behaviour, and the reciprocal interactions between supply and demand. Assignment models play a central role in developing a complete model for a transportation system their results, in turn, are the inputs for the design and/or evaluation of transportation projects. 

In this paper a general fixed-point approach will be presented that allows dealing with multi-user multi-mode traffic assignment with elastic demand. The described approach is general enough to accommodate most existing demand models including those regarding path choice behaviour, and can be applied to transportation systems with continuous and/or scheduled service. The adopted approach allows to easily defining conditions for solution existence and uniqueness, as well as algorithm convergence. Some issues still deserving research work will also be discussed.
Keywords: demand-supply interaction; equilibrium assignment; elastic demand.

1. Introduction
Models for travel demand assignment to a transportation network simulate how demand and supply interact in a transportation system. Assignment models play a central role in developing a complete model for a transportation system their results, in turn, are the inputs for the design and/or evaluation of transportation projects.

In congested networks costs depend on flows affect costs, which in turn affect user choice behaviour. Assignment with elastic demand simulate supply-demand interaction when path cost variations due to variations in congested arc costs influence user behaviour other than path choice (such as the decision to travel, to which destination, by which mode, etc.). Simulation of demand elasticity may be relevant for urban planning over a medium-long term horizon. 

In this paper a general fixed-point approach will be presented that allows dealing with multi-user (stochastic) assignment with elastic demand. The described approach is general enough to accommodate most existing demand models including those regarding path choice behaviour, This approach was  introduced by Daganzo (1983), further developed by Cantarella (1997), and widely discussed in Cantarella and Cascetta (2001); it allows to easily define conditions for solution existence and uniqueness, as well as analysis of algorithm convergence. Variational inequality models mainly aimed at deterministic assignment will be not be addressed (see Sheffi, 19985)
For brevity sake mathematical details, such formal proofs, are not reported, the interested reader may refer to the above quoted papers. Moreover, since Wardrop (1952) more than half a century of research on assignment to transportation networks has produced a very large literature; a recent paper on assignment with elastic demand with a review on this topic is Garcia and Marin (2005). 
2. Basic definitions and notations
A transportation system is generally analysed by concentrating origins and destinations of journeys into centroids. The topological features of transportation supply are modelled through a graph, such as each journey made by a sequence of events (such as crossing a junction) and activities (such as running along a street) is simulated by a sequence of nodes and arcs (or links), thus a route is simulated by a path in the graph. Trip origins and destinations are represented by nodes as well, and connector arcs. 

Users are assumed grouped into user classes. Each user class i is a set of users with common behavioural parameters and trip purpose travelling during the same time period between the same origin-destination (O-D) pair with common trip purpose and behavioural parameters All the users in a class also share some relevant routes, represented by a set of paths Ki, assumed non-empty and finite. Generally only elementary (say loop-free) paths are considered, thus only a finite number of paths exists for each user class, that is each set Ki is finite. Clearly a non-elementary path contain at least an elementary path.

2.1 Supply model
Transportation supply is usually simulated through a congested network model, which expresses how user behaviour affects network performances. Let

Bi 
be the arc-path incidence matrix for user class i, with entries bi,ak = 1 if arc a belongs to path k ( Ki , and bi,ak = 0 otherwise;

hi
( 0  be the path flow vector for user class i, with entries hi,k, k ( Ki;

f ( 0  be the arc flow vector, with entries fa;

c 
be the arc cost vector, assumed with non negative entries ca ( 0; arc cost is usually given by travel time or by a  linear combination of it monetary costs, through VoT, and possibly other LoS attributes;

gi
be the path cost vector for user class i, with non-negative entries gi,k( 0, k ( Ki.

The following three equations completely defines the supply model under steady-state assumption. A arc-path flow consistency equation holds: 

f = i  Bi  hi








(1)

Moreover, generally arc flows depend on arc costs through arc cost-flow function, which can be specified through traffic engineering models:

c = c(f)









(2)

If arc costs do not depend on arc flows the resulting network is called non-congested. A path-arc cost consistency equation holds:

gi = BiT c
i
(3)

Other specific path costs, which may not be additive over the arcs, will be addressed in the utility function, introduced below.

2.2 Path choice model
The transportation demand model simulates how network performances affects user behaviour. User behaviour concerns path choice as well as other choice dimensions such as transportation mode, trip destination, etc. . So far the  demand model can be considered to be made up by a path choice model, described below  and a demand flow model, described in the next sub-section 2.3. Let

di ( 0  be the demand flow for users belonging to class i; in the following all the demand flows are assumed measured in a common unit, thus they can directly be summed up;
pi 
( 0  be the path choice probability vector, 1T pi = 1, for user class i, with entries pi,k, k ( Ki.

