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ABSTRACT 

Probabilistic choice models, such as logic and probit models, are 

highly sensitive to a variety of specification errors, including the use 

of incorrect functional forms for the systematic component of the utility 

function, incorrect specification of the probability distribution of the 

random component of the utility function, and incorrect specification of 

the choice set. Specification errors can cause large forecasting errors, 

so it is of considerable importance to have means of testing models for 

the presence of these errors. A :umber of tests based on the likelihood 

ratio statistic have been developed. These tests and available infor-

mation on their power are summarized in this paper. 

The likelihood ratio test can entail considerable computational 

difficulty, owing to the need to evaluate the likelihood function for 

both the null and alternative hypotheses. Substantial gains in compu-

tational efficiency can be achieved through the use of a test that re-

quires evaluating the likelihood function only for the null hypothesis. 

A Lagrangian multiplier test that has this property is described, and 

numerical examples of its computational properties are given. 

An important disadvantage of conventional specification tests is 

that they do not permit comparisons of models that belong to different 

parametric families in order to determine which model best explains the 

available data. Thus, these tests cannot be used to compare models whose 

utility functions have substantially different runctional forms or models 

that are based on different behavioral paradigms. A practical method 

dealing with this problem is. described. 
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TESTING THE SPECIFICATIONS OF RANDOM UTILITY MODELS 

by 

Joel L. Horowitz 

1. Introduction 

In recent years, considerable progress in the field of travel demand 

modeling has been made possible through the use of probabilistic models 

of discrete choice. The multinomial logic model is the simplest and best-

known example of a probabilistic choice model (Domencich and McFadden, 

1975; McFadden, 1974). Other examples are the multinomial probit model 

(Daganzo, 1979; Hausman and Wise, 1978; Daganzo, Bouthelier and Sheffi, 

1977) and the generalized extreme value (GEV) model (McFadden, 1980). 

Compared to other formulations of travel demand models, probabilistic 

choice models have the important advantages of being based on a clearly 

defined (though not necessarily generally accepted) principle of human 

behavior, namely that of utility maximization; being able to treat a 

wider variety of travel and policy options than other operational modeling 

approaches can treat, and being able to make efficient use of data. 

The translation of these qualitative advantages into quantitative 

models that explain or forecast travel behavior accurately requires, among 

other things, achieving correct specifications of the functional relations 

between the aspects of behavior that are being explained and the relevant 

explanatory variables. The axioms of probabilistic choice theory provide 

useful guidance for the development of functional specifications, but 

this guidance is by no means sufficient to prevent the occcurence of 
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potentially serious specification errors. Specification errors in 

probabilistic choice models, as in other types of econometric models, can 

cause forecasting errors that are large enough to destroy a model's 

usefulness (Horowitz, 1981c; Williams and Ortuzar, 1979). Therefore, it 

is of considerable importance to have means available for testing models 

for the presence of these errors. 

The purpose of this paper is to describe several specification-tests for 

probabilistic choice models, summarize what is known about the power of these 

tests, and indicate areas where further research is needed. This information 

is presented here in summarized form. More detailed information is available 

in references that are cited in the text. Many of the tests that are 

described here apply only to the mulrinomial logit model. The logit model 

is based on more restrictive assumptions and, hence, is subject to a larger 

number of specification errors than other probabilistic choice models are. 

In addition, the logit model has been available for routine use for a longer 

time and has been the object of more research efforts than have other models. 

The remainder of the paper is organized as follows. Section 2 summarizes 

the properties of probabilistic choice models that are relevant to understanding 

the causes of specification errors in these models and the structures of the 

specification tests that are discussed in the paper. Section 3 discusses informal 

specification tests that are based on examination of the signs, ratios and 

t-statistics of the estimated values of models' parameters. Likelihood-ratio 

specification tests for the multinomial logit model are discussed in Section 4. 

Section 5 describes some Lagranian multiplier tests. The problem of com- 

paring non-nested choice models is discussed in Section 6, and concluding 

comments are presented in Section 7. 
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2. Summary of Properties of Probabilistic Choice Models  

In probabilistic choice models of travel demand, it is assumed that an 

individual's preferences among the available travel alternatives can be 

described by a utility function and that the individual selects the alterna-

tive with the greatest utility. The utility of an alternative is represented 

as the sum of two components: a systematic (or deterministic) component and 

a random component. The systematic component accounts for the effects of 

the average tastes of the population and the observable characteristics 

of the alternative and the individual. The random component accounts for 

the effects of unobserved characteristics of the individual and the 

alternative. The probabilistic choice model then forecasts the probability 

that an individual will choose a particular alternative (i.e., the probability 

that the utility of the particular alternative is greater than the utilities 

of all other alternatives) as a function of the observable characteristics 

of the individual and the available alternatives. 

Mathematically, let individual q face a set A(q) of J mutually exclusive 

alternatives. Let Uqj be the utility of alternative j to this individual. 

It is assumed that Uqj can be expressed in the form: 

Uqj = U (Xqj, 0 )+ a qj (x qj), 	 (1) 

where U is the systematic component of the utility function, Xqj is a 

k-dimensional vector of observed characteristics of individual q and 

alternative j, 0 is a vector of constant parameters, and a qj is the 
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random component of the utility function. The probability Pqj that 

individual q chooses alternative j is given by: 

Pqj = Prob[Uqj > Uqi, for all i e A(q),i # j]. 	(2) 

Given equation (1), functional specification of a probabilistic choice 

model (that is, defining a specific functional form for Pqj) involves three 

basic steps: specifying the probability distribution of a qj, specifying the 

functional form of Û and specifying the set of alternatives A(q) among which 

individual q can choose. After the functional specification of a model has 

been made, the values of the parameters 0 and of any unknown parameters of 

the distribution of a qj are estimated statistically by fitting equation (2) 

to observations of choice. If an error is made in one or more of the 

functional specification steps (for example, if the probability distribution 

of a qj is specified incorrectly), ttr_n the fitted model usually will have an 

incorrect functional form and, depending on the nature of the specification 

error, may produce highly erroneous forecasts. 

