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1. INTRODUCTION 

The sequential step method has been most commonly used so far as 
a conventional traffic demand estimation model. Despite that it 
requires in general a great amount of man power, cost and time 
in the collection and the processing of the data, however, it 
seems difficult to apply the traffic demands estimated by this 
model to traffic control or regulation systems on a real life 
road network. This is because spatial aggregation as an areal 
unit of generation and attraction trips does not necessarily 
match with the real life network for convenience of collection 
of the existing socioeconomic data and for a simplicity of compu-
tation works. It has been also pointed out that the sequential 
step model has a deficiency of logical inconsistency that there 
is little or no feedback among the estimation processes. 

As a result of the growing dissatisfaction with the conventional 
procedures, some new concepts of travel forecasting model have 
been proposed and developed, which is aiming to simplify and 
economize the data processing works and at the same time to pro-
vide high accuracy in the estimates. Current research works on 
model development based on the new concepts could be categorized 
into the following two main streams. One is based on behaviour-
al travel demand model or disaggregate model, and the other is 
on model by observed link flows. Although there remain some 
problems for practical use, it is expected that the new models 
might hold the potential to replace the conventional travel fore-
casting procedure. 

This paper will concentrate upon only the model by observed 
traffic volumes on links. With respect to this type of model, . 
Willumsen (1981) identified the following three approaches. The 
first approach consists of assuming that trip making behaviour 
can be explained by a gravity model. The second approach uses 
mathematical programming techniques associated to equilibrium 
assignment problems. The third approach relies on entropy and 
information theory considerations. However, these approaches 
are not necessarily exclusive ones but sometimes used in a joint 
manner in the model building. 

The model discussed in this paper is based on a gravity model 
approach. The previous works by this approach can be classified 
into some groups according to the amount of additional informa-
tion on traffic behaviour. One subgroup includes models in 
which generation and attraction trips (or their respective socio- 
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economic indices) of each zone, deterrence (or cost) function and 
link flow proportions (or route choice probabilities) of each OD 
pair are assumed to be known (Low, 1973. Overgaard, 1974(OECD 
Report). Robillard, 1974. Carey.et al, 1981). The other sub-
group consists of models based on the assumption that generation 
and attraction trips (or their respective socioeconomic indices) 
of each zone and deterrence (or cost) function of each OD pair 
are known, in which traffic assignment procedure is incorporated 
(Holm.et al, 1976. May.et al, 1981). In the above models, the 
gravity model parameters are caliblated to produce an OD matrix 
consistent with observed link flows by using regression analysis 
or maximum likelyhood method. 

Now this paper provides a model in which generation trips from 
each node are treated as unknowns for given sets of link flow 
proportions and trip interchange factors of OD pairs. At this 
time, the trip interchange factor consists of deterrence function 
and adjusting factor to agree with an existing or an earlier OD 
pattern. In this model it is premised that traffic flows are 
observed on all links, and therefore attraction trips of each 
node are not necessary to be used, which can be expressed respec-
tively by a function of generation trips of the nodes. An OD 
matrix can be estimated through an iterative calculation by 
choosing a set of generation trips of nodes giving a best good-
ness of fit between calculated and observed link flows. But 
this model has defects that a unique OD matrix can not be pro-
duced for some types of network and of route choice behaviour, 
and that the convergence can not necessarily be completed in the 
iterative calculation. It could be possible to consider some 
countermeasures to overcome the weak points, but they are a 
little cumbersome for practical application. 

Thus the model is modified in such a way that a closeness of fit 
between calculated and observed generation trip proportions among 
nodes should be attained in addition to a goodness of fit on link 
flows. This model can not only overcome the problems of the pre-
vious model but also produce more rapid convergence in the itera-
tive calculation. Although traffic movements change with various 
conditions, the given values in the models are assumed as con-
stants. Nevertheless, in some occasions link flows are observed 
at a different period from that of OD traffic survey and/or route 
choice survey. Furthermore, a simplification of network repre-
sentation cause errors in link flows. From this viewpoint, the 
sensitivity analyses by simulation are performed to examine the 
influences by errors in the given data on the prediction errors 
in the results. 

