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1. 	INTRODUCTION 

The fact that operating policies and rules influence the quantity and quality of 
transportation production is widely recognised. In the main theoretical develop-
ments on transport supply recently published (Florian and Caudry, 1980, Manheim, 
1980, and Morlok, 1980) they enter as a variable in performance and supply func-
tions or procedures. however, what is understood by the concept of operating po 
licy varies among authors and its specific role in transport processes has been 
suggested Lut not systematically explored. 

The precise concept definition has some unavoidable consequences in the set-up 
of a general Erarewori to approach transportation production analysis. For this 
reason, we begin by introducing the rain concepts through a basic model for an 
individual operator carrying only one commodity, presented in Section 2. Section 
3 is devoted to operating policy variables identification while the range of op - 
tions open to the operator is examined in Section 4. The meaning and uniqueness 
of technical optir.:ality regarding operating policy are discussed in Section 5. 
Finally, some considerations are rade on extensions to the model and further re-
search directions. 

The subject is so broad that it is impossible to Le exhaustive and although we 
have intented to provide a detailed coverage, some issues are hardly sketched. 

A BASIC :IODIL OF TRANSPORT PPODI'CTION 

Transport as a production process involves the transformation of a set of inputs 
into a set of products. Product is defined as a quantity of a given commodity 
(freight or passengers) carried between two points defined in time and space. 
Then, its measure is tire and O - D specific. Inputs required are numerous but 
they can be grouped into three categories: means of transportation (facilities, 
including right-of--may, terminal sites and equipment, and vehicles), labour and 
auxiliary materials (such as energy source). But it should be noted that if no-
thing is shipped, there is no transport production regardless of vehicle trips 
being actually accomplished. In this sense, the commodity to he transported is 
also an input (Calvez , 1978). 

The operator's task is to combine all these inputs in order to produce transport 
outputs. This implies a transformation technology. the art of performing that com 
bination 	that we call operating policy. It rust he distinguished from the tech- 
nology of means of transportation, which is the art of producing some of the in-
puts needed by a transport process. Then. when we refer to transportation techno-
logy we are alluding operator's methods and decisions. Similarly, when talking 
about inputs technological characteristics, only those directly relevant to trans 
port production should Le borne in mind. For instance, pavement thickness is not 
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such a characteristic, while its roughness or support capacity clearly are. 

Let us now turn to look at a single operator activity. he will first assume that 
there is only one O-D pair and one commodity to be transported between them. Al-
so, that every vehicle of his fleet operates under identical conditions, in a 
closed circuit embracing the origin and the destination including an empty return 
journey (Gâlvez, 1982). The output produced (in physical units (P.C.) per unit ti 
me (U.T.)) is given by: 

V = k f 

where: 

(1) 

V = mean intensity of commodity transported [P.U./C.T.] 
k = shipment size for one vehicle [P.C./vehicle]  
f = fleet frequency vehicles/U.T. 

Of course, this amount is limited by the available resources. Shipment size 1: 
cannot be greater than vehicle capacity K. Frequency cannot exceed right-of-way 
capacity Q nor a maximum given by fleet size and vehicle cycle time. Finally, 
terminal facilities capacity also restrict V. We will put it in the form pS, 
being S the number of sites and p the individual capacity of them, and using a 
superscript + or - to denote loading facilities, respectively. In summary. we 
have a multidimensional capacity restriction that leads to a system capacity a 
IP.U./C.T.I , given by: 

X = min {KQ; p S+  , p S ; max kf} 
	

(2) 

The first three elements cover the influence of infrastructure while the last 
introduces the effects of mobile resources availability. Under our assumptions: 

n B f = t  

where: 

(3) 

B = fleet size Ivehl 
n = portion of time that a vehicle is in service 
tc  = vehicle cycle time IU.T.1 

As long as t may depend upon k (at least through tire snent at terminals) the 
product kf doess not necessarily increase with k. Then, it is not guaranteed that 

fmax is associated to vehicle capacity K and, accordingly, that max kf = Kf max  

It will only happen if 31kf) > 0 for 0 < k K. 
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Now, obviously V < A. But at this point it should be remembered that there is 
a quite special input: the commodity to be transported. It is well known that, 
in general, its availability depends upon some characteristics of the transpor 
tation process itself. As they are a function of transport technology, we con 
elude that the latter influences the amount of output produced not only through 
resources consumed (to which a price, an output characteristic, can be associa-
ted) but also through level of service (a process characteristic). On the other 
hand, level of service may vary with the amount of output at the individual pro 
cess level, because of factors like the influence of shipment size on cycle ti-
me. This variation is reinforced, and in some cases governed, by congestion effects 
but conceptually exists even in its absence. From this discussion it is clear that 
interaction with demand is at the heart of transport production. Therefore, an 
equilibrium framework is needed to model it and is not a further stage where pro-
duction and demand are matched. 