Probabilistic choice models usually are classified according to the 

probability distribution of e qj. In the multinomial logit model, a qj is 

assumed to be independently and identically distributed across individuals 

and alternatives with the following cumulative distribution function: 

F( e ) = exp [-exp(- a )] 	 (3) 
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In the multinomial probit model, the row vector e q' = ( e ql,..., e qj) is 

assumed to have been drawn from a J-dimensional, multivariate normal distri-

bution whose mean is zero and whose covariance matrix, E (Xql, Xq2... Xqj), 

may depend on the explanatory variables. The multinomial probit model is 

considerably more general than the multinomial logit model is. Unlike 

the logit model, the probit model permits the e qj  to be correlated across 

alternatives, it permits the variances of the e qj to depend on j, and it 

. -permits random taste variations across individuals.* 

In the GEV model, the joint cumulative distribution function of the 

components of a q'  is: 

F( a 1,..., a  j) = exp f -G[exp(- a 1),..., exp (- e J)] } 	(4) 

where G is a non-negative, homogeneous-of-degree-one function that satisfies 

certain regularity conditions. These conditions have been given by McFadden 

(1980). Equation (4) implies that in the GEV model, the e qj may be correlated 

*For the purposes of this paper it is assumed that the available data are 

cross-sectional and contain only one observation of choice per individual. 

Hence, the possibility of random variation of e qj in repeated choices by 

- the same individual does not arise. A generalization of the probit model to 

include such variation has been described by Daganzo and Sheffi (1979). See, 

also, Heckman (1981a, 1981b) for discussions of the problem of modeling repeated 

choices by the same individual. 
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across alternatives. However, the a qj must have equal variances for all 

alternatives, and random taste variations are not permitted. Thus, the GEV 

model is more general than the logit model but less general than the probit 

model. The nested, or sequential, logit model is a special case of the 

GEV model (McFadden 1980). 

In the multinomial logit model, Pqj is given by (McFadden, 1974): 

Pqj 	exp U(Xgj,  0 )/ E exp U(Xgi, 0 ). 	 (5) 
i e A(q) 

In the multinomial probit model, Pqj is given by: 

j 
Pqj = f d 	j( n 

Uqjr f d 
	r) 95 J( 	1,...,  E Ji E ) 	(6) 

r t j 

where 4, j is the J-dimensional normal density function with mean vector zero 

and covariance matrix E (Xql, Xqz,..., XqJ), and ûgjr  is defined by: 

-;jr ' Uqj - 1  qr 	 (7)  

In the GEV model, Pqj is given by (McFadden, 1980): 

Pqj = 3 log G (llgl 	 U u.)/ a üq j. 	 (8) 

Statistical estimation of the parameters of the foregoing models 

typically is carried out by the method of maximum likelihood. The log-

likelihood function, L, is given by: 

L = E 	E gqj ln Pqj 	 (9) 

q 	j e  A(q) 

where gqj equals one if individual q chooses alternative j, and gqj is zero 

otherwise 

A probit model with E _( n2  /6)I where I is the identity matrix, will 

be called an "identity probit model" in this paper. All other probit models 
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will be called "general probit models." An identity probit model is virtually 

equivalent to a logit model. The logit and identity probit estimates of the 

parameters 0 , the maximum values of the logit and identity probit log-likeli-

hood functions, and the logit and identity probit choice probabilities usually 

are nearly equal. This near equivalence of identity probit and logit forms 

the basis of several specification tests for the logit model. These tests 

are discussed in Sections 4 and 5. 

In the logit model, the ratio of the probabilities that two alternatives 

i and j are chosen by an individual q depends only on the attributes of i, j 

and q. The ratio is independent of the attributes of all other alternatives 

and, in particular, does not depend on whether other alternatives are included 

in or excluded from the choice set A(q) (McFadden, 1974). This property of 

the logit model is called "independence of irrelevant alternatives" (IIA) 

and is used in some of the logit specification tests that are described 

later in this paper. 

3. Informal Specification Tests  

The statistical estimation of the values of the parameters of probabilistic 

choice models typically includes examination of the signs, ratios and t-

statistics of the estimated parameters. If the signs or ratios of these 

parameters are inconsistent with prior information or if important parameters 

fail to achieve satisfactory levels of statistical significance, then the 

utility function specification under consideration usually is deemed inadequate, 

and another specification is sought. Although it is generally recognized that 

these informal procedures can provide only rough indicators of the quality of 

models, they often are the onlÿ diagnostic procedures that are carried out 

during model estimation. Therefore, it is of interest to evaluate the ability 

of these procedures to identify erroneous models. 
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Numerical studies by Horowitz (1980 , 1981e) have indicated that the 

informal procedures do not constitute powerful tests for specification errors. 

In these studies it was found that logic models can yield asymptotically 

correct estimates of parameter ratios, signs that are correct both asymptotically 

and in typical-size samples, and good t-statistics with typical-size 

samples, even though the models are erroneously specified and give 

estimates of choice probabilities that are both statistically inconsistent 

and highly erroneous. The inappropriateness of using coefficient ratios as 

indicators of the validity of estimated models also has been noted by 

McFadden (1976). 

Another informal test procedure consists of comparing observed aggregate 

choices by population subgroups (for example, the proportion of individuals 

within a given income range who choose a particular alternative) with the 

aggregate choices predicted by the model under consideration. Substantial 

differences between observed and predicted aggregate choices constitute 

evidence that the model is incorrectly specified. The statistical properties 

of this test procedure have not been investigated. 