By the way the words "flow" and "volume" and "zone" and "node" 
will be interchangeably used in this paper. 

2. BASIC IDEA 

A road network of Fig.l is an example illustrating nodes for trip 
generation and attraction, traffic observing points and zone 
boundary lines in an application of the model. The purpose of 
the model is to estimate an OD matrix from traffic counts on the 
links. In this case, however, generation and attraction trips at 
edge nodes on the study network are provided respectively by link 
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flows entering into and leaving from 
the network. 

Suppose that OD travel volumes could 
be shown in terms of a gravity model 
as below. 

T. 	= a.A.6.B.R. 	, 	(1) 1 1

where A. is the number of trips orig-
inatinglfrom zone i, B. is the number 
of trips terminating ta zone j, R. 
is a trip interchange factor, and1J 
a. and ß, are balancing factors sat-
iifying .rip end constraints written Fig.l An example of network. 
by eqs . (2) and (3) . 

Ej Tij = Ai . 	 (2) 

Ei Tij = Bj . 	 (3) 

It must be noted here that a trip interchange factor represents a 
measure of spacial separation calibrated by the adjusting factor 
to agree with an existing or an ealier OD pattern. 

Now there exists a relationship that a difference between genera-
tion and attraction trips at a zone is equal to a difference 
between the totals of outward and inward link flows observed at 
the zone boundary line. That is, 

Ai - Bi = Ek (RXik - RXki) , 	 (4) 

where RXik is an observed or a real traffic flow on link from 
node i to node k. As the model is based on the assumption that 
traffic volumes are observed on every link in the network, the 
value of the righthand side of eq.(4) is definite, or AD.. It 
follows therefore that an attraction trips Bi is determined by a 
generation trips A.

1
. That is, 

Bi = Ai - ADi . 	 (5) 

Thus substituting eq.(5) into eq.(1) leads to eq.(6). 

Tij = aiAißj(Aj - AD.)R.. . 	 (6) 13 

From this, we can derive a calculated or an estimated flow on 
link mn, or Xmn as shown in eq.(7). 

I 
X

n 
= E. 	[a.A.6.(A. - AD.)R.D .)R..]P 	, 	(7) 

mn 	1]Emn 	1 1 7 ~ 	7 1] 13 

where Pmn is a probability of using link mn by ODij. Hence, a 
link floa is found to be a function of three variables, that is, 
Ai, R.. and P... 

13 	13 

Consequently, a traffic demand estimation by link flows could be 
performed by selecting the sets of the values of A., R. and Pmn 
minimizing the differences between observed and esnimanad link13 
flows. If all the sets of them should be unknown, however, an OD 
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matrix consistent with 	Table 1. A classification of models 
Link flows would not 
be unique, because the 
number of the unknowns 
in general exceeds 
that of the links. In 
order to reduce this 
underspecified problem, 
it would be necessary 
to provide externally 
some of the sets of 
the variables by using 
extra information on 
trip making. Then, the models by observed link flows can be clas-
sified into four types as shown in Table 1 according to which set 
(s) of variables is(are) externally given as constants. 

The model type 1 is that a set of A. only is regarded as unknowns 
(Iida, 1978). The model type 2 is identical with a traffic as-
signment problem in accord with observed link flows, because it 
implies that predetermination of A. and R. provides an OD matrix 
(Iida, 1979). The model type 3 islequiva3dnt to a combined trip 
distribution-assignment problem under the restriction of agree-
ment with observed link flows (Iida. et al, 1982). The model 
type 4 is a unique model distinguished from the above model types 
on the basis of a gravity model approach, in which a set of A. is 
provided from turning movements at nodes (Iida, 1978). Whichl  
model type should be used for practical application depends main-
ly upon the purpose of the estimation and the availability of the 
data. However, the discussion here is limited to the model type 
1. 