Two functions are then added to our model: a demand and a level of service func-
tions. The first will be expressed as: 

VD  = D(A, L, P) 	 (4) 

where: 

VD 	demand volume P.C./U.T.I 
A = activity system variables 
L = level of service 
P 	= user out-of-pocket costs (fares, or appropriate costs if car user) 

Demand volume represents the availability of the input "transported commodity". 
It follows that the latter is measured as a flow. 

Level of service is a vector of attributes and for simplicity, we will use a 
function of the form (Gibson, 1981): 

L = LT„(T' , T'' , k,f) 

where: 

L = vector of level of service components 
T' = vector of transportation inputs (other than transported commodity) 

technical characteristics. 
T" = operating policy 

It should be noted that transported commodity acts through variable k in this 
function. Frequency f is included as an argument of the function because of its 
influence on waiting tines. Although the assumption of vehicle homogeneity avoids 
congestion effects, these could be reflected - in the single operator context - 
also through the frequency. Of course, in this case the functional form will be 
different. Variables k and/or f (see Section 3) belong to T" but have been sepa-
rately identifified just to emphasize their role. 

(5) 



577 

OPERATING POLICY IN TRANSPORT PRODUCTION 	 T. Gglvez and J. Gibson 

As previously discussed, output produced cannot exceed demand volume. Then, we 
can impose, in an equilibrium perspective: 

V = min {a ; VD) 	 (6) 

Equations (1) to (6) constitute a basic model of transport production.Let us now 
examine some of its features. To begin, equilibration is not confined to eqns. 
(4) and (5) (the typical demand - performance approach). Eqns. (1) to (3) that 
represent the transportation function (Gâlvez, 1982), play also an important ro-
le. 

There is a mix of generic variables (like T" or T') and specific ones (e.g., 
n or K) and the variable to  requires to be broken down into elementary components. 
It has been preferred to clarify these aspects in Section 3, being confident in that 
they do not obscure the fundamental logic that underlies the model. 

Transport production is not completely described by these equations. In fact, P 
appears as an exogenous variable and there is no explicit provision for dependence 
of T" upon resources consumed. Moreover, a resources consumption function has deli 
berately not been included. 

The set of inputs T' can be divided into those that can he used in many transport 
processes and those that are wholly consumed in one process. The first group embra 
ces what we have called means of transportation while the second is composed by 
labour (not workers) and auxiliary materials. They differ in that the former type 
and amount are, strictly speaking , a datum for the operating policy, which in turn 
can determine the amount of the latter (not its type). In other words, there are 
fixed and variable inputs. We will denote them by TF, and TV respectively. 

The selection of inputs type (often referred to as "technology choice") may Le ba-
sed on operational considerations but is not an issue in operating policy, as pre-
viously defined. Also the amount of means of transportation that the operator allo-
cates to a particular service will obviously depend upon the equilibrium volume 
and this is a function of, among other variables, the operating policy T". Never-
theless, it does not conceptually mean that such a decision is a component of this 
policy. It is very important for the correct understanding of its role in transport 
production to distinguish between what T" is and what are its consequences. 

Up to this point, we have identified five issues not explicitly incorporated in the 
model: fares determination, T" selection, resources consumption, "technology choi-
ce" and decision on the amount of fixed inputs. Jointly they are the result of 
operator's behaviour and therefore cannot be analysed without modeling it (or esta-
blishing a set of assumptions). Doing this would require the introduction of eco-
nomic considerations that lie beyond the scope of this paper. Our purpose is to 
investigate what the operator can do and not what he will do. That is, to deal 
with T" as a technology. Lowever, it is to mention that Jara-Diaz (1952, 1933) has 
developed a similar framework in an economic context. }e shows hoc: consistent cost 
functions can be derived and also that level of service effects may lead a carrier 
to operate under capacity to maximize profits, even under no tire variability of 
demand. 
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In equation (6) it is implicit that if there is enough demand (or it is exogenous 
and then it is provided a capacity identical to the predetermined volume) the sys 
tem will be operated at capacity and, by eqn. (2), this implies that u rates and 
the product kf are maximized. Previous discussion on fixed and variable inputs 
makes clear that these maximum values are subject to an operating policy decision: 
the amount of variable inputs available . It exists a relationship between both 
types of inputs such that there is a limit beyond which the addition of variable 
resources can not increase the capacity offered. It is apparent that the operator 
should not choose an inputs combination that exceeds the limit but it is not ob-
vious whether he should select one exactly at the limit. This is a question of 
optimality that can be relevant at least because of the discrete nature of some 
fixed inputs and will be examined in more detail in Section 5. 

To summarize, the operating policy -- the art of combining inputs to produce out-
puts - has a widespread influence on transport production. Capacity and level 
of service supplied, resources consumed (and through them, all the economic deci 
sions of the operator) and ultimately, the output level achieved, are dependent 
upon it. In the following sections, the basic model developed will be used to 
study the technology embodied by T'. 

3. 	OPERATING POLICY VARIABLES 

Let us examine the variables and functions included in our model. Demand function 
D, A variables and, by assumption, variable P are exogenously determined. The le-
vel of service function is technological in nature hut, for simplicity, we will 
not give it an explicit form here. Focusing on operating policy, fixed inputs 
Ti will also be given as yell as the type of inputs TV. Now it is necessary to 
assess which variables contained in the model lie in this category. 