4. Likelihood-Ratio Tests for the Multinomial Logit Model  

A large number of likelihood ratio tests for specification errors in logit 

models can be devised. Three such tests that currently available evidence 

suggests may be particularly useful are discussed here. Other likelihood ratio 

specification tests are discussed by McFadden, Tye and Train (1976), McFadden, 

Train and Tye (1977), and Horowitz (1981a). The tests are described in 

Parts a through c of this sect-ion. Illustrations of the power of the 

tests are given In Part d. 
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a. Test based on conditional choice (McFadden, Tye and Train,(1976); 
McFadden, Train and Tye (1977)); 

The IIA property of the logit model implies that consistent estimates 

of the utility-function parameters can be obtained using estimation data 

sets in which individuals' choices are restricted to a subset of the full 

set of available travel alternatives. In the test based on conditional 

choice, estimates of the utility-function parameters obtained using the 

full choice set and estimates obtained using a subset of the full choice 

set (referred to hereafter as the restricted choice set) are tested for 

equality by means of a likelihood ratio test. Rejection of the hypothesis 

that the utility function parameters are the same with the two choice 

sets implies that the logit model under consideration is erroneous. 

Specifically, let LF and LR, respectively, be the maximum values 

of the log-likelihood function in independent samples based on the full 

and restricted choice sets. Let LFR be the maximum value of the log-

likelihood function for the combined samples. Then, if the logit model 

under consideration is the correct specification, the quantity 

LR = 2(LF  + LR - LFp) 	 (10a) 

has asymptotically the chi-square distribution with K degrees of freedom, 

where K is the number of utility function parameters. It is necessary 

that the full (F) and restricted (R) choice samples be independent. Other-

wise, LR does not have the chi-square distribution. 

An important case of non-independent F and R samples occurs when the R 

sample consists of those observations in F in which an alternative in the 

restricted choice set is chosen. In this case, the test based on conditional 

choice can be carried out using the test statistic 
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S 	(OR -0 F )' (KR - IF)-1  (O R - OF), 	(lob) 

n n 
where 0 R and 0 F, respectively, are column vectors of maximum-likelihood 

n n 
parameter estimates obtained using the R and F samples, and VR and VF, respec- 

tively, tively, are the estimated covariance matrices of o R and Q. F. If the 

logit model under consideration is the correct specification, then S is 

asymptotically chi-square distributed with degrees of freedom equal to 

n n 
the rank of VR  - VF  (Hausman and McFadden, 1980). 

The test based on conditional choice is computationally straightforward, 

as it relies on standard logit estimation procedures. However, the 

test tends to give results that depend on which alternatives true 

included in the restricted choice set. Thus, it may be desirable to 

carry out the test several times, using a different restricted choice 

set each time. 

The test based on conditional choice does not yield information on the 

causes of error in models it identifies as being erroneous. (An illus-

tration of this is given in part d of this section.) Nor does it provide 

alternatives to models it finds to be erroneous. 

b. Test based on the universal logit model (McFadden, Tye and Train, 1976; 
McFadden, Train and Tye, 1977):  

The utility of an alternative normally is considered to depend only on 

attributes of that alternative and of the traveler. In the test based on 

the universal logit model, the utility of an alternative is allowed to 

depend on the attributes of other alternatives, as well. This generalized 

utility function is constructed so that it includes the utility function of 

the logit model being tested as a parametric special case. This special 

case is then tested against the generalized utility function by means of a 
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likelihood ratio test. Rejection of the parametric special case implies 

that the logit model being tested is erroneous. 

Mathematically, let U.  (Xj, 0 ) denote the systematic component of the 

alternative j utility function for the logit model being tested. Let 

11 (Xj, .0 ; { j; k # j } , 4 j) denote the generalized systematic component 

of the utility function for alternative j, where { Xk; k* j } denotes the 

attributes of all alternatives except j and ̀Y j  is a vector of parameters 

associated with { 116 k * j } . Let 0 denote the null vector, and assume 

that 

û(x j, o ; { Xk; k # j } , 0) = û(x j, o ) 	 (11) 

for all j. Given an estimation data set, let LR be the maximum value of the 

log—likelihood function when T j= 0 for all j, and let LU be the•maximum 

value of the log—likelihood function when T j is unconstrained. If the 

logit model being tested is specified correctly, then the quantity 

LR= 2(L0 — LR) 
(12) 

has asymptotically the chi—square distribution with as many degrees of 

freedom as there are components in the vectors 1 j 

The test based on the universal logit model can be carried out using 

standard logit estimation methods and does not require separate samples 

for the restricted and unrestricted estimations. However, in models with 

large numbers of alternatives or attributes, the vectors T  j collectively 

will tend to have a very large number of components if the generalized 

utility function of each alternative includes all of the attributes of 

the other alternatives. This makes estimating the unconstrained model 

computationally cumbersome, and it may cause the test to have low power, 

owing to the large number of degrees of freedom that large numbers of 

T j  components produce. These problems can be avoided by allowing only 
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a small subset of the attributes { j; k * j } to enter the generalized 

utility function for alternative j. Systematic procedures for selecting 

an appropriate subset have not been developed. 

The universal logit test does not give information on the sources of 

error in logit models it identifies as erroneous. This point is discussed 

further in part d of this section. The test does yield alternative models 

to erroneous logit models that it identifies, namely logit models with 

generalized utility functions. However, these models are not consistent 

with the standard axioms of utility theory, since the models permit the 

utility of an alternative to depend on attributes of other alternatives. 

The test based on the universal logit model can be generalized easily 

to apply to non-logit models that are based on the utility-maximization 

paradigm. The generalization consists of using the desired non-logit choice 

probability functions for evaluating LR in equation (12). However, if the 

vectors T j have large numbers of components, then evaluating LU for a 

non-logit model may present severe computational difficulties. 

c. Test against the probit model (Horowitz, 1981a; Hausman and Wise, 1978):  

Because the logit and identity probit models are virtually equivalent, 

an approximate specification test for the logit model can be obtained in 

the following way. Let U(Yj, o ) be the systematic component of the 

utility function of the logit model that is under consideration. Estimate 

the parameters 0 and E of a general probit model with the same systematic 

utility function component, and test the hypothesis that E _( 1;2  /6) I. 