3. MODEL BY LINK FLOWS ONLY 

(1) Algorithm 
Let us suppose that trip interchange factors and link flow pro-
portions by OD pairs are assumed to be known. In this model the 
trip interchange factor is given by eq.(8). 

R.. = K..F(c..) , 	 (8) 

where K. is an adjusting factor peculiar to ODij to agree with 
an exis.ing or an earlier OD pattern, F(c. ) is a deterrence 
function between ODij, and ci  is a trave?3time or cost between. 
ODij. This trip interchange factor could be provided by eq.(9). 

Rij  = t../(aib.) , 	 (9) 

where t. is the number of OD trips from node i to node j, a. is 
the numisdr of generation trips at node i and b. is the numbed of 
attraction trips at node j at an earier period3or by a sample 
survey. 

On the other Aand, in order to give a link flow proportion by an 
OD pair, or P., one can utilize a theory or a survey on route 
choice behavio r. 

Then an OD matrix can be produced by selecting a set of Ai  mini- 
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mizing the sum of squares of the relative differences between 
calculated and observed link flows. That is, 

Z = Emn1(RXmn - Xmn)/RXmn}2 - - Min. 	(10) 

where RX and X are observed and calculated flows on link mn 
respectiNly. mn 

The algorithm for this solution 
can be performed through an 
iterative calculation shown in 
Fig.2, in which the calibration 
of A. by using eq.(11) is con-
tinued until a closeness of fit 
shown by eq.(12) is satisfied. 

A ci+1) = [(Fi g)/Ek  
RXik ) . 

(Ek RXik - Ek )( q)
)] 

+ A.(q) . 	 (11) i 

mnx (I(RXmn - Xmn))/RXmnl] 

< E 	(12) 

In order to give efficient and 
stable convergence in the 
iterative calculation, eq.(11) 
is not theoretically but 
experimentally derived. 

( MAT ) 

G IVE R„ ANO p',7 As CONSTANTS 

OBSERVE ARC FLOU RX,n 

ASSUME Ar"" AS INITIAL VALUE 

CALCULATE D(R'°' = Ai°'°'- ADI 

ESTIMATE OD TRIPS 

71'  

YES < 
MAX [I(""sn- ân' )/~an l ] < E ) 

NO 

Ai4'L)=((A141/S'DXik) 	)jk Ati9) 

d (n 

ADJUST °~ AND B t 
IE 3;(A,a) -°D))fti, f-1. I, - ~E'; .ra g, f-` 

ESTIMATE ARC FLOWS 

=Z Z r(a, P'; ,  

IlI 
Aly.u= (EA1°,u) RA, 

(2) Sensitivity analysis 
It is interesting and important  
to investigate inflMnnces by var-
iation in R.. and P.n on the ac-
curacy in t* estimâ3tes, became 
the given values of R. and P. 
at an earlier period *.e some13 
times different from those at a 
forecast period. Also they are 	[1]: for the initial model. 
not necessarily synchronized 	[2]: for the modified model. 
with the observed link flow data. 
Hence, let us examine this by 	Fig.2 Algorithm of the model. 
means of simulations. 

Consider here a variation in an OD pattern as a variation in R. 
for convenience of the simulation, because R. can be regarded11 
approximately as a factor representing the O13pattern if there is 
no significant change in generation and attraction trip patterns. 

Assuming that a relative error in trips of ODij, or y. , is sub-
ject to a no5mal distributi2on with a mean value of UTi~_ 0) and 
a variance aT, or N( uT, aT) leads to eq.(13) 

RTij = T..(1.0 - aTzij) 	 (13) 
13

zij = (Yij - PT)/aT 

T;;= T.i', D'i ' rii' Pi7 

B(c.u, 
A.' l' _ 10: 

( stop ) 

(14) 
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where RT. is a real or a true value of OD trips from node i to 
node j ai3a forecast period and T. is that at an earlier period, 
but the total of RT. is adjusted 3So as to agree with the total 
of Ti . Then giving3random  normal deviates to the set of zi 
wg AA produce an OD matrix whose OD pattern has a variance df 
aT for the earlier one. 