The demand flow conservation equation assures that the sum of path flows equals the demand flow for each user class:

hi = di pi 







i
The path choice model simulates user path choice behaviour, it is generally specified by applying random utility theory (see appendix). At this aim let

Uk  be the perceived utility associated by user to path k, it is assumed modeled through a (non-degenerate) random variable (some examples are given below);

vk = E[Uk]  be the expectation of the perceived utility of path k, called systematic utility depending on the path cost  through the utility function, generally assumed linear:

vi = (i (gi + veq \o(\s\up 6(o );\s\do 2(i ))  






i                                       

where

vi 
is the path systematic utility vector, with elements vi,k, kÎKi, for users of class i;

veq \o(\s\up 6(o );\s\do 2(i )) is a vector whose elements are the parts of the systematic utility that depend on attributes other than arc costs (such as specific non-additive path costs, user socio-economic attributes, etc.); it is omitted in the following for simplicity’s sake;

(i is an utility parameter which is omitted in the following since assumed included in the scale parameter within the choice function, introduced below.

Furthermore the path choice probability vector depends on the systematic utility vector through the (stochastic) choice function, which generally includes a scale parameter(:

pi = pi(vi; (i)







i
where

(i is a utility scale parameter to be calibrated against observations; its expression depends on the choice function.

Choice function is usually specified by applying random utility theory, and its expression depends on the assumption about perceived utility distribution (some examples are given below).

Combining the all the three above equations yields the path flow model:

hi = di pi(((gi + veq \o(\s\up 6(o );\s\do 2(i )); (i)





or considering the introduced simplifications of notations:
hi = di pi(gi; (i)






i
(4)

Random utility models generally adopted to specify the choice function are continuous (with continuous first partial derivatives) leading to continuous (with continuous first partial derivatives) path flow models. Under mild assumptions (invariant choice function, see appendix) both the path choice function and the resulting path flow model can be proved monotone non increasing wrt path costs.

2.2.1 Path choice model specification

A path choice function is fully specified once the alternatives, the set of possible alternatives (choice set) and the choice function have been defined.

As regard the definition of choice alternatives, the hypothesis usually accepted is that the user, before undertaking the trip, chooses a sequence of road segments to follow, or the phases of the trip in a transit system, which can be represented as a path of the graph. As said, only elementary (loop-less) paths are considered, and thus their number is finite.
The identification of the paths considered as choice alternatives is carried out through heuristic approaches described below although it should be better to use an explicit choice set model (this topic has recently been addressed by Cascetta et al 2002).
The exhaustive approach considers all elementary paths on the network. This approach, since generates many paths that may share many arcs, requires choice functions that explicitly take into account the correlation between path perceived utilities, and generally without explicit path enumeration algorithms for the calculation of assignment function.

The selective approach identifies only some elementary paths on the basis of heuristic behavioural rules (e.g. the first n minimum cost paths; paths excluding behaviourally unrealistic arc sequences; paths with a cost not exceeding by more than ( the minimum cost, etc.). The selective approach guarantees better control of the “feasibility” of the generated routes while allowing the use of any kind of path attribute that is path specific and/or not additive over arcs. 

From a practical point of view, the selective approach generally requires an explicit path enumeration, on the other hand the exhaustive approach without explicit path enumeration is computationally more efficient, wrt to memory requirements, and is usually used in assignment models.

According to random utility theory (see appendix) the specification of the path choice model requires, as usual, definition of the attributes in the systematic utility function and of the joint probability distribution of perceived utilities, which implies the choice function and the satisfaction function expressions.

2.2.2 Examples of probabilistic path choice models

If the perceived utility vector is assumed a non-degenerate random multi-variate variable with non-singular co-variance matrix, (, probabilistic (or stochastic) choice functions are obtained, the most used being described below.

The simple Multinomial Logit model results from the hypothesis that the perceived utilities are i.i.d. Gumbel variables with parameter ( proportional to the common standard deviation ( (omoskedasticity). It takes a closed form:

pk = exp((gk/() / (j exp((gj/()

If parameter ( does not depend on  path costs  the assumption of invariant random utility model is satisfied leading to monotone path choice models. The assumption of independent distribution implies no correlation or similarity between the perceived utilities of any pair of paths, which seems unrealistic when two different paths share several arcs. Thus, the Multinomial Logit model should only be used with an explicit path enumeration eliminating highly overlapping paths.