If the hypothesis is rejected, then this implies that logit is not a 

correct specification for the particular U function and data set under 

consideration. 



202 
Random Utility Models 
	

by J. L. Horowitz 

Mathematically, let Lp and LL, respectively be the maximum values of the 

general probit and logit log-likelihood functions. Then, if the hypothesis 

E _( it2  /6) I is true, the quantity 

LR = 2(Lp - LL) 	 (13) 

has approximately the chi-square distribution. The distribution is approxi-

mate (even asymptotically) because LL is not exactly equal to the log-likeli-

hood value that would be obtained from an identity probit model. The number 

of degrees of freedom in LR is equal to the number of independent components 

of E that must be constrained to achieve identity probit. There are certain 

complexities involved in counting the independent components of E . These 

complexities, which are due to the presence of redundant parameters in E , 

are discussed by Albright, Lerman and Manski (1978). 

The probit test has the considerable computational disadvantage of requiring 

estimation of the parameters of a general probit model. This makes the test 

infeasible for models with large numbers of parameters or alternatives. In 

addition, the probit test may lose power due to a large number of degrees of 

freedom if E is a large matrix. This problem can be mitigated by constraining 

some of the components of E in the general probit estimation, although systematic 

procedures for selecting the components that should be constrained have not been 

developed. The probit test provides information concerning sources of error in 

logit models it rejects if the assumption that the true model is probit can be 

accepted. The specification error in the logit model is then caused by 

erroneously constraining one or more components of E . However, if the 

assumption that probit is the true model cannot be accepted, then this inter- 
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pretation of the results of the probit test is not reliable. The probit test 

provides alternatives to logit models it rejects. These alternatives, which 

are probit models, are consistent with utility maximization. 

d. The power of the likelihood ratio tests:  

Wald(1943) has shown that if the null hypothesis in a likelihood ratio test 

is false, then the asymptotic distribution of the test statistic is 

non-central chi-square with degrees of freedom equal to the number of 

parameters that are constrained by the null hypothesis. If LRn  denotes the 

value of the likelihood ratio test statistic for a sample of size n, then the 

non-central parameter ZN for a sample of size N can be written as: 

ZN = N lim [E(LRn)/n] 	 (14) 
n—) = 

If the hypothesis being tested is true, then ZN is zero, and the likelihood 

ratio test statistic has the usual central chi-square distribution. Thus, 

in general the asymptotic cumulative distribution function of LRN can be 

written as: 

Prob[LRN < X] = Prob[ X2  (ZN, d) < X], 	 (15) 

where X2 (ZN,d) denotes a non-central chi-square variate with non-central para- 

meter ZN and d degrees of freedom, d being the number of parameters that are con- 

strained by the null hypothesis. 

If it is assumed that the true choice model is known, then equation (15) 

can be used to estimate the power of a likelihood-ratio specification test 

to reject an erroneously specified logit model. Alternatively, the equation 

can be used to estimate the sample size needed to achieve a given rejectiôn 
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probability at a given significance level. The details of these procedures 

have been described by Horowitz (1980b, 1981a). 

Horowitz (1980, 1981a) has used these procedures to estimate the ability 

of the previously described logit specification tests to reject erroneous 

logit models in a number of test cases. In each test case, there were three 

alternatives in the choice set and two explanatory variables in the true model. 

The sources of specification error in the test cases were as follows: 

1. The true model was a probit model in which the random components 

of the utility function were correlated across alternatives. 

2. The true model was a probit model in which the random components of the 

utility function had different variances in different alternatives. 

3. The true model was a probit model with random taste variations. 

(Random taste variations cause the random utility components a  to be 

correlated across alternatives, to have different variances in different 

alternatives, and to have a covariance matrix that depends on the 

explanatory variables.) 

4. The true model was a logit model, but one of the explanatory variables 

was omitted from the erroneously specified model. 

5. The true model was a logit model, but only group—average values of 

one of the explanatory variables were available in the estimation data 

set. This case simulates the estimation of a disaggregate model with 

zonally averaged data. 
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The results obtained in examples of each of the test cases are summarized 

in Tables 1 and 2. (More detailed results are available in Horowitz (1980, 

1981a), and the results of additional examples are presented in Horowitz 

(1980).) 	Table 1 shows the magnitudes of the errors in choice probabilities 

that were produced by each of the 5 erroneous logit models. The tabulated 

errors are the root-mean-square (RMS) absolute and fractional errors for 

100 sets of values of the explanatory variables. These errors have been 

computed as large-sample limits and, therefore, are free of sampling 

errors. In test canes 3, 4 and 5 particularly, the errors in the choice 

probabilities are large enough to reduce substantially or destroy the 

practical value of a model. 

Table 2 shows two indicators of the ability of the likelihood ratio logit 

specification tests to reject each of the erroneous test models. The first 

indicator is the sample size needed to achieve a probability of 0.95 that 

the erroneous mod..1 would be rejected at the 0.05 significance level. The 

second indicator is the probability of rejection at the 0.05 significance 

level if the sample contains 1000 observations. In the test based on 

conditional choice, the tabulated resi.lts are based on the restricted choice 

sets that yielded the most powerful tests. All of the results are based on 

the use of equations (14) and (15). 

Referring to Table 2, It can be seen that the tost based on the universal 

logit model and the test against a probit model both have high power in the 

cases that were tested. In contrast, the power of the test based on 

conditional choice is highly variable. Comparison of the result; in Tables 1 
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and 2 suggests that the power of the various specification tests to reject 

erroneous logit models is not closely related to the magnitudes of the errors 

in choice probabilities that would result from accepting an erroneous model.* 

In 4 of the 5 test cases, the most powerful test based on conditional 

choice was obtained by omitting alternative 3 from the restricted choice 

set. This indicates that the diagnostic information provided by the test 

based on conditional choice (consisting mainly of the restricted choice 

set that causes rejection of the model that is being tested) is likely to be 

the same for a variety of different specification errors. Hence, the results 

of the conditional choice test cannot be used to infer causes of specification 

errors. 