In a similar way, it is possible to provide RPmn as a real value 
of probability of ODij using lino mn at a forecast period with a 
variance of aP for the earlier P.. 

	In this simulation, howev- 
er, RP. is made by giving a variance in branching probabilities 
of flow at each node under the restriction of flow conservation 
relationships. 

It must be noted here that, as large values of a and a violate 
that RT. and RPmn must be non-negative, the variationsPin a 
and a AL limited within 0.5 and 0.35 respectively. Thus the 
sensitivity 	analyses on prediction errors are performed by 
varing the set of values of RXmn, represented by eq.(15). 

RXmn = E.. 	(RT..RP' ) . 	 (15)  13 	13 

Although there are a variety of measures of prediction error, 
the weighted root mean square relative error is used in this 
paper, because it can be considered from a viewpoint of traffic 
engineering that the accuracy in heavy traffic volumes is in 
general more important than that in light ones. For example, a 
prediction error in OD trips, or 6OD, is shown by eq.(16). 

d 	= [(1/RT) E. RT. {(T. - RT..)/RT. }
2]l/2 	(16) 

OD 	13 	13 	13 	13 	13 

where RT = E.. RT... 13 	13 

Let us suppose a road network*in Fig.3 
and an artificial OD matrix T.. as an 
earlier data in th9mupper rowlin Table 
2. But a set of P.. is omitted here. 
When a = 0 and a 11 0, the model 
produces the estimates of the OD trips 
shown in the lower row in Table _23, in 
which it is assumed that E = 10 	It 
follows that the prediction error in 
OD trips is 2.4% and that in genera-
tion trips is 2.1%. Needless to say, 
the prediction error depends upon an 
exactness on goodness of fit on link 
flows. One could ascertain that a 
further continuation of the iteration 
would yield an OD matrix exactly equal 
to the given one. 

si 115 	 lei ~ „ 	 pi ~I9 

	

23 	~ ~ 	 ' 	
2a 	

9 
É2 

Fig.3 Road network 
for simulation. 

When a and a are changed, the prediction errors in OD trips, 
in trafic flows on links by OD pairs and in generation (or at-
traction) trips are shown respectively in Fig.4, Fig.5 and Fig.6. 
Let us see first the prediction errors in OD trips. In general, 
it can be found that the prediction error grows with the in-
crease in a and a,. But what must be noticed here is that the 
influence bÿ the variation in aP on the prediction error is far 
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Fig.4 Prediction errors in 
OD trips. 
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Fig.6 Prediction errors in 
generation trips. 
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Table 2 Given and estimated matrices. 

O 
1 2 3 4 5 6 7 8 9 Total 

1 530 470 590 410 300 370 320 260 3250 
538 460 597 383 304 363 324 255 3223 

2 500 560 383 600 370 290 400 330 3430 
508 569 399 581 389 295 420 336 3497 

3 420 590 330 360 540 240 340 390 3210 
411. 598 334 335 546 235 344 382 3185 

4 550 390 320 500 480 480 380 300 3400 
557 409 324 482 502 486 397 304 3462 

5 420 490 380 520 540 390 460 390 3590 
392 474 354 502 521 364 443 365 3414 

6 290 400 550 41.0 530 350 400 570 3500 
294 419 557 429 511 355 418 578 3560 

7 380 300 240 500 390 310 520 470 3110 
373 305 235 507 364 314 527 462 3085 

8 320 
323 

440 
460 

360 
364 

440 
459 

500 
481 

420 
438 

600 
607 

540 
546 

3620 
3679 

9 
300 
295 

290 
295 

430 
422 

350 
355 

370 
346 

540 
547 

480 
471 

540 
547 

3300 
3278 

Total 3180 3430 3310 3520 3660 3500 3200 3360 3250 30410 
3153 3497 3285 3582 3484 3560 3175 3419 3228 30381 