Vehicle capacity K is determined ly the "technology choice''. The same happens with 
characteristics like power that will (partially) influence the cycle time te, main 
tenance requirements that have an impact on n, or the ease of loading and unloa - 
ding that will Le reflected in p+  and p-. The vehicle fleet size is a decision 
on fixed inputs amount as it is the number of sites S+ and S and the number of 
units of right-of-way (upon which (2 depends). ''Technology choice" also defines the 
type of terminal sites and equipment and the right-of-way standard, affecting u+ 
u-  and Q, and the type of labour W and auxiliary materials M. Then, we can redefi-
ne our generic variable T' decomposing it into a vector of inputs and a vector of 
characteristics. what makes easier the linkage of this technical formulation with 
the traditional microeconomic notation. Using the symbol X for inputs, we have [11: 

X = (B,S+,c } 	 (7) 

We will denote the second by TCE, whose components are inputs characteristics, as 
K and the others that - resulting from 'technology choice'-influence but do not 
fully determine variables t , n, u+  , U , Q, W and N. Before entering to operating 
policy variables identification and description, it is useful to analyse vehicle 
cycle tine. It has three basic components: 

tc  = tT  + tr  + tn  (8) 
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where: 

tT  = loading and unloading times spent at terminals IU.T.1 

tr  = running time  

tD  = unavoidable "dead" time IU.T.I 

Component tT  is always given by: 

tT = k ( +  + 	1  
u 	u 

(9) 

Running time t is more complex. For a given route it is a function of the ope-
rating speed v, which in turn depends upon vehicle and right-of-way characteris-
tics, traffic regulations, energy consumption (denoted by Er) and the shipment 
size (in some cases its influence can be negligible but usually this 	does not ha 
ppen). Energy consumption and running time are cumulative totals that result from 
the mix of resistances to movement, vehicle motor power and efficiency and dri-
ving style. The latter is a true operational variable. Anyway, I:r  level will pose 
a limit to the travel time that can be achieved. Ue can then write: 

tr  = tr  (T' , T" , k, Er) 	 (10) 

It should be noted that the operator can specify a driving style in terms of tar 
get cruising speeds for each route section but it is just a practical issue and 
not a conceptual one. What is important is that the specification of an opera-
ting speed is to a large extent the same as establishing a running time, then 
little understanding can be gained from doing it in theoretical formulations. 

"Dead" time t covers the durations of some operations that must be performed in 
every cycle bût do not contribute to the transport process itself. Examples are 
fuel tank filling, vehicle inspection (or cleaning) preceding every round-trip 
(they usually take place in air transport) or time spent at control offices (po-
lice stations, customs, etc.). Sometimes these operations can be accomplished si 
multan.ously with loading or unloading and therefore do not increase cycle time. 
In short: 

tD  = tD  (T' , T") 	 (11) 

If congestion effects are introduced, waiting times at terminals and additional 
delays will arise. They are also dead times in terms of the production process 
but cannot be regarded, in general, as unavoidable in our single operator model. 

Now, the list of variables affected by the operating policy is: 0, u+  , p-, n,tr, 
tD , IW,MI (their amount), k and f, for which an individual analysis will be con-
ducted to overview the role of operational decisions: 
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- Q 	the right-of-way regulations, the traffic control systems (if they exist) 
and the maintenance [2] policy exert a strong influence on capacity. Also, 
even assuming an absolute vehicle homogeneity, capacity will depend on 
operating speed because the vehicles have a finite length. 

- u+, p : the rates at which the transported commodity can be loaded or unloaded 
are dependent upon labour and energy supplied, the equipment maintenan 
ce policy and the stowage procedures. Operator's decisions on the use 
of available sites give rise to another variable: e, the proportion of 
sites in service, that is a S multiplier. 

n 	: it is affected by labour amount attached, vehicles maintenance policy and 
operator's decisions on the use of available vehicles. 

tr, tD: corresponding comments have been already made, however, note that the ope 
rator has a degree of freedom to allocate some components of tD  to a par-
ticular stage in vehicle cycle. 

11',14I : the operator possesses full control on its amount. Variable E belongs to 
this category through M. 

k 	the operator can determine its value, in the range 0 < k t K. 

f 	the operator can also fix its value, in the range 0 < f E f 	. In our 
model it is a constant throughout the reference period. 

But it must be realisad that k and f cannot be simultaneously predetermined by 
the operator. Recalling the model specified in Section 1, and if we assume that 
A,P,D and L functions, T' and T" variables (except k and f) are given, we would 
have as dependent variables the following: X,L,VD,V,k and f. The system of equa-
tions allows to determine exactly five of them. Then it flows that k or f result 
from equilibration. And it should be remembered that they are mutually related by 
eon. (2), which can be rewritten, introducing eons. (8) to (11), as: 

n l' 

	

tr  (T' , T",k,E) + tl,(T' ,1" ) + k ( 1 
	+ 	1  ) 

	

u 	u 

Lven if demand is exogenous, c.hat may lead to V,)  = V = kf and to drop level of 
service function, k or f will be an outcome. Otherwise, one of the remaining va-
riables already assumed as given should become an unknown. In such a case, we have 
a design problem where, for instance, required fleet size B can he calculated. 