Although they are not shown in Table 2, the values and statistical 

significance levels of the parameters ! j in the universal logit test were 

found not to be related to the source of specification error, thereby indi-

cating that this test also does not provide useful information on causes of 

specification errors (Horowitz, 1981a). 

As noted earlier, the probit test gives reliable information on causes 

of specification error only if the true model is a probit model. Otherwise, 

the information on causes of specification error that the test provides 

(this information consists of the estimated values of the components of E ) 

can be misleading. For example, zonal averaging of explanatory variables 

can create the appearance of random taste variations in a probit model, even 

*However, when the true model is a probit model, the power of the test against 
a probit model does appear to increase as the sizes of the choice probability 
errors made by the erroneous logit model increase (Horowitz, 1980b). 
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if the true model is a fixed-taste logit model (Horowitz, 1981a). In such 

a case, uncritical acceptance of the diagnostic information obtained in a 

probit test would lead to the erroneous conclusion that random taste variations 

are important in explaining the behavior being modeled. 

The foregoing results are based on a small number of test cases and, 

therefore, are exploratory and suggestive, not conclusive. In further 

research, it would be particularly useful to consider test cases in which 

there are more explanatory variables or alternatives than there are in the 

cases described here. This would provide a means of assessing the loss of 

power that may take place as a result of the increase in degrees of freedom 

that occurs as the numbers of explanatory variables and alternatives in the 

tested model increase. It would also be useful to determine whether there 

are systematic ways to constrain a priori the parameters m  and E in the 

universal logit and probit tests so as to minimize this loss of power. 

5. Lagrangian Multiplier Tests  

The likelihood ratio test of a logit model against a probit model suffers 

from the considerable disadvantage of requiring estimation of the values of the 

parameters of a general probit model. The difficulty of this estimation arises 

from the need to integrate the right-hand side of equation (6) numerically. 

Techniques for approximating the integral have been described by Daganzo (1979), 

Daganzo, Bouthelier and Sheffi (1977), Albright, Lerman and Planski (1978) 

and Hausman and Wise (1978). Computational difficulties also can arise 

in the universal logit test and its generalization to non-logit models, 

owing to the potentially large numbers of parameters that must be estimated 

in maximizing the unconstrained log-likelihood function. 
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Silvey (1959) has described a Lagrangian multiplier test that enables 

hypotheses concerning the values of a model's parameters to be tested with-

out carrying out maximization of tn. unconstrained log-likelihood function. 

This test often permits substantial computational savings in comparison 

to the likelihood ratio test. The general structure of the Lagrangian 

multiplier test is as follows. Let Y be a random variable with a probability 

density function f(y, 0 )that depends on a k-dimensional vector of parameters 0 

Let 0 r  be an r-dimensional vector (r<k) consisting of r components 

of 0 . For specificity, assume that the components of 2 are ordered so 

that() r  consists of the first r components. Let L (y, 0 ) be the 

log-likelihood function of a sample y on the random variable Y. Suppose 

the hypothesis is made that 0 r=  0 r*, where 0 r* is any r-dimensional 

vector. Denote this hypothesis by Ho. Then the components of 0 that 

are not constrained by Ho  can be estimated by solving the Lagrangian 

equations: 

a L/ ae i + a i = 0; i=1,..., r 	 (15a) 

a L/ a8 i= 0 ; i =r+l,...,k 	 (15b) 

0 r  = 0 r* 	 (15c) 

where 8 i  is the i'th component of 0 , and a ' = ( X 1,  X 2,•••,  a r) is 

a row vector of Lagrangian multipliers. If Ho  is true, then a (the column 

vector corresponding to A ') will fluctuate around 0 , depending on random 

variations in the sample of Y. Therefore, if a is substantially different 

from 0, this can be taken as evidence that Ho  is false. 
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More precisely, define the matrix S2 by: 

SI ij  = f [ 3 In f(y, 0 )/ 30 i][ 3 In f(y, Q )/ 30 j]f(y, e) dy (16) 

where  0 and the derivatives are evaluated at the solution to equations (15). 

Define the kxr matrix R by: 

1, if i= j<r 
Rij 	= 	

0, otherwise 	 (17) 

Let N be the sample size. Then, if Ho  is true, the statistic 

W= (1/N) a' R' S? -1 RX 	 (18) 

has asymptotically the chi-square distribution with r degrees of freedom 

(Silvey, 1959). An important property of W is that it depends only on the 

estimated value of 0 under Ho. Therefore, it is not necessary to estimate 

the value of 0 without the Ho  constraints or to maximize the unconstrained 

log-likelihood function in order to evaluate W. 

It is a straightforward matter to generalize the statistic W to permit 

testing of hypotheses of the form h( 0 ) = 0, where hi = (h1,...,hr) 

is any r-dimensional, vector-valued function satisfying certain regularity 

conditions and r<k. See Silvey (1959) for a discussion of this generalization. 

Horowitz (1981b) has derived expressions for a and S1 for the Lagrangian 

multiplier test of a multinomial logit model against a multinomial probit 

model (subject to the approximation that logit and identity probit are 

equivalent). These expressions are rather lengthy and, in the interest of 

brevity, will not be presented here. They are available in Horowitz (1981b). 

Evaluation of the test statistic requires, at most, single-dimensional 
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numerical integration and, in contrast to maximum likelihood estimation, is 

not iterative. Consequently, the computational effort required to perform a 

Lagrangian multiplier test of a logit model against a probit model is considerably 

less than that required to perform the corresponding likelihood ratio test. 

In numerical examples of the Lagrangian multiplier test Horowitz (1981b) found 

that W could be evaluated in 3.7 CPU seconds on an IBM 370/168 computer system, 

whereas evaluation of the corresponding likelihood ratio test statistic would 

have required over 60 CPU seconds. 