Upper: given. Lower: estimated. 
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Fig.5 Prediction errors in 
link flow by OD pair. 

less than that by the variation 
in aT as seen in Fig.4. For 
example, when a = 0.30 and aP 
= 0, g 	is 0.23 Oppositely, 
when 0TD= 0 and Q = 0.30, we 
get 6OD = 0.11. Consequently, 
how to give an accurate or a 
reliable value of R. seems to 
be more important s?1 ject in 
this model. It is also neces-
sary to pay attention that, 
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when a exceeds 0.4, d 	shows a sharp increase. In regard to 
link flows 	by OD pairs, it can be seen that, when a is small, 
the prediction error, or 3„, is clearly affected by'a , but as 
a increases, the influencé by a 	becomes less. With generation
trips, it is found that the prediction error, written by d,, 
shows only a slight change for the variations in a and a Aas 
s een in Table 3. Finally, the accuracy in the estimates bf the 
total OD trips is always markedly high except for the worst case 
that aT  = 0.50 

Table 3 Prediction errors in total OD trips. 

°p °T •00 .05 .10 .15 .10 .15 .30 .35 .40 .45 .50 

.00 .00 .00 .00 .O1 .O1 .O1 .02 .00 .02 .04 .09 

.05 .00 .00 .OL .O1 .O1 .O1 .O1 .02 .02 .02 .07 

.10 .00 .00 .O1 .O1 .O1 .O1 .O1 .02 .02 .02 .09 

.15 .00 .00 .O1 .00 .O1 .01 .02 .00 .02 ..04 .09 

.20 .00 .00 .O1 .O1 .03 .O1 .02 .00 .O1 .04 .09 

.25 .00 .00 .00 .O1 .O1 .O1 .02 .03 .O1 .02 .03 

.30 .O1 .00 .00 .00 .O1 .O1 .03 .02 .00 .04 .04 

.35 .00 .00 .OL .02 .O1 .00 .03 .03 .00 .02 .08 

Through the above simulations, it has been clarified that the 
variation in a does not give a vital affection on prediction 
errors for each kind of traffic demand when a is large. Con-
cerning this, we can consider the following r asons. The first 
is that, although the variation in a has a direct effect on the 
estimates of OD trips, the effect byTthe variation in aP  is 
dispersed over a number of routes used between OD pairs. The 
second is that, as the link flows are accumulated for OD pairs 
on the respective links, the effect by the variation in up  would 
be cancelled on the links. It might be concluded from this that 
even a rough value of Pmn  could be used for an estimation of OD 
trips. 	1] 

(3) Weak points of the model 
For some particular types of road network, such as a linear net-
work and a one way loop network, the model does not produce a 
unique OD matrix. In the case of a linear network it can be 
proved as follows. Suppose a linear network with three nodes as 
shown in Fig.7 in which the relationship of eq.(17) should be 
hold. 

RX12  = T12  + T13  = Al 	_ 	© 
	3  

RX23  

:23: 
 T13  + T23  = 

:31 
	Q

y 	RXm

21 	T21 + T31 
= 
 1 	Fig.7 A linear network 

with three nodes. 
RX32  = T31  + T32  = A3  

These relationships mean that the generation and the attraction 
trips at the edge nodes, or node 1 and node 3, are given by the 

(17) 
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link flows, and at the same time the observed flows are equal to 
the estimated ones. But the generation and attraction trips at 
node 2 are not unique, because we can easily determine any sets 
of values of A2  and B2  satisfying a relationship shown by eq. 
(18), which is derived from eq.(17). 