The C-Logit model (Cascetta et al, 1996) can be seen as a modification of the Logit path choice model that overcomes the problems deriving from independent distribution assumption, retaining an a closed form formulation. The C-Logit path choice model has the following specification:

pk = exp(((gk ( CFk) /() / (j exp((gj ( CFj) /()

where the term CFk, known as the commonality factor, reduces the systematic utility of a path proportionally to its level of overlapping with other paths. 
The commonality factor can be specified in various ways, the most used is:
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where the attributes zh, zk, and zhk (e.g. length or non-congested cost) differ from the path cost gk These specifications satisfy the assumption of invariant random utility model leading to monotone path choice models. The attribute CFk is inversely proportional to the level of a path’s independence, and it is equal to zero if all the links of paths k do not belong to any other path. In this case: zhk=0 (h(k  (  CFk=(oln(1)=0. Conversely the attribute CFk is larger if more paths share the “longer” links of path k. The C-Logit model, for given path costs, reduces the probability of choosing heavily overlapping paths and increases the probability of choosing non-overlapping paths. The expression proposed above allows computation of the commonality factor additively over the links making up the path without explicit path enumeration. 

If it is assumed that the perceived utilities are distributed according to a Multivariate Normal (MVN) variable, the resulting choice model is called Probit (Daganzo, 1979) this way perceived utility variance may vary among paths (eteroskedasticity) and co-variance may be explicitly be specified.  The most widely used specification assumes that the variance, (k, of the perceived utility, Uk, of path k is proportional to an additive path cost attribute, zk, and that the covariance, (kj, between the perceived utilities, Uk and Uj, of paths k and j is proportional to the cost attribute of the arcs shared by the two paths, zkj. In this case the joint path perceived utility distribution can be expressed by a linear combination of independent arc perceived utility distribution. Usually, attributes zk (e.g. length or non-congested cost) differ from the path cost gk These specifications satisfy the assumption of invariant random utility model leading to monotone path choice models. 

A similar model can be obtained by assumed that the perceived utilities are distributed according to a Multivariate Gamma (MVG) variable, the resulting choice model is called Gammit (Cantarella and Binetti, 2002) Both Probit and Gammit models allow to handle path overlapping, or perceived utility correlation, making them particularly suitable for applications with exhaustive path generation (no explicit enumeration). On the other hand they lack a closed form, thus their application may be dealt with algorithms based on the Montecarlo simulation.

2.2.3 Path choice model mathematic features

Whichever the adopted choice model some mathematical features seem useful.

Continuity of the path choice model assures that small changes of path costs induce small changes of choice probabilities. If it is also continuously differentiable it has a continuous Jacobian. This feature, assured by commonly used joint probability density functions, guarantees continuity of the resulting assignment function (see 2.3). 

Monotonicity of the path choice function assures that an increase of the cost of a path k induces a decrease of the corresponding choice probability. More generally, the path choice model should be non-increasing monotone with respect to path costs. This feature guarantees monotonicity of the resulting assignment function. It is assured if no other parameter of the  perceived utility joint probability density functions depend on the mean, say the systematic utility. The resulting choice function is called invariant.

Independence from linear transformations of utility assures that any change of the scale of the utility does not affect the model results (as guaranteed by commonly used random residual joint probability density functions). For instance it is not relevant whether travel time is measured in hours or minutes.

2.2.4 Path choice model modelling requirements

Some modelling requirements, presented below, are useful to effectively simulate path choice behaviour, and to compare path choice functions.

Similarity of perception of partially overlapping paths rules out counter intuitive results. Indeed two partially overlapping paths are likely not perceived as two totally separated paths. Introducing a positive covariance between any two overlapping paths can simulate similarity, as for Probit or Gammit choice model, or a communality factor as in C-Logit choice model.

Independence from link segmentation (within the network model) assures that if a link is further divided into sub-links redefining link costs so that path costs are not affected, path perceived utility distribution is not affected too, and thus choice probabilities. This feature is clearly guaranteed for path explicit formulations of the distribution of perceived utility (e.g. Logit model). If the distribution of perceived utility is formulated from arc distributions (like the Probit or Gammit specifications presented above) this feature is only guaranteed for distributions stable w.r.t. summation (e.g. Normal or Gamma distributions).

