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Abstract 
 The aim of this study is to explore the performances of neural networks in both trip 
generation and trip distribution modelling and to compare the results with more commonly 
used models, respectively regression models and doubly constrained gravity models.  
     Trip generation and trip distribution are complex and highly dependent on the quality 
and availability of data. Transportation engineers are commonly faced with a question that 
is related to this topic; how to perform reliable trip generation and -distribution with scarce 
and expensive field data. It is therefore interesting to find the method that gives the best 
results with the smallest data sets. This research tries to answer the question whether neural 
networks can be a better alternative for traditional methods in trip generation and  
-distribution.  
      The research design relies on the use of synthetic data. The use of synthetic data, 
without unknown noise, gives the opportunity to clearly determine the impact of data 
complexity on the forecasting results.  
     In trip generation, neural networks do not overall out-perform classical regression 
models. The advantages over regression models are negligible. In trip distribution, neural 
networks out-perform gravity models when data is scarce. Gravity models perform slightly 
better than neural networks when sufficient data is available.  
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1. Introduction 
 Transportation engineers are commonly faced with the question of how to extract 
information from expensive and scarce field or survey data. A common approach is to 
create a model that describes the behaviour of the phenomenon observed in which the data 
is used for calibration/validation. Ideally, such an approach leads to a model with the 
desirable high accuracy. Unfortunately, there is often a discrepancy between the desired 
and the obtained accuracy; estimating a model, based on scarce data is not an easy job and 
can lead to results with high deviations. Furthermore, it is not always easy to construct a 
statistical model from data, due to the fact that many phenomena are non-linear, and/or 
collinear (Huisken and Coffa, 2000).  
     Classical transport planning, described in the classical 4-step model (Ortuzar and 
Willumsen, 2001), is characterized by the dependency on data. Spatial interaction patterns, 
for example the trips generated by a zone or the trips between zones, respectively the trip 
generation and the -distribution, are highly complex and difficult to model without 
adequate amounts of data. Errors that are generated during the trip generation and 
distribution estimation process propagate through till the assignment phase. This causes 
difficulties for a good transport planning. Currently used techniques try to use limited 



 

2

amounts of data. The question rises, whether these techniques are able to give good trip 
generation and distribution estimations.  
     Since the beginning of the nineties, neural network models were introduced as 
alternatives for traditional (statistical) modelling approaches. Recent literature gives an 
insight into the opportunities of using neural networks in classical transport planning. 
Openshaw and Openshaw (1997) give their opinion on the advantages of using neural 
networks in geographical/transportation analysis. An eye-catching conclusion is the better 
performance of these models compared to more traditional models. Research conducted by 
Miller et al. (1995), Dougherty (1995), Collins et al. (2001), Pijanowski (in press), 
Padmakumarie (1999), Raju et al.  (1998), Huisken and Coffa (2000), Currit (2002) and 
Faghri and Sandeep (1998) support this notion. These studies carefully reveal the 
opportunities of applying neural networks in transport planning context.  
     This research tries to answer the question whether neural networks can out-perform 
traditional methods for trip generation and distribution. Neural networks are compared to 
regression models in a trip generation context. In addition, the neural networks are 
compared to doubly constrained gravity models in a trip distribution context. Both 
regression models and gravity models are commonly used models in these contexts. 
     The paper is organized as follows. The first section gives an introduction into neural 
networks. The second section of this paper goes deeper into the subject of trip generation. 
The third section deals with the trip distribution. In the second and third part we will focus 
on the organisation of both tests and the performances of neural networks compared to the 
commonly used methods. Finally, conclusions are drawn on the capabilities of neural 
networks for classical transport planning in general.  

 
2. Short description of neural networks 
 Artificial neural networks (ANN’s), or short neural networks, are based upon biological 
neural networks (like the human brain) by mimicking their architectural structure and 
information processing in a simplified manner. They both consist of building blocks or 
processing elements called neurons that are highly interconnected, making the networks 
parallel information processing systems. Although the artificial neural networks are a 
rudimentary imitation of biological ones, they are to some extent capable of tasks such as 
pattern recognition, perception and motor control which are considered poorly performed 
and highly processor time inefficient by conventional linear processing, whereas they seem 
to be done with ease by e.g. the human brain. These parallel systems are also known to be 
robust and to have the capability to capture highly non-linear mappings between input and 
output. 