The preceding analysis shows that in spite of existing several variables affected 
by the operating policy, there is a reduced number of decision fields associated 
with it that are responsible for its impacts. These will he named control varia-
bles and the following classification is proposed: 

f = (12) 
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a) Operations regulations (OR). It embraces traffic regulations and control sys-
tems, driving style, stowage procedures and complementary operations (those 
who originate 'dead" times other than delays) type, frequency, duration and 
allocation within the vehicle cycle. 

b) Maintenance policy (PIP). There is one for each fixed input. 

c) Discretional use of available fixed inputs (DCF). As it has been seen, a vehi 
cle, a site, etc may he not used because of an operator's decision, in spite 
of being in good condition. It is different from the case of temporary with-
drawal from service for maintenance purposes. 

d) Amount of variable inputs (AVI). It entails the determination of the nuantity 
of W,E and any other resource of this type. 

e) Shipment size or frequency (k or f). 

Only for completeness, let us take a rapid look at what happens if the assumption 
of uniqueness of 0 -- D pair, transported commodity and route is relaxed. First, 
the operator will have to decide how to serve different 0 - D combinations (rou-
te structure) and how to use the vehicle fleet. terminals, personnel and so on: 
allocating portions of them to specific commodities and/or C-D pairs or making so 
me kind of combinations. Secondly, given all this it may still happen that there 
exist alternative trajectories through the network among which a choice is manda-
tory (route selection). In summary, two new control variables appear: inputs allo_ 
cation and routeing. In what follows, we return to our simplified model. 

According to the stated notation, the elements of the set T are: 

T" = (OR;MP;DUF;AVI;k or f) 	 (13) 

Solely k and f are specific variables while the remaining four are generic ones. 
As such, they cover a range of detailed actions, that are similar in nature but 
whose efficiency in terms of their impact on the variables incorporated in the 
model may significantly differ in each particular situation. The previous analy-
sis has identified some of those actions and impacts but is in no case exhaustive. 
Anyway, establishing an operating policy implies the specification of all the vec 
tor T" components in terms of well defined variables from which those included in 
the model can be determined. 

4. 	OPTION,° IN OPERATING POLICY 

Options open to the operator have Leen stated in Section 3 in terms of generic 
control variables. We will say that a strategy is a vector containing values for 
a set of independent specific control variables, from which the whole set of ope-
rating parameters can be calculated. In what follows, ve will refer to the cycli-
cal model detailed in Sections 2 and 3. 
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There are two types of control variables: those that fix the amount of a variable 
input ('VI) and those that fix the value of a parameter (not an input). The con-
trol variables are related through the model equations already stated. We will 
analyse first some technological options related to problem-specific matters, 
that can be explored in a subsystem context. Then, we will deal with the options 
for the whole system, considering two cases: exogenous and endogenous demand. 

Let us consider first egn,(10). For given values of k and L 	[3], there are ma- 
ny driving styles compatible with them, each leading to a 5ifferent travel ti-
me tr. For instance, it is possible to disaggregate in many ways the total ener-
gy spent between the loaded trip from 0 to I) and the empty return trip. A dri-
ving style specification must be a detailed description that can be understood 
by the driver. Target velocities are often used, for each right-of-way condition, 
that involve a specific throttle setting (or equivalent) instructions, and conse-
quently a set of values for the load factor of the motor, resulting in a rate of 
energy spending. Such a model has been discussed by Schwarzkopf and Leipnik (1977) 
for the special case of a car, in an optimization context, and by Gélvez and De 
la Carrera (1981), in a simulation context. The selection of a cruising speed  for 
ships and aircrafts is another example of driving style determination. 

The right-of-way maintenance policy (when existing), a MP parameter ,also condi-
tions the amount of energy necessary for obtaining a travel time tr  with a load 
size k. 

Similarly, for known 1:,Fr  and TCI' parameters.traffic regulations will influence 
the attainable t. Traffic theory tools allow to establish an explicit relation 
between t and re

r
gulations, as well as traffic engineering supplies tools for 

optimisation in this field, already well established (see, for example, Robert-
son, Lucas and Baler, 1980, or Gibson, Saavedra and Spoerer, 1982). Thus, once 
driving style, right-of-way maintenance policy, and traffic regulations have been 
specified, we can find the value of tr  and Er  for any value of k. 