A2  - B2  = (RX21  + RX23) - (RX12  + RX32) 

= (B1  + B3) - (A1  + A3) = constant. 	(18) 

With this type of network, therefore, it is proved that the 
model based on a gravity model represented by eq.(6) could 
produce a variety of OD matrix consistent with observed link 
flows even if sets of R. and P.. were known. When the scale of 
the linear network becomes larg3e , this can be verified induc-
tively in the same way. 

With a one way loop network, for 
example, as shown in Fig.8, it seems 
difficult to prove mathematically 
this. However it has been confirm-
ed that a different set of initial 
values of A. provides a different 
OD matrix (1akajima, 1978). In 
addition, a uniqueness of OD matrix 
is considered to depend upon a set 
of route choice of each OD pair. Fig.8 A one way loop 

network. 
On account of this problem, it 
should be recommended in the case of practical application of 
the model to perform a test run in advance in order to know 
whether there exists a unique set of A. or not. If the set (or 
the subset) of A. is found to be non-unique, the following two 
methods could belemployed for determination of the unique values. 
The first is a method to provide the values externally to them, 
and the second is a method making use of an information on gen-
eration trip proportions among nodes (or generation trip pattern) 
as shown later. 

There is one more problem in this model that the convergence in 
the iterative calculation for correction of A. is not necessari-
ly completed, because the closeness of fit beiween the observed 
and the calculated flows is examined not on the respective but 
on the total link flows emerging from each node, and therefore,. 
it sometimes occurs that the positive errors on some links are 
cancelled by negative errors on the other links. But it has 
been observed that temporal and random perturbations of flow 
branching probabilities at each node produce an effective im-
provement in the convergence. 

4. MODEL BY LINK FLOWS AND GENERATION TRIP PATTERN 

(1) Algorithm 
As stated above, the estimation model by link flows only will, 
on some occasions, produce a non-unique OD matrix. In order to 
overcome this problem, one can utilize an information on genera-
tion trip proportions among nodes (or generation trip pattern). 
An estimation by this modified model is conducted by minimizing 
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the differences between given and calculated proportions of gen-
eration trips among nodes, together with a goodness of fit on 
link flows, which is shown in eq.(19), 

Z = Emn i(RXmn - X
mn)/RXmn f 2  

41a 	 i/a 	 i )2 	—+ Min. 	(19) 

where a. is the number of generation trips at node i by a previ-
ous dath, and a = E a. and A = E. A.. The algorithm for this 
model is illustrated in Fig.2. In this model, there is no prob-
lem as in the model by link flows only. That is, this can 
always produce a unique OD matrix and attain a complete conver-
gence in the iterative calculation for correction of Ai. 

In order to investigate error characteristics on OD trip esti-
mates, simulations were also carried out by making variations in 
R. and RX 	with the same network as in Fig.3. In this case, 
allow on Tink mn with a certain variance for the true link flow 
RX , is made in the same way as shown before. The reason of 
considering the variation in RX 	is that traffic count miss and 
simplification of network representation will cause errors in 
link flows. 

The results of the simulation concerning prediction error in OD 
trips d

n 
 and that in link flows d are shown respectively in 

Fig.9 ane Fig.10. Obviously, bothXof the errors grow with in-
crease in the variances in OD pattern a and that in link flows 
o. It can be seen, however, that the influence by c on d 
becomes less as aT  increases. Namely, when a is large, SOO

D
is 

approximately determined by a
T 
 . Also it can be found that the 

effect by a on dO  decreaseswith the increase in oX. As com-
pared with this, it seems that the sensitivity by variation in 
aT  on ó

X 
 is approximately equal regardless of increase or de-

crease in aX  

(Y.1 

110 

20 

60 

SO 

60 

30 

20 

10 

10 	20 	30 	00 	0, CYO 

Fig.9 Prediction errors in 
OD trips. 

f 6 6 

0 f0 20 30 60 ,m 

Fig.10 Prediction errors in 
link flows. 
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Fig.11 and Fig.12 represent the results of 6,13  respectively by 
variation in a on the assumption c = 0, anâ by variation in a 
on the assumption a, = 0. From this, it can be inferred that an  
affection by a on ô 	is considerably greater than that by a 
But the difference beetween them would be decreased with increases 
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in the values of aT 
and aX. 