Negativity of perceived utility assures that no user perceives a positive utility to travel along any path. This feature is assured by assuming lower bounded distributions (for instance truncated Normal, Log-Nornal, or Gamma). According to this feature a non-elementary path is always a worse choice than an elementary path within it, thus supporting the assumption of considering elementary paths only. On the other hand, if this feature is not presented, a non-elementary path may be a better choice than the elementary path within it; hence, non-elementary paths should be included within the path choice set (which may be non longer finite), possibly leading to unrealistic situations (some algorithmic drawbacks may also arise). Several adopted distributions (such as Gumbel, MVN) do not satisfy this requirement, even though this condition is usually not relevant in practice.

2.2.5 Deterministic path choice model 

It is worth noting that all the probabilistic choice models, described above,  assign a strictly positive choice probability to any available path. On the other hand the deterministic path choice model, obtained if path perceived utility is assumed a deterministic variable (say a degenerate random variable with null variance),  assigns a positive choice probability to minimum cost paths only (not necessarily to all of them). This choice model results in a one-to-many map if there are several minimum cost paths between an O-D pair, thus path flows are not uniquely defined. Requirements discussed above can be quite easily extended to a deterministic choice model. 

2.3 Demand flow model

Generally demand flows are results of choice behaviour regarding other dimensions than path, such as transportation mode, trip destination, period of the day, and the like, which in turns depend on path costs, for example existing transportation facilities affects accessibility thus destination choice. The opportunity to studying these kinds of choice behaviour mainly depends on the aim of the transportation analysis at the hand. At this aim, let

si 
be the path satisfaction for user class i, given by the expectation of the maximum path perceived utility (see appendix) over all the user in class i
s = [si]i is the satisfaction vector, with elements si.

Path satisfaction depends on path systematic utility values through satisfaction function:

si = si(vi)







(i
Its expression depends on perceived utility distribution (see appendix), consistently with the path choice function; the satisfaction is consistent with utility, thus it turns out to be non-positive for path choice behaviour, costs having been assumed non-negative.

Choice behaviour concerning other dimensions than path can be modelled through the demand function, assumed in the following upper bounded by deq \o(\s\up 6(UB);\s\do 2(i )) ( 0:

di = di(s)
 ( deq \o(\s\up 6(UB);\s\do 2(i ))







(i
The demand function simulates the dependence between demand flows and satisfaction, and will vary depending on the particular choice dimensions For example, if demand is elastic with respect to destination choice, the demand flow depends only on the elements of the vector s for O-D pairs having the same origin zone; if the demand flow of a user class depends only on the satisfaction of the same user class, we have the special case of separable demand functions, which may arise in the case of elastic trip frequency or trip production models.

Demand function is generally specified through a hierarchical combination of several random utility models, with linear utility functions including satisfaction through a positive coefficient. Adopted models lead to continuous (with continuous first partial derivatives) demand functions wrt to satisfaction vector. Under mild assumptions (invariant choice functions) the resulting vector demand function can be proved monotone non decreasing, with  symmetric positive semi-definite Jacobian wrt to satisfaction vector.

By combining the two above equations with the utility function it yields the demand flow model:

di = di( [si(gi)]i )






(i
(5)

Parameters of demand flow model to be calibrated or directly estimated may include: parameters of utility functions, parameters of choice functions, any constraint on demand flows, such as the total flow originated by an origin.


Demand flow model (5) can easily be extended to include simulation of mode choice behaviour. An index denoting transportation mode, m, is to be added to all the above introduced path or demand variables, say  Bi,m, hi,m, gi,m, vi,m, pi,m, and the like. The demand flow di,m using mode m is given by di ( qi,m(wi), where wi is the mode systematic utility vector including among LoS attributes the satisfaction si,m over all the paths available for mode m, and qi,m = qi,m(wi) is the probability that a user of class i uses mode m. For simplicity’s sake this case is not further discussed in the following.

2.4 Assignment function for non-congested networks

If arc costs do not depend on arc flows, non-congested networks, combining the supply model eqns (1) and (3) with the path flow model (4) yields the (stochastic) assignment function for non-congested networks with rigid demand between arc flows and costs:

f(c; d) = (idi Bi  pi ((BiTc) ( Sf






(6)

where
Sf = {f = (i di Bi pi :  pi( 0, 1Tpi = 1 i}  is the feasible arc flow set, non empty (if at least one path is available to each user), compact (since bounded and closed), and convex (since defined by linear equalities, and inequalities):

d = [di]i is the demand flow vector, with elements di.