F'e can define a family of driving styles so that we can find a value of tr  for 
any combination of k and Er. (7e would expect that tr  increases with k (tr  cons-

tant)., and decreases with Er  (k constant 1, and also that Er  increases with k 
(t,- constant) .  
he will consider now eqn. (9). Variables p

+ 
and U

_ 
 are not inputs. They only+  

summarize the terminal technology, including stowage procedures. A value of p 

or U 	is associated with ICI' parameters, and AVI values. Focusing on energy con- 
sumption, we can write: 

+ + + 
= UT,. (T ' , ET) 

U = UT , (T' , FT) 

Once selected a terminal technology . we can expect that an increase in err  (or 
1-) should imply an increase in U+  (or u-). 

(14) 
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We will discuss now the n parameter, that is related to two different policies. 
The first is the vehicle maintenance policy (a MP parameter), that determines a 
mean proportion of time pl that a vehicle is in service, or in other words, the 
mean proportion of vehicle fleet that is actually circulating. The second is a 
deliberate schedule slack n2  or its equivalent, the withdrawal of a number of 
vehicles from service. These two policies are different in nature. The first is 
strongly conditional on the TCl: parameters, and usually decisions are constrained 
to a narrow range. 

Inputs consumption in maintenance operations is highly inelastic. Nevertheless, 
there is a chance of increasing or decreasing the labour used in maintenance 
choosing between vehicles waiting to be repaired or workers waiting for a vehicle. 
We have: 

n = n1(T') n2 	 (15) 

The n2 parameter can be considererd as a pure policy variable, because it is not 
conditioned by TCH, varying in the range (O,1). 

Let us now consider the t parameter, that is analogous to q but applies to ter-
minals. It also entails two different policies. The first, el, is the mean pro-
portion of time a site is off-service because of maintenance operations. The se-
cond, e2, is a discretional parameter, equivalent to the withdrawal from servi-
ce of a number of sites. Then we have: 

e+ = e1 (T') £2 

e = el  (T') e2  

Another parameter identified is tD, in eqn. (11), which arises from the complemen 
tary operations defined by the operator. As stated, he can define their type and 
characteristics, so there is a margin for arbitrary decisions. But its allocation 
within the vehicle cycle may affect capacity (if cycle time is reduced) or demand 
volume through changing the cycle time split between loaded and unloaded stages 
(level of service will vary). It follows that tD  should not he considered as a 
wholly discretional parameter. Summarizing, we have detected seven problem--speci-
fic operating policies (related each to traffic regulations, driving style, termi-
nal technology , maintenance of vehicles, sites and right-of-way and complementa-
ry operations) and three discretional parameters: e2, c2 and n2. 

We will discuss now the case of exogenous demand, where equations (4) and (5) are 
replaced by 

VD  = VD 	 (17) 

where V* is an arbitrary value. We will first pay attention to the cycle time 
determination. From egns,(8) , (9) , (10) and (11) , we obtain 

to  = k ( + + 1  ) + tr  (k, £r) + tD 	 (18) 

u 	u 

(16) 
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So, it is clear that once defined the mentioned policies, it is necessary to know 
the k parameter to obtain the cycle time. Then, we will set k at an arbitrary le-
vel k0 , 0 < k0 < K. 

From eqn.(3) we have: 

f _ n1 B 	 (19) 
n2 	tc 

All the variables, at the right-hand side of eqn.(19) are given, then only one va-
riable at the left-hand side remains to be determined. The capacity of each sub-
system is defined by: 

X + = e1 U+ $+ 
	

(E2 
= I) 	 (20) 

X- = E u S 	(E2 = 1) 	 (21) 

Am =--- e 	(n2 = 1) 
nß ß k0 	

(22) 

X = Q Q 
(23) 

And from eqn.(2) the system capacity is: 

A = min (A+ , x 	, X ,, X0) 	 (24) 

In general, any component can be the active constraint and we will explore all 
the possibilities. 

Case 1.- X = a+ 

In this case, EZ = 1 seems adequate, and we should correct the other discretional 
parameters as follows: 

+ 
E2 = '--  and n2 = 	~ 

X 	
X
M 

Case 2.- A = A , is analogous to case 1. 

Case 3.- A = a„ 

In this case, n2 = 1 seems adequate, and we have: 

e2 = + and E2 = 
~. 	 a 

(25)  

(26)  
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Case 4.- A = AQ 

In this case it is necessary to correct all the discretional parameters as fo-
llows: 

+ - 
E 2 ~q ' E2=4 	and n2= Q 

a 	a 	a 

At this point, we have completely defined the three discretional parameters for 
any situation, with the only assumptionthat k has an arbitrary value. Frequency 
f can be calculated from eqn. (19). 

We have to check now inequation (6). 

* 
Case A.- A F VD 

In this case, V = A. Depending upon the active constraint, remaining parameters 
will have their values defined. However, demand is not fully satisfied. We can 
modify the proportion of unsatisfied demand by varying the parameter k° only if 
we are in Case 3 or 4. Otherwise, to acomodate more flow in the system we would 
be obliged to increase the corresponding cl and/or p parameter. To do this, addi-
tional resources (e.g. labour or energy) would be required. 