 
3. Research study 1: Performance of neural networks in trip generation 
 Several studies have explored the usefulness of neural networks in the context of trip 
generation modelling or strongly related topics and subscribe the conclusions of Openshaw 
and Openshaw (1997). Al-Deek et al. (2001) gives an example of  the use of neural 
networks in truck trip generation in a harbour. Huisken and Coffa (2000) conduct an 
extensive research into trip generation. Dantas et al. (2000) present a strategic planning 
model for urban transportation analysis.  
     Literature survey shows that artificial neural networks are successfully used as data 
analysing techniques in a trip generation context and the conclusions seem quite clear: 
neural networks are able to out-perform more traditional regression models. However 
neither of the mentioned studies gives conclusions on performance of trip generation on a 
household trip level. And the results of these studies are therefore not to a large extent 
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generalisable. This complicates drawing conclusions on the performance of neural 
networks in trip generation in general.  
     This research tries to answer the question whether neural networks can really out-
perform traditional methods. The approach differs from the other research in several 
respects. Firstly, in its simplest form a neural network is nothing more than a self-
calibrating regression model. Therefore, the underlying hypothesis is that regression 
models cannot out-perform neural networks. Secondly, the evaluation is done based on a 
synthetic data set created with real world data set. Thirdly, synthetic data on household 
level is used to explore neural network performances under circumstances of increasing 
complexity. The well-defined differences between the datasets increase the controllability 
of the test. Finally, the neural networks and regression models are calibrated using 
different percentages of hold out data, between 0.1 and 90%.  
 
3.1. Organisation of the test 
 To set up the test a number of steps are performed. Firstly, the variables that 
characterise a household are determined. Secondly, synthetic input data is generated: 
synthetic households/individuals with different characteristics. Finally, a performance 
indicator is introduced and the results are determined.   
 
3.2. Forecasting variables 
 The choice of variables used to predict trip generation rates has long been an area of 
concern (Ortuzar and Willumsen, 2001). Income, car ownership, household structure, 
family size, value of land, residential density, accessibility, median income, total 
employment and the number of dwelling units are examples of trip generation variables. 
The variables used in this research to characterise different household types are based on 
the Dutch Regional Model, NRM (AVV, 1997): 

- number of employees in agriculture, industries, retail and other sectors; 
- number of cars; 
- number of students; 
- total number of man/women working; 
- number of people aged –14, 15-35, 35-65, 65-. 
 

3.3. Synthetic data: building synthetic households 
 A set of 20 synthetic households classes define the major inputs in this test. The 
synthetic households are built using the Dutch national travel diaries (OVG), which holds 
aggregated data on trip frequencies. This data is used to produce trip generation factors. 
These factors are used to set up a data set with 20 representative household classes. The 
test case is a zone/city with a population of 10000 households, approximately 30000 
inhabitants. In order to test the capabilities of the two methods different complexities are 
defined to fill the test zone. Table 1 shows the complexity definitions.  
The first difference in complexity is brought about by the definition of both homogeneous 
and inhomogeneous distributions. Homogeneous zones are built around 20 household 
classes that are evenly distributed in the zone. The inhomogeneous zones are built around 
20 randomly distributed household classes. Furthermore complexity varies in the way the 
data is presented. In the first two cases a statistical deviation is used on the total trips made 
per household. This results in household classes having the same socio data, but different 
trip productions. In cases 3 and 4 not only the trips are subject to a statistical deviation, but 
also the socio data is. This results in household classes with statistically deviated socio 
economic data and trips. 
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Table 1: Complexity definitions. 
  
     
 
 
 
 
 
 
 
 
     The synthetic data is used to calibrate both neural networks and regression models. 
Therefore, the data set is split up into a training/calibration set and a test/validation set. The 
test set is used to test the performance of both calibrated models. Out of the total set of 
10000 households a training set corresponding with the training set percentage is randomly 
chosen. The test set is the remaining part of the 10000 households. This makes it easy to 
determine the influence of the training set percentage on the performance of both neural 
networks and regression models. The training set percentage is divided into two categories: 
low and high. The low percentages run from 0.1 to 0.9%. The high percentages run from 1- 
80% and 1-9% in respectively the less complex cases and the most complex cases. During 
the tests of complexity cases 1 and 2 it showed that the test percentages higher than 10% 
were not the most interesting. Therefore in cases 3 and 4, 9 % is the highest test set 
percentage.   
  