The assignment function with elastic demand is obtained by considering the demand flow model (5) too:


fED(c) = (i di( [si((BiT c)]i )Bi  pi ((BiT c) ( Seq \o(\s\up 6(ED);\s\do 2(f ))



(7)

where, set Seq \o(\s\up 6(ED);\s\do 2(f )) = {f = (i di Bi pi :  pi( 0, 1Tpi = 1, 0 ( di ( deq \o(\s\up 6(UB);\s\do 2(i )),  i}  is non empty, compact, and convex as in the previous case, demand flows being upper bounded. 
The assignment function with elastic demand may also be formally expressed as:

fED(c) = f(c; d(((c)))
by introducing a vector expression of demand function:
d = d(s)
and a vector expression of satisfaction as a function of arc costs

s = ((c) = [si((BiT c)]i 
This expression will be useful in section 4 to describe some algorithms.

In any case, the assignment function is made up by summing up over user classes independent terms. With random utility models generally adopted it is continuous (with continuous first partial derivatives) wrt arc cost vector, and under mild assumptions monotone non increasing with symmetric negative semi-definite Jacobian.

The assignment function can easily be computed when explicit path enumeration can be carried out. 

Algorithms derived from graph theory are available to avoid explicit path enumeration for path choice models described above (Cantarella and Caascetta, 2001). Dial algorithm (Dial, 1971) is available for Logit path choice model and an extension for C-Logit (Russo and Vitetta, 2003), they can easily be modified to deal with elastic demand. On the other hand, path choice models lacking a closed form (such as Probit or Gammit) require algorithms based on Montecarlo simulation, and only provide an unbiased estimate of arc flows; in this case extension from rigid to elastic demand requires a double application of the algorithm, the first one to compute (an unbiased estimate of) satisfaction, and the second one to compute (an unbiased estimate of) arc flows, after demand flows have been computed from satisfaction values. It should be noted that Montecarlo-based algorithms require longer running time than those available for closed form path choice models.

3. Model formulation

A general model for multi-user equilibrium assignment to a transportation network with rigid demand can be specified by the system of non-linear (vector) equations (1-4), It can easily recognized that the number of equations is equal to the number of unknowns. To make easier the analysis of the model, it is common practice to combine all of them into one single (vector) equation into the shape of a fixed-point model wrt to arc flows:


f = (idi Bi  pi ((BiT c(f)) ( Sf








or
f = f(c(f)) ( Sf








(8)

Clearly the same model is obtained by combining the assignment function (6) with arc cost function (2). Other equivalent models may easily be obtained wrt to arc costs as well as path flows or costs.

If the feasible arc flow set is non-empty, compact and convex, and all involved (arc cost, path choice, path utility) functions are continuous existence of at least one solution can easily be proved through the Brouwer theorem. Moreover, for an assignment function monotone non-increasing wrt to arc flows, if arc cost function is monotone strictly increasing wrt to arc flows existence of at most one solution (weak uniqueness) can easily be proved  by contradiction (weaker conditions are currently being investigated). Existence or uniqueness of arc flow vector also guarantees existence or uniqueness of arc cost vector, patch flow and cost vectors.

A general model for equilibrium assignment with elastic demand can be specified by further combining (vector) equation (5):


f = (i di( [si((BiT c(f)gi)]i ) Bi  pi ((BiT c(f)) ( Sf


or
f = fED(c(f)) ( Seq \o(\s\up 6(ED);\s\do 2(f ))







(9)

Considerations about existence and uniqueness of solution can straightforwardly extended from assignment with rigid demand. Existence or uniqueness of arc flow vector also guarantees existence or uniqueness of arc cost vector, patch flow and cost vectors, as well as demand flows.

Apart from the so-called internal approach above introduced, extension to elastic demand can be carried out through a so-called external approach where the relationship between demand flows and costs is expressed externally to the equilibrium between (arc and path) flows and costs. At the inner level, given demand flows, flows and costs are defined by rigid demand equilibrium assignment, that is any model equivalent to (8). At the outer level, the equilibrium between the costs resulting from the rigid demand equilibrium assignment and the demand flows defined by demand flow model is searched. At this aim let 

feq \o(\s\up 6(RD);\s\do 2(EQ))
 be the equilibrium arc flow vector with rigid demand, solution of model (8), assuming that both existence and uniqueness of solution are granted.