The Lagrangian multiplier test procedure does not produce estimates of 

the values of the parameters of probit alternatives to logit models. Rather, 

it provides a computationally efficient procedure for testing logit specifi-

cations. If, as a result of these tests or other considerations, it is decided 

that a probit specification would be superior to a logit specification for the 

behavior being modeled, then it is necessary to undertake maximum likelihood 

estimation of the probit model's parameters. 

Another possible use of the Lagrangian multiplier approach is to test for 

the presence of nonlinear-in-parameters functional forms in the utility functions 

of probabilistic choice models. For example, let X1 and X2 denote the explana-

tory variables of a two-variable logit model, and let 8 1, 8 2, a 1  and a 2 

denote constant parameters. Suppose that it is desired to test the hypothesis 

Ho  that the correct specification of the systematic component of the utility 

function is: 

U = 0 1X1+ 0 2  X2 	 (19) 
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against the alternative Hi that the correct specification is 

U' 61 X1 a1 + 62 X2 a2 
	

(20) 

Since Ho is equivalent to the hypothesis a l' a 2 = 1.0, 110 can be 

tested with a conventional likelihood ratio test. However, this requires 

maximizing the logit log-likelihood function with the nonlinear-in-parameters 

utility function (20). The computations involved in carrying out this 

maximization can be both cumbersome and time-consuming. 

The Lagrangian multiplier test enables Ho to be tested against Hi without 

the need for maximizing the logit log-likelihood function with the utility 

function (20). To develop the Lagrangian multiplier test statistic, define 

the following notation. Let 8 ' be the row vector ( a 1, a 2, 6 1, 6 2), and let 

6 1 and 6 2, respectively, be the maximum likelihood estimates of the values 

of 6 1 and 6 2 under H. These values can be obtained using standard logit 

estimation methods. Let 8 p' denote the row vector (1, 1, 6 1, 6 2)• Let 

Pqj be the probability that individual q chooses alternative j (equation (5)) 

when the utility function is specified as in equation (20). Let Fqj denote 

the estimated value of Pqk under H. 	Finally, define gqj as in equation (9). 

Then the matrix R is: 

1 0 

0 1 

0 o 

0 0 

The matrix çZ and the vector of Lagrangian multipliers a can be estimated 

consistently by: 

n 	 ~ 
n ij=(1/N) E E (3 Pgk/ 30 i)( a Pqk/ 38 j)/Pqk; i, j=1,...,4 	(21b) 

q k 

A i= (-1/N) E 	E (ggkigk)( a Pgk/ aß i); i=1, 2 	(21c) 
q k 

(21a) 

• R = 
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n 	~ 
The derivatives are evaluated at ß = a o. The quantities 0 ij and a i and, 

hence, the test statistic W can be computed easily once the values of B 
n 
 1 and 

A 
e 2 are known. 

To illustrate the properties of the Lagrangian multiplier test of Ho 

(equation 19) against H1 (equation 20), a 1000-observation data set was con-

structed by simulation from a logit model with the utility-function specifi-

cation (20). The values of the 6 and a parameters were 0 1=1.0, 0 2 = 0.2, 

a 1=0.6 and a 2 = 0.4. The value of the Lagrangian multiplier test statistic 

was computed using a FORTRAN program that was executed on an IBM 370/168 computer 

system. Evaluation of the test statistic required 4.4 CPU seconds, exclusive 

of the time used in logit estimation of the values of the 6 parameters. The 

value of the test statistic' for this particular example was W = 	If Ho is 

true, then this represents the value of a chi-square variate with 2 degrees of 

freedom. Hence Ho is rejected at the 0.001 significance level. 

Although the Lagrangian multiplier test of Ho against H1, has been 

illustrated here using a logit model, the test procedure and equations (21) 

apply to any probabilistic choice model whose choice probabilities can be 

expressed as functions of U in equation (20) and that satisfy certain regularity 

conditions. Similarly, the Lagrangian multiplier test can be used to test 

hypotheses concerning the values of the parameters in utility functions with 

any functional form satisfying the regularity conditions. (See Silvey (1959) 

for a discussion of regularity conditions.) Thus, for example, a third possible 

use of the Lagrangian multiplier test in specification testing is for carrying 

out the test against the universal logit model and the generalization of this 

test to non-logit models. 
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The Lagrangian multiplier test and the likelihood ratio test are 

asymptotically equivalent (Silvey, 1959). However, the two tests can give 

conflicting results in small samples (Sevin, 1976). 

6. Comparison of Non-Nested Models 

The likelihood ratio and Lagrangian multiplier tests that are described in 

Sections 4 and 5 all consist of testing a choice model against a parametric 

generalization of itself. In other words, suppose that the model being tested 

has explanatory variables X, parameters 0 and choice probability Pj(X, 0 ) for 

alternative j. Then it is assumed that the alternative model also has the variables 

X and parameters 0 as well as additional variables Y and parameters ! . 

Let Qj (X, Y, 0 , 'f ) denote the probability that alternative j is chosen in 

the alternative model. It is assuced in that there exists a value of 'f , 

say ! o, such that 

Pj(X, 0 ) = Qj(X, Y, 0 , y' o) 	 (22) 

for all X, 0 ,Y and j. (In the case of a test of a logit model against a 

probit model, this equality is approximate.) The hypothesis v 	'f o  is then 

tested against the alternative hypothesis Y # y' o. 

It is easy to conceive of situations in which it would be useful to test 

a given model against an alternative model that is not a parametric generalization 

of the given model. For example, suppose that two logit models are under con-

sideration for explaining a particular set of travel data. In one model the 

systematic component of the utility function is specified as: 

ll = e 1X1 + e 2  x2, 	 (23) 

where the X's are explanatory variables and the 9 's are parameters. In the 

other model, the systematic component of the utility function is specified as: 

V ° V'YlY2, (24) 
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where the Y's are explanatory variables that may be distinct from the X's, 

and * is a parameter. It is desired to test the two models against one 

another to determine which model best explains the available data. Clearly, 

there is no'y value that causes iJ and V to coincide for all values of the X's, 

Y's and 9 's. Similarly, there are no 9 values that cause U and V to 

coincide for all values of the X's, Y's and ' . Hence, equation (22) cannot 

be satisfied for the two models under consideration, and procedures that in-

volve testing models against parametric generalizations of themselves cannot 

be used (at least directly) to compare the models of equations (23) and (24). 

