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1. INTRODUCTION 

The estimation of cost functions for the different transportation indus-
tries has played an important role in the analysis of industry structure 
and technology from a microeconomic perspective. Such an analysis can be 
performed on the basis of the so called dual properties of the cost func-
tion, which are in turn a result from the theoretical observation that 
cost minimization takes place on the technical boundary.1  However, the 
fact that transportation demand is also affected by the level of service 
has not been dealth with within the context of transportation cost func-
tions. The relevance of this point is guaranteed since this effect, 
which is more the rule than the exception, makes transportation output 
endogenous, i.e. can be affected by firm's action. 

In this paper we provide a framework to understand the role of the level of 
service in the behavior of a firm facing exogenous input and output. 
prices. We show that the firm does not necessarily operate on the 
technical frontier. The role of the operating options is highlighted 
in an example using a cyclical transportation system which illustrates 
the concepts. 

2. LEVEL OF SERVICE AND THE TRANSPORTATION FIRM. 

We understand transportation output as the real flow level of different 
commodities carried by a firm among different origin-destination pairs 
during different periods (Jars Diaz, 1982 a,b). Here we will work with 
its scalar version Y. We will denote the input vector by X, the input price 
vector by w,and output price (fare) by P. The transformation function 

F(X,Y) 	0 	 (1) 

describes all the technically feasible pairs (X,Y), with equality 
representing the technical boundary. 

In the scalar output version, F(X,Y) is given by f(X)-Y, where f(X) 
is the traditional production function which gives the maximum level 
of Y that can he technically produced from X. The usual analysis 
indicates that cost minimization always take place on the boundary, 
with the input price ratio equal to the technical rate of input subs-
titution. This is the foundation of duality between the coat function 
and F(X,Y). 

For a given activity system, transportation demand is usually a func-
tion of both the fare charged and other factors like security or travel 
time, which we will summarize under the concept of level of service, L. 
If Yd is the number of units (goods or passengers) per unit time willing 
to be relocated, and P is exogenously given and fixed, then 

Yd  ■ Yd  (L) 
(2) 
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where demand increases with the level of service. 

The level of service generated by the firm is, in general, a function of 
the level of input usage, the actual flow produced and the operating rule 
(r) followed, i.e. 

- 'r(X,Y) . 	2 	(3) 

We expect t to he increasing with Xi and decreasing with Y. Available 
research (Gâlvez and Gibson, 1983) suggests that technical optimality is 
associated with a particular operating rule ro. In other words, if 
tp(r,x) is the function that describes the flow produced from a technical 
viewpoint, then 

f(X) - ip(ro,X) - Max p(r,X) 	(4) 
r 

ro  will be momentarily assumed to be the prevailing rule. Combining 
equations 2 and 3 we get 

Yd  ` Yd  [tro(X,Y)] - h(x,Y) 	(5) 

Thus,an actual flow Y can be generated from an input set X provided both 
capacity and the generated demand are sufficient, i.e. 

f(X) > Y 

Y 4 h(X,Y) 

(6)  

(7)  

The level of service constraint (7) can be shown to correspond to an im-
plicit constraint 

Y : g(X) (8)  

such that g(X) increases with Xi. We will name g(X) the iso-demand func-
tion. Its representation in the input space is decreasing and convex 
(see appendix). 

The relevant cost minimizing problem for a transportation firm willing 
to generate an actual flow Y (parametrically given) is thus 

Min wXT 	 (9) 
X 

subject to 

Y - WO 6 O 

Y - g(X) 	O 

Xi  )O 

The feasible set is represented in figure 1, assuming f(X) - Y and 
g(X) = Y intersect at some point. In this context, the solution to pro-
blem (9) will take place on the boundary of the shaded area. There are 
three possible outcomes, depending on the input price ratio : 

i) 	technical constraint active, level of service constraint inactive 
(point 1); such a solution implies that flow Y is produced at ca-
pacity, but the associated level of service generates a demand Yd 
such that Yd  Y is not satisfied. 
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ii) level of service constraint active, technical constraint inactive 
(point 2); this solution is characterized by excess capacity and 
complete satisfaction of demand. 

iii) both constraints active (point 3); flow, demand and capacity coincide. 

Figure 1. Cost minimization with technical and level of 
service constraints. 