Model (8) for equilibrium assignment with rigid demand implicitly defines a function between its solution, feq \o(\s\up 6(RD);\s\do 2(EQ)) , and the demand flow vector, d: 

feq \o(\s\up 6(RD);\s\do 2(EQ)) = ((d)








(10)

This equation, the arc cost function (2):

c = c(feq \o(\s\up 6(RD);\s\do 2(EQ)))










the  path-arc cost consistency equation (3):

gi = BiT c
i


and the demand flow model (5)

di = di( [si(gi)]i )






(i


define a system of non-linear equations for equilibrium assignment with elastic demand.

4. Model solution
The analysis of equilibrium assignment with elastic demand can easily be carried out following the internal approach, as shown above, but internal algorithms are more complicated to implement in commercial SW. On the other hand, whilst models obtained following the external approach are difficult to analyze theoretically, they can be useful to specify external algorithms, starting from a simpler algorithm for equilibrium assignment with rigid demand, already available in commercial SW.  Both types of algorithms will be described below. Algorithms for equilibrium assignment with rigid demand will be first introduced since they may be part of algorithms for assignment with elastic demand and are useful to introduce basic concepts. 

All described algorithms are based on the Method of Successive Averages (MSA) for solving fixed-point problems; this method provides a sequence of arc flow vectors, fk, belonging to the set of feasible arc flows. Conditions for (asymptotic) convergence to the searched equilibrium flows may be stated by applying the Blum’s theorem (Blum, 1954; see also Daganzo, 1983; Cantarella, 1997), assuming that existence and uniqueness of solution is granted. For practical applications such an algorithm is stopped when convergence error is below a pre-fixed threshold; since all arc flow vectors in the sequence are feasible, the current solution may be considered an approximation to the searched equilibrium flows, hence presented algorithms are often called feasible. They are also called simple since they only require computation of all the involved functions such as the assignment function, the arc cost function, the demand flow model, etc. If the assignment function is computed through Montecarlo simulation which may only provide an unbiased estimation of the search arc flow vector, only almost sure convergence can be considered.
4.1 Algorithms for equilibrium assignment with rigid demand

The most used algorithm for solving equilibrium assignment with rigid demand is based on arc flow averaging (MSA-FA). Given a feasible arc flow vector f0 ( Sf,,  for instance f0 = f(c(f = 0); d), at k = 0, MSA-FA is specified by the following recursive:
 
 
k = k + 1
ck = c(fk-1)

fk = fk-1 + ((/k) ( (f(ck; d) ( fk-1)

where ( ( ]0,1], ( = 1 giving the fastest convergence rate. Assuming that existence and uniqueness of solution is granted, convergence is assured if the arc cost function has a symmetric Jacobian wrt to arc flow vector, otherwise MSA-FA may still be used but convergence is not theoretically assured. In practical applications, the algorithm is stopped when a norm of the vector  (f(c(fk-1); d) ( fk-1) is below a given threshold. 

Another algorithm for solving equilibrium assignment with rigid demand is based on MSA through arc cost averaging (MSA-CA). Given a feasible arc flow vector f0 ( Sf  and c0 = c(f0) at k = 0, MSA-CA is specified by the following recursive equations:

 
k = k + 1
fk = f(ck-1; d)

ck = ck-1 + ((/k) ( (c(fk) ( ck-1)

where ( ( ]0,1], it may occur that a value strictly less than one, ( < 1 gives that the fastest convergence rate. Assuming that existence and uniqueness of solution are granted, convergence is assured if the assignment function has a symmetric Jacobian wrt to arc cost vector, condition which may be assured under mild assumption, as stated in sub-section 2.4. In practical applications, the algorithm is stopped when a norm of the vector  (f(c(fk); d) ( fk) is below a given threshold. 

Notwithstanding its milder convergence conditions MSA-CA is very rarely used in practical applications, since its actual convergence may slower than MSA-FA. Since any MSA algorithm gives the same weight to each encountered solution bi-stage (or multi-stage) algorithms should preferred in practice, to refresh the algorithm “memory” and to prevent that the step (1/k) becomes too small. This approach is also useful when dealing with assignment functions based on path choice function which require Montecarlo simulation, since the first stage may be used to get quickly to an approximation of the searched equilibrium solution, whilst the second stage may be carried out more accurately to improve the approximation. Moreover, the first stage may be carried out through MSA-FA in any case, whilst during the second one MSA-CA is used to assure convergence for arc cost function with non-symmetric Jacobian.