Pairs of models for which equation (22) cannot he 

satisfied are said to be non-nested. Statistical procedures for comparing non-

nested models are discussed in detail in Horowitz (1983a, 1983b). In the 

remainder of this section the properties of one such procedure that is 

particularly useful in practice will be discussed. This procedure is the 

likelihood ratio index. 

THE LIKELIHOOD RATIO INDEX  

The most commonly used form of the likelihood ratio index is defined as 

follows. Let L denote the value of a model's log-likelihood function when the 

values of the model's parameters equal their maximum likelihood estimates. Let 

Lo  denote the value of the log-likelihood function of a model that assigns 

equal values to the choice probabilities of all alternatives, regardless of the 

values of the explanatory variables. Then the likelihood ratio index, p2, 

is defined as 

p2  = 1 - L/Lo. (25) 
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If there are N individuals in the estimation sample and each individual 

chooses among J alternatives, then Lo  is given by 

	

Lo  = -N log J. 	 (26) 

(Throughout this discussion it will be assumed that all individuals face the 

same number of alternatives. Allowing different individuals to face 

different numbers of alternatives would add complexity to the presentation 

without changing the results significantly.) 

The likelihood ratio index is a goodness-of-fit statistic for probabilistic 

choice models that is similar in many respects to the coefficient of multiple 

determination, R2 , in regression models. The larger the value of p2  for a 

model, the better the model fits the given data. Therefore, two non-nested 

models P and Q can be compared by comparing the likelihood ratio indices p 2  
P 

and pQ2  for the two models. If p p2 - p  Q2 > 0, this suggests that model P is 

superior to model Q, whereas p p2 - p Q2 < 0 suggests that model Q is superior. 

To evaluate the ability of the likelihood ratio index to distinguish 

between correct and incorrect models, it is necessary to know the probability 

distribution of p p2 - p 2. The following notation will be used in describing 

this probability distribution. Let P(i,X) denote the true probability that 

an individual chooses alternative i when the explanatory variables have the 

value X. (Here, X donotes the entire set of values of all of the explanatory 

variables of both models. If some elements of X  are not variables of one of 

the models, then the choice probabilities of this model are independent of the 

values of these elements.) Let Q (i,X) denote the choice probability for 

alternative i that model Q would yield when the explanatory variables have the 

value X if there were no random sampling error. P(i,X) and Q(i,X), respectively, 
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are the large-sample limits (i.e., the limits as the sample size approaches 

infinity) of the maximum likelihood estimates of the choice probabilities of 

models P and Q. Let px(X) denote the proportion of individuals in the 

population being studied for whom the values of the explanatory variables 

equal X. Let kp and kQ, respectively, denote the numbers of estimated 

parameters in models P and Q. Let N denote the number of individuals in the 

estimation data set, and let J denote the number of alternatives available to 

each individual. Finally define 42  by 

A 2  = E { [P(i, X) - Q(i, X)]/P(i, X) } 2  p(i, X)px(X)• 	(27) 
i, X 

A
2 
 is the weighted mean square fractional error in the choice probabilities 

that would result from using the incorrect probabilities Q(i,X) in place 

of the correct probabilities P(i,X). The weight for given i and X values 

equals the proportion of the population that has explanatory variable values 

X and selects alternative i. Note that 42  always exceeds zero unless Q(i,X) = 

P(i,X) for all i and X. In other words, A2  exceeds zero unless model Q is 

identical to model P and, therefore, is correctly specified. 

The probability distribution of p P
2 - p  Q2 is derived in Horowitz (1983a). 

It is shown there that p P
2 - 

p 2 has asymptotically the normal distribution 

with the following mean (p) and variance (a2): 

= 0 2/2 log J + (kp - k())/2N log J 	(28) 

a 2  = A 2/N(log J)2. 

It follows from equations (28) and (29) that 	
2 	2 

q 	O 	p P 	p Q exceeds zero, thereby 

indicating that the correct model is superior to the incorrect one, with the 

following probability: 

(29) 
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Pr( p p2 - p Q2 > 0) 	[N1/2 A /2 + (kp - kQ)/2N 1/2  A ], (30) 

where ; is the cumulative standard normal distribution function. 

It is easy to see from equation (30) that the likelihood ratio index 

is consistent. In other words, as N approaches infinity, Pr(p 
P2 
 - p Q2 > 0)  

approaches 1. It also can be seen from equations (28) - (30) that with 

finite samples, adding parameters to an incorrect model (i.e., increasing kQ) 

tends to decrease the value of p P
2 - p  Q2 and of Pr(p 

P2 
	p Q2 > 0), even 

if the variables associated with the added parameters are incorrectly specified 

or irrelevant to the choices being studied. This clearly is an undesirable 

characteristic of the likelihood ratio index, since it means that in finite 

samples the index tends to favor models with large numbers of parameters, 

regardless of whether these models are correct. However, this characteristic 

can be removed by making a simple modification in the definition of the 

likelihood ratio index. Define p 2, the modified likelihood ratio index, for 

a model with k estimated parameters by 

p

- 2

=p 2 - k/2N log J 

or, equivalently, 

p 

- 2 

 = 1 - (L - k/2) /N log J. 

The modified statistic p 2  is used in the same way as p 2  for comparing two 

models. Thus, p P2 - p 2 > 0 indicates that model P is superior to model Q, 

and p P2 - p 2 < 0 indicates that model Q is superior. 

Equations (30) and (31) imply that the probability that p P
2 - p  2 

exceeds zero is given by 

(31)  

(32)  
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Pr( p P2 - p 
0
2 > 0) _ ~ (N1/2 

A /2)
. 