Case B.- A > VD* 

In this case, V = VD* and the transported commodity availability is an active 
constraint. There should be excess capacity in all the subsystems and we must 
correct the discretional parameters as follows: 

V* 	V* 	V* 
e2 = + 	E2 	

D 	
a nd n2 = D (28)  
A 	a 	AM 

In all cases, of course, eqn. (1) is sufficient to determine the frequency f. 

Let us discuss now the case of endogenous demand. Here, eqn. (17) does not hold 
and we need an equilibration procedure to calculate the parameters of the system. 
Using eqns. (4) and (5), and assuming A and P are given, we can obtain: 

VD = VD (T' , k,f) 	 (29) 

The system capacity A can be determined in the same way as in the case of exoge 
nous demand. Under the assumption of system operation at capacity, we can obtain 
a value fc for the frequency parameter. Then, using eon. (29). we can calculate 
a value for VD(f ). If VD(f ) > A, the system can operate with the values of 
the parameters already calcuÎated. If VD(fc) < A, the demand constraint is active 
and we have to solve the simultaneous equations: 

VD = VD (k° , f) 

VD = f k° 	 (30) 

(27) 
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Solution to (30) provides values for VD  and f. Then, the discretional parameters 
can be derived as follows: 

VD 	VD 	 V 
e2 = 	, e2  = 	and 	n2 = 

D 	
(31) 

X 	1 	1M  
These three discretional parameters, in this case, will be strictly less than 1. 
There is excess capacity in all the subsystems. 

hoeever,as previously suggested, it is likely that when demand depends upon le-
vel of service sore policies will need a rare detailed specification. This may 
lead to additional control variables (e,p„ factors conditioning comfort) that, 
in general t.e can expect to Le independent. Anyway, their independence should 
be tested by means of a procedure like the one followed here. 

It only remains to discuss the amount of variable inputs (AVI). Let us look at 
the total energy consumption level L, assuming that all the subsystems use the 
same kind of energy source. It can Le calculated, per unit time, from: 

1 = fLr  + c+  L+  S+  LT + e p 	I'T 	 (32) 

As seen befoTe. driving style, etc. specification and a ko  value will determine Er. 

Similarly, L, and 	will come out from terminals operation technology selected. 

Tien, all variableslat the right-hand side of eqn. (32) are known. This implies 
that the control variables already identified suffice to establish the value of 
}. The same reasoning applies to the other variable inputs. le conclude that AVI 
is not independent. Lut it should be noted that if I: is fixed instead of p+, it 
will not lead to a particular value for u+  because of substitution possibilities. 
A rule for distributing the energy input among its competitive uses is also nee-

ded. 

Focusing on the proposed concept of a control strategy we have shown that not all 
existing control variables are independent and then a strategy contains less com-
ponents than the vector T' . In our example, the seven problem-oriented policies 
plus k or f allot: to determine the remaining parameters f or k, n2, e+ e-  and 
AVI. the so-called problem-oriented variables are related to sub--systems opera - 
tion while k or f are linked to the whole system functioning. Parameters n,. e+22 
and EZ  are a measure of the utilisation degree-in a physical sense-of the tixe0 
inputs and AVI is a measure of variable inputs consumption. 

Therefore, when specifying a control strategy what we are doing is to choose a 
tray (problem-oriented parameters) and a general level (k or f) at which the re-
sources are used. Given T', it will result in an output level (through f or k) 
and a degree of utilisation of resources. Obviously, different strategies may 
lead to different results. aoreover, it is possible that a strategy proves unfea-
sible as would occur if f is set to an arbitrary value that requires k > K. Also, 
if a given level of output is imposed, it is apparent that there are various 
control strategies that are able to fulfill the condition. 
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In summary, there are alternative strategies of combining inputs to produce out-
puts (this is, operating policies), which sometimes may be equivalent in output 
level and sometimes different. and even may be unfeasible. It is desirable then 
to analyse how can they be compared. To perform this comparison, distinction ma 
de above among the parameters is relevant because it makes clear that there are 
different levels (e.g. sub-system or system levels)at which it should be carried 
out. Care must be taken in providing a homogeneous basis for comparative analy-
sis, in terms of output and resources. 

5. 	OPERATING POLICY OPTIMALITY 

When dealing with options in operating policy the existence of alternatives has 
been established. Undoubtedly, the question if operating policy, as a set of 
technical rules or procedures, has an optimum is quite relevant. In this section 
we intend to precise the scope of the problem and to outline a framework for op-
timal strategies generation. 

In microeconomic theory a technology is said to he optimal if it allows to 
produce a given level of output with a non--inferior combination of inputs. i'e 
will follow this definition in our analysis. 

Let us commence with the case of exogenous demand, where it is normally assumed 
that the transport system will be operated at capacity. Then, it is worthwhile 
to assess if capacity does entail a technical optimum or at least, under which 
conditions it will occur. The expression developed in Section 2 for capacity . 
introducing variable c is: 

X = min {kQ; eu+S+  ; 6-11 	; max kf} 	 (33) 

At this point, it should be apparent that-defined in this way-capacity is deter-
mined not only by input characteristics but also by operating policy. Every com-
ponent at the right-hand side  of(33) includes at least one variable dependent on 
T". Therefore, it is a straightforward conclusion that for a given vector of in-
puts, capacity will represent an optimal production level if, and only if, it 
is associated with an optimal operating policy. In other words, any T' will, joint 
ly with T', lead to a particular value for X and then, unless a condition is im-
posed over T", there will exist a broad range of capacities. In this sense, the 
linkage between capacity and optimal operating policy contributes to an  unambi-
guous definition of the former concept. 