3.4. Comparison Measure 
 To compare the performances the error definition that was used is the Root Mean 
Square Error (RMSE). The RMSE is mathematically described by; 
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with: 
 N = number of samples per matrix (10000, number of households); 
      
     A modelling method is said to out-perform the other if its goodness-of-fit is superior, as 
measured by the RMSE and the standard deviation. A good fit on the trip production and 
attraction on individual household levels is no guarantee for good estimates. The most 
important outcome of the trip generation process is the trip total per zone. So, extra 
analyses have to reveal information on the fit on the total number of trips.  
 
3.5. Comparison of model performance 

3.5.1. Complexity cases 1 and 2 
 After a pre-processing stage, the final study was conducted with in mind the following 
hypothesis: in its simplest form, a neural network is nothing more than a self-calibrating 
regression model. In this sense it is impossible for a regression model to outperform the 
neural network. However, as mentioned, the set-up of a neural network is very 
determining. The performances of both methods are presented in Figure 1. A distinction is 
drawn between the RMSE and the trip totals.  
     Neural networks mildly out-perform the regression models in both homogeneous and 
inhomogeneous configurations. Both RMSE and trip total results are in general better than 

Data structure   
 Homogeneous: 

10000 households, 20 
household classes, 
equally distributed  
 

Inhomogeneous: 
10000 households, 20 
household classes, 
randomly distributed 

Deviation on trips 1 2 
Deviation on socio 
data 

3 4 
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the results of the regression model. The peak for regression models at 50% in the 
homogeneous configuration catches the eye. This seems to be a coincidence when looked 
at the results on 20 and 80 percent.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Performance of both methods (ANNs and Regression models (Reg.)) in 
complexity cases 1 and 2. 
 
     In real situations a data set percentage of 1 % is already high. Often data sets of less 
than 1 percent of data are used to perform model calibration. For more realistic results 
percentages from 0.1 to 0.9% are tested. Research into the results at lower percentages is 
conducted as presented in Figure 2. Looking at the RMSE values the same conclusions 
cannot be drawn. 
     The neural networks do not out-perform the regression models in the homogeneous 
problem. On the contrary, regression models seem to out-perform neural networks 
especially with data set percentages between 0.1 and 0.4 %. The results of the trip totals 
show a somewhat different view. At some points the (in) homogeneous problem shows that 
the neural network model outperforms the regression model and the other way around. So 
no clear conclusion can be drawn based on the total trip values. This raises questions 
whether the right neural network configuration is chosen, however till so far no better 
suitable neural network configuration has been found. It is interesting to what extent the 
results in more complex situations are conform these results. 
 

3.5.2. Complexity cases 3 and 4 
 The previous figures showed that neural networks cannot significantly out-perform 
regression models. Figure 3 and Figure 4 show the results of case 3 respectively case 4. 
The results show that regression models outperform the neural networks when looked at 
the RMSE. The trip totals show that neural networks in general score equally well or better 
than the regression model. How is this possible? Neural networks obviously give bad 
RMSE-results when the data percentage is low. The calibration process is difficult when 
data percentages are lower than 0.4. This can easily be explained by the necessary number 
of data records to train the networks. The used neural network configuration needs 
approximately 40 records to train (= 0.4%). The neural network system cannot be solved 
using less than 40 records. The system will be underdetermined. 
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Figure 2: Performance of both methods in complexity cases 1 & 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Performance of both methods in complexity case 3. 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

Figure 4: Performance of both methods in complexity case 4. 
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     When neural networks have to perform better, the number of hidden nodes can be 
varied; in this case lowered to prevent the system from being underdetermined. Therefore 
different neural network configurations are tried. This resulted in better results (in favour 
of the neural networks) than presented in figures 3 and 4. However, there is no significant 
difference. 
  