It can be seen from equation (33) that p 2 is consistent and, in contrast to 

the unmodified likelihood ratio index, is not biased in favor of models with 

large numbers of parameters. This makes p 2 more useful than 0

2 
for comparing 

models. Accordingly, only the modified index p 2 will be used in the 

remainder of this discussion. 

The ability of p 2 to distinguish between correct and incorrect models 

can be assessed by computing Pr( p P2 - p 2 > 0) for various values of N and 

1. Table 3 shows the results of such a computation. It can be seen that if 

the sample size exceeds roughly 250, a comparison of two models using p 2 

has a probability of at least 0.80 of selecting the correct model when the 

RMS percentage difference between the two models' choice probabilities 

(i.e., 100.40 exceeds 10 to 15 percent. 

The probability distribution of p 

P2 
p Q2 can be used to derive a 

simple upper bound on the probability that -P. 2 for an incorrect model (Q) 

exceeds p 2 for a correct model (P) by an arbitrary amount z. The bound is 

(Horowitz, 1983a) 

Pr( p 2 - 
p 2 

> z) ~ $ L-(2Nz log J)
1/2

]. (34)  

This inequality implies that in moderate size samples, very small differences 

between the p 2 values of two models indicate with high probability that the 

model with the lower - 
2 

p value is incorrect. For example, if N >_ 250, 

z >_ 0.01, and J ? 2, inequality (15) yields 

Pr( p Q2 - 
p P2 

	z) ~ 0.03. 

(33) 

(35)  
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In other words, if N _ 250 and the p 2  values of two models differ by 0.01 or 

more, the model with the lower p 2  value almost certainly is incorrect. 

7. Conclusions  

One important conclusion that is suggested by the foregoing discussion is 

that specification testing should become a standard part of the development 

of multinomial logit models of choice behavior. These models are subject to a 

large number of specification errors owing to the restrictive stochastic 

assumptions of logit, and the specification errors can cause large errors in 

forecasts of behavior. A relatively large group of specification tests for 

logit models is available. Although information on the power of these tests 

is extremely limited, it seems reasonable to speculate that many of the tests 

will be able to identify erroneous logit models often enough to be useful. In 

addition, the accumulation of practical, empirical experience with these tests 

is essential to the development of a better understanding of their value. 

Another important conclusion is that there is a need for considerably more 

research in the area of specification testing of probabilistic choice models. 

Some research topics that may be especially useful include; 

1. Estimating the power of the logit tests when there are more than two 

variables and three alternatives in the tested model. This should include 

attempting to develop ways of preventing loss of power due to degrees of free-

dom as the number of variables and alternatives in the tested model increase. 

2. Developing methods for testing non-logit choice models. Here the 

main difficulty appears to be identifying suitable alternatives against 

which these models can be tested. For example, with the possible exception of 

the probit generalization of the universal logit model, it is not yet known 
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what classes of alternative models might provide useful (and tractable) 

specification tests for general probit models. 

3. Developing methods for identifying specific causes of specification 

errors. The tests discussed here either give no information on specific 

causes or give information that is reliable only if certain a priori alternative 

hypotheses concerning the correct model are true. For example, the test of 

a logit model against a probit model gives reliable information on causes 

of logit specification error only on the hypothesis that the correct model is 

probit. It would be useful to have procedures for identifying causes of 

specification error that are less dependent on such hypotheses. 

4. Investigation of the small sample properties of specification tests. 

All of the tests described here are based on the large-sample properties 

of the test statistics. Is is largely unknown whether serious errors are 

likely to be made by assuming that the large-sample properties apply to the 

sample sizes normally used in empirical choice modeling. (See McFadden (1974) 

for some limited results concerning the small sample properties of parameter 

estimates) . 
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TABLE 2 - ILLUSTRATIONS OF THE POWER OF LOGIT SPECIFICATION TESTSa 

Conditional Choice 	Universal Logit 
Test 	 Test 	Probit Test  

Source of 
Error 

Sample 
Size 

Rejection 
Probability 
with Sample 
Size of 1000 

Sample 
Size 

Rejection 
Probability 
with Sample 
Size of 1000 

Sample 
Size 

Rejection 
Probability 
with Sample 
Size of 1000 

Correlated Random 1,100 0.92 1,300 0.86 400 1.0 

Utility Components 

Random Utility 1,200 0.90 920 0.97 380 1.0 

Components with 
Unequal Variances 

Random Taste 
Variations 260 1.0 140 1.0 80 1.0 

Omitted Relevant 
Explanatory 
Variable 6,500 0.25 990 0.95 970 0.95 

Zonally Averaged 
Explanatory 
Variable 2,800 0.52 580 1.0 840 0.98 

"Sample size" is the size of data set needed to achieve a probability of 0.95 that the erroneous model would be 
rejected at the 0.05 significance level. The rejection probability with a sample size of 1000 is computed for the 
0.05 significance level. In the test based on conditional choice, it is assumed that half of the data are used 
to estimate the model with the full choice set and half are used to estimate the restricted-choice-set model. 
The test is based on the likelihood-ratio statistic of equation (10a). 
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TABLE 3 - PROBABILITIES THAT THE MODIFIED LIKELIHOOD RATIO INDEX SELECTS THE 

CORRECT MODEL (P) IN A COMPARISON WITH AN INCORRECT MODEL (Q)a 

N 	 A 
	

Pr( 7: P 2 - p Q2 >0) 

100 

250 

500 

0.05 

0.10 

0.15 

0.20 

0.05 

0.10 

0.15 

0.20 

0.05 

0.10 

0.15 

0.20 

0.60 

0.69 

0.77 

0.84 

0.66 

0.79 

0.88 

0.94 

0.71 

0.87 

0.95 

0.99 

aN is the size of the estimation data set, A is the RMS difference between 

the large sample limiting values of the choice probabilities of models P and 

Q, and Pr( p p2 - P Q2 > 0) is the probability that the correct model is 

selected. 
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