4.2 Internal algorithms for assignment with elastic demand
Internal algorithms for equilibrium assignment with elastic demand are an extension of those for assignment with rigid demand. Given a feasible arc flow vector f0 ( Sf  at k = 0, MSA-FA is specified by the following recursive equations:
 
k = k + 1
ck = c(fk-1)

fk = fk-1 + (1/k) ( (fED(ck) ( fk-1)

On the other hand, given a feasible arc flow vector f0 ( Sf  and c0 = c(f0) at k = 0, MSA-CA is specified by the following recursive equations:
 
k = k + 1
fk = fED(ck-1)

ck = ck-1 + (1/k) ( (c(fk) ( ck-1)

Considerations about convergence made for MSA-FA and MSA-CA with rigid demand have been only extended to (continuous and differentiable) separable demand functions di = di(si), assumed bounded and monotone non-decreasing (as granted under mild assumptions). Even though no formal proof has been provided yet, generalization to demand function with symmetric Jacobian seems quite straightforward.
When the embedded path choice model lacks a closed form  running time needed to compute the assignment function may greatly be reduced by averaging both satisfaction values and arc flows (MSA-FSA). Given a feasible arc flow vector f0 ( Sf  at k = 0, and  s0 =  ((c(f0)) MSA-FSA is specified by the following recursive equations: 
 
k = k + 1
ck = c(fk-1),
dk = d(sk-1)
zk = ((ck), 
yk = f(ck; dk) 

sk = sk-1 + (1/k) ( (zk ( sk-1)
fk = fk-1 + (1/k) ( (yk ( fk-1)

where  ((ck)  and  f(ck; d)  are computed together during the same application of the Montecarlo-based algorithm. 
It is also possible to average both demand flows and arc costs (MSA-CDA). Given a feasible arc flow vector f0 ( Sf  and c0 = c(f0) at k = 0 with sk = ((c0) and d0 = (d(s0)) MSA-CA is specified by the following recursive equations:

k = k + 1
fk = f (ck-1; dk-1),
sk = ((ck-1)

tk = d(sk),  

xk = c(fk)

dk = dk-1 + (1/k) ( (tk ( dk-1)
ck = ck-1 + (1/k) ( (xk ( ck-1)

where  ((ck-1)  and  f(ck-1; dk-1)  are computed together during the same application of the Montecarlo-based algorithm. 

An formal analysis of convergence of MSA-FSA and MSA-CDA has not yet explicitly carried out, but considerations already made for MSA-FA and MSA-CA seem still holding.
4.3 External algorithms for assignment with elastic demand
External algorithms refer to the model introduced at the end of section 3, and are based on the iterative application of an algorithm for equilibrium assignment with rigid demand algorithm and of the demand model. Given a feasible arc flow vector f0 ( Sf  and c0 = c(f0) at k = 0 with sk = ((c0) and d0 = (d(s0)), a simple external algorithm, quite often used in practical applications, is specified by the following recursive equations: 
k = k + 1
fk = ((dk-1) 
ck = c(fk), 
sk = ((ck), 
dk = d(sk)
More sophisticated external algorithms can be obtained by applying MSA wrt demand flows or arc flows, and/or other variables. 
In any case if an external algorithm converges to a solution, then this solution is the equilibrium solution sought. Yet conditions for assuring  convergence of external algorithms has not yet been completely analyzed. External algorithms are easily implemented starting from existing implementations for assignment with rigid demand, and they can accommodate a wide variety of demand functions.
No systematic comparisons of efficiency of internal vs. external algorithms have been published, and it remains an open issues.

5. Conclusion
A consistent modelling approach has been presented to deal with demand-supply interaction in multi-user assignment with elastic demand. It is based on fixed-point models which allows us to analyse existence and uniqueness of solution as well to specify several solution algorithms. 

5.1 Major findings

The presented approach is general enough to cope with explicit mode choice simulation, as briefly indicated at the end of sub-section 2.3. Class-specific arc cost functions can easily considered too, provided that they are specified through a linear transformation of a common arc cost function: ci(f) = (i ( c(f) + ceq \o(\s\up 6(i );\s\do 2(0 )) with clear meaning of introduced notations. In addition, VoT may be considered continuously distributed among users (Cantarella and Binetti, 1998).  Most results may also be extend to deterministic path choice model, briefly introduced in sub-section 2.2.5.