Expression (33) incorporates only partially the optimality requirement through 
the component max kf. Strictly speaking, each A component should be associated 
with such a requirement. Let us now examine what is an optimal T [4]. Recalling 
eqns. (3) and (13), max kf is equivalent to 
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nT'  (T") B k 

t 	(T"k) + t 	(T') + k ( 	
1 	+ 	1 	) , 

rT' 	DTI 	IT,(T ) 
	

UT,(T
") 

If we assume that there is no dependence among control variables beside eqn. (34), 
it follows that kf maximisation calls for maximising n , p 	and u-  and minimising 
tD,  reducing the problem to 

max AM  - 	
n*B k 	(35) 

t**, (k) + t* + k (  +*  +  1*) 

	

U 	u 

subject to k < K 

where k is the only independent variable. Subscripts have been replaced by aste-
risks to indicate that remaining parameters have been set to their optimal values. 
This is a first level of optimisation that consists of finding the way in which 
particular subsets of inputs can be better used. For instance, q(k) is a func-
tion obtained through specifying a driving style that, given the inputs, their 
characteristics and the rest of OR, offers the minimum tr  for each k value. It 
should be noted that here energy consumption level E is regarded as an input [5]. 
The second optimisation level is provided by the solution to problem (35), an 
optimal k (k*) given by: 

t* + tr (k*) 	d tr (k*) 

i) k* = K, if 	 (36) 
k* 	' 	d k* 

tD + tr  (k*) 	d tr (k*) 
ii) k* < F: , if -- 	   

k* 	d k* 
(37) 

In Section 2 we had already suggested that full load operation is not necessa-
rily optimal. But now we can say that this is not simply an issue of "technolo-
gy choice". Actually, t*(k*) depends - among other variables - upon E and the-
refore, the same means of transportation technology and operating policy may 
be consistent with k* = K for a range of E values and with k*<K for another va-
lue E'. This makes clear the influence of variable inputs on optimal T" and 
consequently, on capacity X, often not realised nor taken into account, maybe 
because they are not explicitly incorporated in standard capacity formulae. 

It is evident that any rule such as "use full load' or "use half load" is not 
a general technical optimum. In fact, optimal operating policy is not associa-
ted with alike rules or with specific values but with expressions like (36) 
and (37). And, as suggested in the previous Section, the same will happen for 
other variables like u+ , u-  or the function tr. Perhaps, variables ni or e+*  
will adopt constant values. 

max AN  = (34) 
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Maximisation of AM  has led to some results that affect other A components such 
as E+u+S+ , through u+  maximisation. It can be seen that there is no contradic-
tion, because a maximum value for p

+ 
 has a positive impact on A in both cases. 

But as discussed in Section 4, not always the first level individual optimisa - 
tions can be independently conducted as we have done here. In a particular pro-
blem, the number of degrees of freedom must be established first and a selec-
tion of strategy components carried out. Only these components are subject to 
optimisation. By definition, they can be independently optimised. Using the mo-
del relationships, the remaining T" components can be derived. Obviously, it is 
not guaranteed that they will also reach their particular optimal values. 

Clearly, a situation like this arises when fixed inputs are not exactly propor 
tioned and then it is not feasible that n2,e+2  and E2 be simultaneously equal to unity 
their maximum value. It would seem that in this case there are equivalent com-
binations of, say, k and n2. Let us assume that the unloading terminal is res-
trictive and only A0  can be transported. Combinations would come from: 

	

n2k 	ao  

	

g (k) 	ni  B 

for 0 < n < 1 and 0 < k < K. But, through equation (32), and taking into account 
that there will be an optimal rule for the energy consumption split between vehi-
cles and terminals, each combination (n2,k) may lead to different total E levels. 
Thus , we have to impose the condition of E minimisation to be consistent with 
our technical optimum definition. As a consequence, k and n2  are no longer inde-
pendent. Therefore, although a universal optimal operating policy does not exist, 
in each case it is unique. 

This discussion allows us to clarify the point made in Section 2, regarding com-
binations of fixed and variable inputs. Under optimal operating policies, diffe-
rent input vectors will produce different capacities. We have no technical rule 
for comparing capacities, so this is an economic problem. In a short-run context 
this case can be tho'ht of as a distinct energy consumption levels comparison for 
the same transport system. If in the initial situation energy is not efficiently 
used we will have a T" optimisation problem and capacity will not be diminished. 
But if we start from an optimal situation, a lower E level will result in less 
capacity and a necessary subutilisation of fixed inputs. Whether this is desira-
ble or not is a matter of relative prices. 