However, a solution like 2 implies that f(Xi , X2 ) is strictly greater 
than Y and the assumed operating rule can be changed. It would be in the 
firm's interest to find an operating rule r1 such that 

kr (X,Y) > kr  (X,Y) 
1 	0 

Then the production of Y should fulfill two conditions : 

(10) 

Y ■ Yd  [2r 1 (X,Y)3 	 (11) 

Y ' 	X) 	 (12) 

Equations 11 and 12 form a system that can be solved as Y"A(X), which 
is a function in the input space that passes through point 3 and belongs 
to the sub-space determined by g(X) < Y and f(X) > Y, by construction. 
The A(X) locus is, undoubtly, a set of feasible input combinations 
that implies an expenditure reduction with respect to a type 2 solution. 
As the operating rule can not be changed in either a type 1 or type 3 
solutions(f(X)∎Y), then cost minimization will take place either on 
f(X)-Y or on a(X)-Y. This is represented in solid lines in figure 2. 
It should be noted that the firm may deliberately choose to operate 
below capacity in the production of a given flow Y, depending upon the 

input price ratio. 

X2 
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%1  

f (X)=Y 

g(X)=Y 

Figure 2. Locus of potential solutions considering changes 
in the operating rule. 

In summary, the introduction of the level of service modifies the feasi-
ble set in a cost minimizing context. Only a type 1 solution preserves 
the traditional equality amoung input price ratios and technical rates of 
substituttion, which is the basis of the duality between the transformation 
function and the cost function. Cost minimization on a(X)=Y implies that 
input price ratios are equal to "subjective' substitution rates among fac-
tors; such a solution generates a cost level which is higher than the one 
associated to the corresponding capacity. This makes the actual cost func-
tion C(Y) to be different to the "dual" cost function Cd(Y), such that 

C(Y) > Cd(Y) , 	 (13) 

with equality representing type 1 solutions. 

3. ILLUSTRATION WITH A CYCLICAL SYSTEM. 

Let us define a simplified version of Gâlvez'(1978) cyclical system, which 
operates moving a flow Y between a given origin-destination pair with 
one loading site at the origin 0 and one unloading site at the destina-
tion D. We define 

B = fleet size 
K = vehicle capacity in physical units [P.U.] 
k = load size in [P.UI 
t1 - travel time from 0 to D,loaded, in time units [T.U.] 
t2 = travel time from D to 0, unloaded, in [T.U.j 
u = loading-unloading capacity of any site, in 	P.U./T.U.] 

The flow moved from 0 to D can be easily shown to he described by 

iy(r,X) = 	
Bk  

11  +t2+?k  
(14) 
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where load size is taken as the operating rule. As gi(r,X) is increasing in 
k, and k has an upper bound K, we get 

f(X) - Mrgr,X) - 	BK 2K 	(15) 
t1 + t2 + - 

u 
such that the operating rule associated to the technical frontier is full 
capacity operation. 

We will assume a linear in R demand function 

Yd e a + b R 	a,b t R+ . 	(16) 

The level of service will be taken as time in the system (or total travel 
time) with a minus sign, i.e. 

C - - ( ?q + t1 +~ ) 

where q is frequency, given by 

(17) 

q - B 
(Câlvez, 1978) . 	(18) 

ti + t2 +
2k 

Taking the operating rule associated to the technical frontier, we get 

Yd - a - h L 2B (t1 
+ t2 + NK 

) + t1 + N J 	
(19) 

which is directly our g(X) because A. in equation 17 does not depend on 
the flow level Y. 

Assuming only vehicles of a given capacity are available in the market, 
the transportation firm's decision variables are B and u. From Eq. 15, 
the curve f(X) - Y in the (B, u) space has the form 

B - 
~ (t

1 + t2 +?k ) , (20) 

which is represented in figure 3. 
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B / 

K(tl+t2) 

      

-- f(X)■Y 

      

        

	  N 

Figure 3. Technical frontier in a cyclical system. 

Equation 19 is the basis to obtain g(X) 	Y, given by 

t1 + t2  + 2X 

B 
= 2 La-Y 

	
Rl  -ti- 

and represented in figure 4. 

B4 

t l+t2  

 

2 a Y ( 	
- t1) 

 

  

K(abY  -t1)-1 
 

Figure 4. Iso-demand function. 

(21) 
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It can be easily shown that, if both curves intersect, it will happen at 
only one point and the relative position is given in figure 5. 

B ~ 

f (X)-Y 

g(X)-Y 

a-Y 	K )-1 
1 

b - t1 - 

Figure 5. Technical and level of service constraints in the input space. 

As suggested in the previous section, a point like A implies that using 
BA vehicles and a loading-unloading capacity uA, the cyclical system can 
generate a flow greater than Y if operated at full vehicle capacity. 
Simultaneously, the associated service level (travel time) generates a 
demand exactly equal to Y. Therefore, from a technical viewpoint the same 
flow could be produced with a load size less than K; this would simulta-
neously improve the level of service by virtue of equations 17 and 18. 
Thus, changing the operating rule, the feasible set can be enlarged 
including part of the sub-space St indicated in figure 5. The boundary 
must fulfil the following conditions 

Y 	Bk  

t1 +tZ + 2k 
u 

(22) 

Y 	a - 
h [2B (tt + t1 + uk 	

I + t1 +  	(23) 