3.6. Discussion and conclusions 
 This research shows that neural networks do not overall out-perform classical regression 
models in situations when data is scarce. The total trip results are better for neural 
networks, but this can be a coincidence because the RMSE values are overall the same as 
those of regression models. These results are somewhat disappointing because the initial 
hypothesis was that neural networks were able to out-perform regression models.  
     A first interesting conclusion can be drawn on the relationship between the comparison 
measure, RMSE, and the total number of estimated trips in a zone. This however was not a 
conclusion that was looked for in first instance. The research shows that a good score on 
the RMSE, that means the number of trips of individual households is estimated good, does 
not always result in a good score on the total number of trips on a zonal level. Adding up 
household results can obviously result in better or worse (aggregated) results than indicated 
by the RMSE value. Therefore it can be concluded that neither of the comparison measures 
gives a good and thorough view on the results. Both measures therefore should be used.  
     In the least complex situation, homogeneous zone with a large available data set data, 
the neural network RMSE results are overall better. As expected the overall results in the 
inhomogeneous situation are worse than in the homogeneous situation. The results on both 
RMSE and trip totals with a calibration test set of 80% are comparable for both methods. 
Overall the score on the total number of trips is better for neural networks. Neural 
networks are better capable of abstracting the pattern in the dataset when enough data is 
available. Training percentages of over 1% can be quite large in a real world context. 
Performances of both methods are less good when calibration is based on less than 1% of 
the data. The stable results of the regression model are catching the eye. The neural 
network results are not better than the regression results. This seems to be a result of the 
underdetermined system in cases where less than 0.4% of the data is available. Regression 
models are less prone to being underdetermined. Research into the better neural network 
structures revealed that other structures give better neural network results. However, these 
results are not significant.  
 
4. Research case 2: Trip distribution 
 The previous section showed the results of neural networks in trip generation. It is 
interesting to see whether these results are the same as for the trip distribution problem. 
Several studies have explored the usefulness of neural networks in the context of trip 
distribution modelling. However, the empirical results leave questions open whether neural 
networks give better results than traditional trip distribution methods. Black (1995) asks 
the question if the basic purpose of neural networks, identifying patterns in data and to 
replicate those patterns for new data, can be utilized in a spatial context. He makes a 
comparison between a gravity model and neural networks. Black uses two case studies: (i) 
a three-region flow problem; and (ii) a commodity flow problem. The first problem is a 
very simple three-region flow problem. Both doubly constrained gravity models as well as 
a neural network model give excellent results. Black emphasizes that one should not lose 
sight of the fact that the matrices have only nine flow values. The commodity flow 
problem gives similar results, ranking the scores of artificial neural networks above the 
scores of gravity models. Finally, Black concludes that neural networks are capable of high 
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levels of accuracy based on their use in other fields and are suitable for future flow 
forecasting.  
     Fischer and Gopal (1994), Gopal and Fischer (1996) and Fischer (1998) compare the 
forecasting results of neural networks to those of a traditional gravity model. Research is 
done into the distribution of interregional telecommunication flows. Although the test case 
is not traffic and transport related problem, the problem is to large extent comparable with 
a trip distribution problem. The basic conclusion is that the neural network models out-
perform the conventional gravity model.  
     Mozolin et al. (2000) compare the performances of neural networks and maximum 
likelihood doubly constrained models for commuter trip distribution. The authors state that 
their approach differs drastically from others in several respects: (i) the models are used in 
a predictive mode and calibration is done on observed data, while testing is conducted on 
data for a projection year; (ii) the baseline problem is a doubly constrained model 
estimated by maximum likelihood; (iii) the models are evaluated on origin-destination 
matrices of different sizes to be able to test the sensitivity of the conclusions to the size of 
the interaction system; and (iv) the model applies an adjustment factor to flows predicted 
by the neural network output to satisfy constraints. It is concluded that neural networks 
exhibit good to very good ability to predict future commuter flows. Yet, none of the tested 
neural networks outperforms the corresponding doubly constrained model. The authors 
find this fact puzzling and unexpected. After further data analysis the following results are 
formulated: (i) due to over-fitting the ability to generalize is rather poor and the prediction 
accuracy is low particularly where training data are scarce; (ii) networks fail to extrapolate 
around and beyond the limits of the training sample; (iii) networks with less hidden nodes 
are less prone to over-fitting; (iv) the ability to approximate data structures with great 
accuracy is also their weakness. 
     So, artificial neural networks are increasingly used as data analysing techniques in a 
spatial interaction, trip distribution context. Yet, the conclusions whether neural networks 
out-perform more traditional models are still under discussion. The aim of this part of the 
study is to explore the performance of neural networks in trip distribution modelling and to 
compare the results to more commonly used doubly constrained gravity models.  
     The approach differs from other research in several respects. Firstly, the evaluation is 
done based on large synthetic datasets, as well as a real world data set. Secondly, synthetic 
data (OD-matrices) are used to explore neural network performances under circumstances 
of increasing complexity. The well-defined differences between OD matrices increase the 
controllability of the test; differences in results can easily be attributed to the built up of the 
data. Thirdly, statistical analysis is conducted in order to find minimum necessary sample 
sizes for both models. Fourthly, like Mozolin et al., the neural network output is enforced 
on the production and attraction constraints; in this case by using the Furness method 
(Orthuzar and Willumsun, 2001). Finally, the neural networks and gravity models are 
calibrated using different percentages of hold out data. In this way one of the biggest 
advantages of neural networks, extrapolating/forecasting of missing data (patterns), can be 
examined. 
      A complete OD matrix is generated using a gravity model. This results in a completely 
known OD matrix. In addition, noise and measurement errors are prevented. The basic test 
is a synthetic spatial network of 15 regions, combined with synthetic impedances and 
attraction/production values. The second test is a comparison of different estimation 
methods on observed trip patterns in a real world network, Rotterdam Rijnmond (National 
Regional model, NRM). The known data from the generated OD matrix is split up into 
calibration and test data. The calibration percentage is varied between 10 and 90. So, a 
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complete OD matrix will be estimated, using limited (observed) data and trip attraction and 
production totals. 
 