The task of finding optimal operating policies is analytically more difficult 
when there are several interrelations among its variables. To illustrate this , 
let us extend our previous example only allowing the operator to substitute ener-
gy consumption of vehicles (E ) and at terminals (E+ and ET). A new constraint 
appears: total energy consump€ion must be equal to the available amount E. Su - 
ppose, for simplicity, that u+(ET+) = u (ET) = p(E.T) and El-S+  = e

-S
-= ES. Thus, 

recalling eqn. (32), the problem is: 

(38) 
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n* Bk 
max art  - 	

t  

c  

s.t.k < K 

n* B t 	Er  + 2pc* S ET  = E 
c 

Optimisation has to be conducted over k, Er  and ET. Solution to problem (39) 
leads to: 

as 	2f 	2a 	2f 

(2Ert)* / [f* + (2E 	)* Er] = (2Ert)*  / [E* (2E )* + 2p*E*E] 	(40) 
r 	r 	T 	T 

and n* *2 [tD*+tr*(k*, Er*) - k* A] + dl  = 0 
t 

(41) 

c 

2t * 	2E * at * 	2t * 
where A = [te* (akr 	)* + p*r (2Er 	

)*] / [tc* - Er*, (2Fr 	)*q 

	

r 	 r  

where the notation ( )* indicates derivative evaluation at the optimum. tç  is 
the denominator of arq  expression and dl  is a multiplier. From eqn. (40) it 
can be derived that: 

2 t*(k,E ) 	n*Bk 	dp*(ET) 
( 	r 	r 	

)*   ( 	T)* 	(42) 
2 Er 	E*S[p*(ET)]3 t* (k E*,ET) d ET  

Combining (42) and the total energy constraint we obtain, 

Er = Er (k,E) (43) 

and 	ET*, = E* (k,E) 	 (44) 

Introducing (43) and (44) in (41), a value for k* is attained, taking into account 
that it will be equal to K if d1  < O. Note that we now get simultaneusly a value 
for k* and an optimal distribution of energy consumption among vehicles and termi-
nals. This is, two components of an optimal T" strategy are jointly determined. In 
this way, more interrelations can be recognised in order to increase model's abili 
ty to represent real situations. 

The case of endogenous demand is far more complex. First , some operator's deci-
sions may affect demand volume through level of service changes. For instance, allo 
cation of dead time to stages of the vehicle cycle in which it is unloaded is prefe 
rrable because users travel time will be lower. The optimality can be found by means 

(39) 
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of a similar process as the one developed for the exogenous demand case but it will 
be more complicated as long as additional functions and control variables are in -
volved, Obviously,demand sensitivity to level of service will be crucial in de-

termining the best T" in this case. 

6. 	FINAL REBMARKS 

The preceding analysis shows how strategies in operating policy that involve tech-
nical optimality [6] can be derived. In the examples developed we have used the 
shipment size k as an option but equally frequency could have been chosen. As pre-
viously stated, some basic operating rules cannot be formulated in simple ways. Ne 
vertheless, more research is needed to appraise if any practical and easy-to follow 
suggestions, that lead to at least nearly optimal operation, can be readily obtai-
ned. Off-peak periods make also relevant the research on sub-optimal operation. 

We have assumed that there is only one commodity and one route. Of course, broader 
spatial contexts are usual but in this paper we have not dealt with them. Another 
strong assumption made is that one operator possesses full control on all means of 
transportation. In practice, it often happens that there exist many operators, 
each one with a partial control. We have shown that optimal policies are mutually 
related, thus even if all of them seek for optimality in their respective fields 
the global result may not correspond to a consistent strategy and then sub-optimal 
operation will arise. This is a strong argument for planning in transport and it 
seems promising the fact that a control strategy does not comprise all operating 
decisions, because a planning authority could select a convenient subset in order 
to influence the whole system, minimising bureaucratic and political costs. 

The framework developed in this paper for transportation technology analysis, al-
though specified for simple cases, is flexible enough to admit extensions to cope 
with more complex systems. It provides the basis for transport production understan 
ding by describing how an operator might use the available resources, and showing 
how he should do it to be efficient. Of course, to explain the means of transporta-
tion technology choice or the level of output produced, economic considerations are 
to be introduced, as pointed out in Section 2. 

NOTES  

1) As we have specified the model, the right-of-way does not appear in the X vec-
tor. If capacity Q is made explicitly dependent upon the number of right-of--
way units, this will be another X component. 

2) Along the paper, the term maintenance policy embraces routine maintenance ope-
rations and repairs. 

3) We will center discussion on energy consumption. For the other inputs a simi-
lar treatment can be done. 

4) When there is only one product, output maximisation for given inputs will gene-
rate non-inferior combinations. 
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5) The distinction made in the paper between fixed and variable inputs is not re-
levant in an ergodic context, as assumed by the microeconomic theory that is 
being used in this section. 

6) Optimal T" gives rise to transportation transformation functions (F(X,Y) = 0) 
as defined in microeconomic analysis. 
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