It is also worth noting that path choice behaviour has been modelled assuming that a user completely choose the path to the destination (fully pre-trip behaviour) before starting the trip at the origin. This is most often the case of transportation systems providing a continuous service, or for scheduled transport services if users are assumed knowing the service timetable thus may take decisions before beginning the trip.  Proposed framework can easily be extended to deal with pre-trip/en route choice behaviour (Cantarella and Vitetta, 2001), briefly described below. 
In other cases, most often for scheduled transport systems with high frequency and/or low regularity where users are assumed reaching stops at random, the path followed until destination node is the result of some user decisions taken at the origin and others taken while travelling (pre-trip/en route mixed behaviour), for instance a user may not have complete information on arrival time at a stop and/or on actual bus arrival time. Hence it is generally assumed that users choose a travel strategy to adapt to unknown events (e.g. bus arrivals) (Nguyen 1,988; Spiess and Florian, 1989; Nguyen et, 1998
So far, the presented framework may easily be applied to analyze, for instance, an urban systems with explicit simulation of path choice (assuming stochastic fully pre-trip choice behaviour for car users, deterministic fully pre-trip for pedestrians and deterministic pre-trip/en route for transit users), mode choice as well as elasticity of destination choice, considering several user classes. 
5.2 Research perspectives
Several issues worth of further research work have been already quoted in the paper, such as a complete analysis of convergence conditions of presented solution algorithms and of their relative efficiency, or an analysis of the effects of explicit path choice set modelling on solution uniqueness and algorithm convergence.
An other research perspective concerns model calibration. Indeed several groups of parameters are to be estimated to fully specify a model for assignment with elastic demand, yet usually they are separately estimated as in the examples given below:
· demand flow aggregations considered rigid, for instance origin-destination flows through direct estimation from the revealed behaviour of a sample of users, or through indirect estimation from simple demand model independent of congested costs;

· parameters of demand flow model, for instance utility parameters in mode choice model, through disaggregate calibration against the revealed behaviour of a sample of users and values of (non-congested) LoS attribute; 

· scale parameter in path choice model (and possibly other parameters such as those involved in commonality factor in C-Logit), through aggregate calibration against observed counted arc flows;

· parameters of arc cost (vector) function, estimated through measured travel times and/or comparison with other applications.
Estimation of demand flows as well as demand model parameters may be also updated against counted arc flows.


The above described approach neglects cross effects between congestion wrt flows (supply model) and demand elasticity wrt to costs. So far consistent calibration of a model for assignment with elastic demand is a still open issue. Recently a general framework has been proposed for simultaneous calibration of most parameters (Russo, and Vitetta, 2004).
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7. Appendix: random utility theory

Discrete choice analysis is mostly carried through models derived from Random Utility Theory (introduced by Domencich and McFadden, 1975; for a comprehensive review see Ben-Akiva and Lerman, 1987; Cascetta, 2001). It is assumed that each user within class i: 

· examines all alternatives in the (non empty and finite) set Ki; 

· associates to each alternative k within set Ki a perceived utility Ui,k, modelled through a random variable, with expected value vi,k= E[Ui,k], the systematic utility;

· chooses the maximum perceived utility alternative.


According to the above assumptions the probability, pi,k, that a user of class i chooses alternative k within set Ki is given by the probability that alternative k is the maximum perceived utility alternative. The choice probabilities depend on systematic utility values through the choice map whose expression depends on perceived utility distribution. Let 
i
be the (symmetric positive semi-definite) perceived utility covariance matrix.  
Probabilistic choice models are obtained when covariance matrix is non singular, |(i| ( 0. In this case any alternative may be used, and the resulting choice map is a function, which also depends on parameters of perceived utility. This function is monotone non-decreasing distribution. With symmetric Jacobian, if no other parameter depend on the  systematic utility, but the expected value. Such a choice function is called invariant.
Deterministic choice models (= 0) is obtained if perceived utility is assumed a deterministic variable (say a degenerate random variable with null variance). It  usually results in a one-to-many map since, since there may be several maximum utility alternatives, thus choice probabilities are not uniquely defined. 
For practical applications the systematic utility is expressed through the utility function, usually a linear combination, of attributes, measured in the current condition and or assumed in design scenarios.

The expectation of the maximum perceived utility, E[maxk(Ui,k)] is called satisfaction, it depends on systematic utility values through satisfaction function. Its expression depends on perceived utility distribution, consistently with the choice function. 
A hierarchical combination of several random utility models made up by invariant choice functions with linear utility functions including satisfaction through a positive coefficient, is monotone non decreasing, with  symmetric positive semi-definite Jacobian.
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