4.1. Organisation of the test 
 The focus of this research is on comparing the performances of neural networks and 
gravity models in well-defined basic and real world cases. Firstly, synthetic input data is 
generated: (i) synthetic network; (ii) synthetic skim matrix (impedance); and (iii) synthetic 
input data of different complexities (OD matrices). As mentioned in section 3, synthetic 
data gives the opportunity to play with complexity. This approach gives an insight into the 
impact of complexity, without modelling noise or unclear relations between variables. 
Neural networks and gravity models are calibrated on different percentages of the input 
data. Finally conclusions are drawn on the performances and performances in relation to 
different percentages of hold out data.  

 
4.2. Synthetic data: building synthetic OD matrices 

4.2.1. Synthetic network 
 A synthetic network combined with synthesized impedances (skim matrix) and 
synthesized trip attraction and production values define trip distribution modelling inputs. 
The choice for 15 regions results in a 225 cells Origin-Destination (OD) dataset.  The use 
of a simple synthetic 15-region network gives the opportunity to carefully explore neural 
networks usefulness in trip distribution modelling. The regions are located on a straight 
line and distances in between regions are equally distributed.  
     The logistics of spatial interaction modelling requires clearly defined regions with no, 
or small, flows across the borders. In the case of the synthetic network, this assumption is 
not violated. Setting intra zone distance to zero is known to generate systematic 
measurement errors. Therefore spatial separation within the regions, a inter zone distance 
greater than zero, is introduced within the network. 
 
4.2.2. Synthetic OD-matrices 
 Trip distribution estimation requires input values for the distances between regions as 
well as trip generation and attraction values. Trip generation and attraction have been 
synthesized.  A total of 15000 trips is distributed among the zones as schematised in Figure 
5.   
From 1 to 16 the matrices’ complexity increases: e.g. matrix 1 is built with evenly 
distributed origins/destinations, matrix 3 is built with evenly distributed origins and a 
descending pattern for destinations. The well-defined differences between OD matrices 
increase the controllability of the test. Differences in results can easily be attributed to the 
built-up of the matrices. Matrices indicated by lines are not tested; configurations of these 
matrices are already tested in one of matrices 1-16. The complexity of the matrices is 
shown in between brackets. The complexity is based on the patterns for destination and 
origins and the interactions within the matrix. 
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Figure 5: Synthetic OD-matrices 
 
4.3. Real world matrix: Rotterdam Rijnmond Region 
 Rotterdam, famous for its harbour, is the second city of The Netherlands with a 
population of 0.6 million inhabitants. Rotterdam Rijnmond is the whole area of Rotterdam 
including the harbour and suburbs. Using the NRM (National Regional Model) zoning 
method, Rijnmond is divided into 15 zones. A total number of nearly 1.9 million car trips 
per 24 hours is made, calculated over all motives. Spatial impedance between counties is 
simply measured as time between the zone centroids.  