Equation 22 represents the Yd[R (X,Y)] function (Eq. 11) and Eq. 23 
corresponds to the 4,(r1, X) function (Eq. 12). Both equations form a 
system that can be solved in Y or in k. The solution in Y is our I(X) 
function, which in this case happens to be given by 

(t1 + t5) 	 + ~Y l 2Y 

( 	
 l 	

(24) a-Y 
B 	

2Ib 
- tli 	

+ U 



Y- A(X) 

\ 	frequency increases 

•\ load size diminishes 
• 

constant frequency 
full load 

Y■f (X) 

Y°g (X) 
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It can he easily checked that Eq. 24 (which is valid only in the O space), 
passes through the intersection between f(X) - Y and g(X) ∎  Y, 

On the other hand, the solution in k - k(B, p) gives the load size associat-
ed to each point on a(X) - Y. However, directly from eq. 22. 

Y(t1 + t2) 
k e 

 

(25) 
B  - 2Y 

p 

which increases with p (and decreases with B). As frequency is given by 
Y/k, it can be also interpreted as q increasing with B (or decreasing with 
p). Figure 6 summarizes all this properties, 

13 I 

p 

Figure 6. Boundary of feasible input combinations and associated 
operating rules. 

This example is illustrative of the theory developed in the previous 
section. Its shows how the feasible set of input combinations is modified 
by the fact that the form those inputs are combined has a correspondence 
with the level of service offered by the firm. In particular, we have 
shown that a firm serving a cyclical system may deliberately choose to 
operate its vehicles in a less-than-full-load fashion in order to increase 
frequency, so disminishing travel time and positively influencing demand. 
As this was done for a (parametrically) given flow, we can conclude that 
variability of demand is not the sole responsible of operations below capa-
city, usually observed in practice. 

The example also confirms the idea of cost optimality (minimum) outside 
the technical boundary, weakening the foundations of duality, 
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4. SYNTHESIS AND CONCLUSIONS. 

By introducing level of service in the analysis of transportation produc-
tion, we have been able to show the modification of the feasible input set 
in the provision of a given flow. This results from the observation that 
input usage not only generates a transportation capacity, but also an 
associated level of service that, in general, also depends on the operat-
ing rule and on the actual flow level produced. Thus, a given flow can be 
generated if two conditions are fulfilled : sufficient capacity and suffi-
cient demand, For a given operating rule, each point in the input space 
has an associated capacity and an associated demand. The set of points 
fulfilling both conditions has a boundary that only partially coincides 
with the technical boundary, which weakens the foundations of duality due 
to eventual cost minimizing points strictly within the technically feasible 
set. 

All this concepts have been illustrated within the context of a transpor-
tation firm operating a cyclical system. We have concluded that the firm 
may deliberately operate below capacity in order to minimize the cost of 
producing a given actual flow Y. In particular, the firm may choose to 
disminish load size in order to increase frequency, so offering a better 
level of service. 6 

We have then designed a framework that provides a solid basis for the 
transportation analysts' claim on the inadequacy of the minimum cost 
criteria (associated to capacity) to decide among transportation alter-
natives. We have also reinforced the idea that macroeconomic analysis of 
transportation activities requires a theoretical reformulation. We postu-
late the content of this paper as part of that task. 

NOTES. 

1. For a review of the applied work, see Jara Diaz (1982, a) 
2. An antecedent of this kind of relation is Manheim's performance 

function ¢E (R,S,T,V) (Manheim, 1980). 
3. This may well explain the behaviour of airline shuttle services. 
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APPENDIX. SIIAI'E OF TUE ISO-DEMAND FUNCTION. 

We have 

Yd ' Yd(t) 	 (a) 

2 ■ tr(X,Y) 	 (b) 

where 

aY 	al 	at 

ald > O ' aXi 3 O ' 	aY S 0 . 	 (c) 

In addition 

Y ,< Yd 	tr(X,Y)] = h(X,Y) . 	 (d) 

We define 

H(X,Y) = Y - h(X,Y) = O 	 (e) 

which represents an input function g(X) = Y : the iso-demand function. 

Then 

aY _ 	aM/aXi 	ah/ax. 	_ aYd/al 	ai/Mi  
aXi 	aH/aY + 1- ah/aY 	1-aYd/at at/aY 

a1I/ax; 	aYd/al at/ax.i  	at/axi ~ o 
âx~ — 3H/Mi — aYd/al allax 	at/axi 

0 and (f)  

(g)  

Besides, as one input approaches a zero level, the other input (2 inputs 
case) is likely to tend to infinity in order to keep the service level 
constant. 
Inequality (f) indicates that g(X) increases from the origin; inequality 
(g) shows that g(X) = Y is decreasing, and the last observation suggests 
that it is likely to be convex. 
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