• 

= 0 % 

IY. 
eo = 0 % 

    

0 	10 	20 	20 	10 	, (Y4 	 10 	20 	20 	l0 	, IY.1 

Fig.11 Influence by ax ondOD
• Fig.12 Influence by 

aT  on dOD- 

Finally, it must be added that this model converges more quickly 
than the previous model by link flows only, and this advantage 
will grow with the increase in the scale of the network. 

5. CONCLUDINQG REMARKS 

Two kinds of models for estimating OD matrix by traffic counts 
were proposed and discussed, which can be applied to a real 
life network. 

With the initial model, an OD matrix can be estimated by obtain-
ing only a set of generation trips of nodes giving a best good-
ness of fit on link flows for given sets of trip interchange 
factors and link flow proportions by OD pairs. A sensitivity 
analysis by simulation on this model revealed that the influence 
by the variance in OD pattern (or trip interchange factor) on 
prediction error in OD matrix is considerably great but that by 
the variance in route choice probability is not significant, in 
particular when the variance in OD pattern is great. Also the 
model was found to have a property that the percent error in the 
estimate becomes less with increase in the number of. trips. 
Namely, the accuracy in the total OD trips is the highest. 

But this model has a problem to produce non-unique OD matrix 
consistent with observed link flows for particular types of 
network or patterns of route choice behaviour, for example, such 
as a linear network and a one way loop network. Since a set (or 
subset) of nodes with non-unique values of generation trips 
could be easily found through test runs of the model by giving 
different sets of the initial values, one can give externally 
proper values to the set of the nodes. 

There is another problem in this model that the convergence in 
the calibration of generation trips can not be necessarily com-
pleted, even though the iterative calculation were eternally 
continued. This is because the calibration is made in terms of 
the sum of outflows from each node, but not of the respective 
link flows. But it has been observed that temporal and random 
perturbations of branching probabilities of link flows at each 
node can improve effectively the convergence. 

In order to overcome the shortcomings of the above model, the 
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known values in advance, which are in general derived from an 
earlier OD data as stated before. Even though the existing 
earlier data were spatially aggregated macroscopic one, however, 
it would not be so much difficult to correct them to match with 
a real life network under consideration. For instance, assuming 
that a specific value of trip interchange factor applies to each 
of a predetermined set of time (or distance) interval, we can 
determine a separate value for each set of trips occuring within 
a specific time (or distance) interval. Also it would be possi-
ble to obtain a set of generation trip pattern by conducting a 
simple traffic survey or by using socioeconomic indices. 

Equililrium traffic assignment procedure could be incorporated 
into the model presented here, but it needs a great amount of 
computation work. Besides the above simulation has shown that 
the noise or the variation in route choice probability does not 
give a vital effect on the OD estimates, and therefore the in-
corporation of traffic assignment procedure does not always seem 
necessary if only a prediction of OD matrix is needed. 

Entropy maximizing model can calibrate only the OD trips using 
the observed links but leaves those not included in the observed 
links unchanged. As against this gravity type model can cali-
brate the trips between all the OD pairs, whether they are 
related to the observed links or not. Accordingly it can be 
said that the number of the observed links for gravity type 
model is less than for entropy maximizing model. 

Finally, a goodness of fit between estimates and observed data 
is used in the presented models. As compared with this, there 
is a model using a restriction of agreement between them as 
seen in mathematical programming technique. Which measure of 
the closeness should be employed for a practical application is 
an issue to be further discussed and investigated. If data 
errors and model specification errors are little, the restriction 
of agreement may be used, but otherwise, the use of a goodness of 
fit is considered to be more appropriate, because in such a case 
an enforcement of the agreement may rather sometimes distort the 
estimates. 

Research on the model proposed here is still under way and must 
be further investigated for practical use. 
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