 
4.4. Comparison of model performances 
 For comparison of the results the same comparison measure is used as in the case of trip 
generation. A model is said to out-perform the other if its goodness-of-fit is superior, as 
measured by the RMSE and the standard deviation. A good fit on the trip production and –
attraction totals and a low RMSE are no guarantee for good estimates. So, extra analyses 
have to reveal new information on the fit on OD-cell level. Therefore comparisons are 
made between both methods on the average trip length en the trip length distribution. Trip 
length frequencies give insights into the results of both methods on all trip length 
categories. The performances of calibrating both ANN and GM on the data of a 
representative sample of the 16 matrices are presented in Figure 6. None of the neural 
network models outperforms calibrated gravity models for all percentages. Gravity models 
outperform neural network models when sufficient data is at hand to perform a good 
calibration. Figure 6 shows that most gravity models start outperforming the neural 
networks when the total percentage of data exceeds 50%. 
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Figure 6: Model performances 
 
      In general the RMSE results are strongly influenced by the percentage of calibration 
data. At low percentages the results are worse than at high percentages, as expected. 
Furthermore, the gravity model results are far more influenced by data percentage as the 
neural networks. Especially at low percentages is the performance of neural networks 
better. Therefore, at lower percentages, up to 50%, neural networks give better results.  
     In addition, neural networks do not outperform gravity models on the whole scale. 
When the calibration dataset percentage is higher than 80-90%, gravity models give better 
results. This is not surprising, because of the fact that gravity models estimate to a high 
extent their own creations. At 100% gravity models always replicate the complete matrix 
that was created before the result comparison. Matrix 8 shows strange results. The built up 
of the matrix strongly determines the bad results of the gravity model. The trip attraction 
and production values differ strongly from the theoretical standard distribution function. 
This standard function gives high trip rates at low distances and low trip rates at high 
distances. Matrix 8 shows quite the opposite. At low distances people make far less trips 
than at high distances. Here the advantages of neural networks are shown. Without pre-
assuming a certain function, the neural network is better capable of estimating the trip 
distribution.  
     At the other end of the scale, percentages 10 up to 50 %, neural networks strongly out-
perform classical gravity models. Looking at the Rotterdam Rijnmond matrix, the same 
observations can be made (Figure 7). 
     Two facts have to be stressed. Firstly, the ANN results are fractionally worse than in 
case of the synthetic matrices. Yet, the same pattern is still visible. Secondly, the RMSE 
values are higher due to the fact that the total number of trips is approximately 130 times 
higher. However, when the number of trips is related to the RMSE values, the RMSE 
values are still 2 times higher. RMSE value of the best-guess (dividing 1.9 million trips 
over 225 cells) results in a RMSE of 79.000.  
 

6

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90

8

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

7

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90

15

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90

16

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90

 1

0

20

40

60

80

100

120

140

1 0 20 3 0 40 5 0 60 7 0 80 9 0

% data

R
M

SE ANN
G M



 

12

 
 
 
 
 
 
 
 
Figure 7: Model performances in the Rijnmond case 
 
     A good fit on the trip production and –attraction totals and a low RMSE are no 
guarantee for good estimates. So, extra analyses have to reveal new information on the fit 
on OD-cell level. Therefore the results of neural network and gravity model trip length 
frequencies are studied. The results give an insight into three facts. Firstly, for both gravity 
models and artificial neural networks, the performance on the trip length frequency goes up 
when data percentage goes up. Secondly, gravity models seem to have difficulties 
estimating both high and low number of trips. Neural networks only seem to have 
problems with low number of trips. Finally, the performance at low percentages is much 
better when neural networks are used. The results perfectly illustrate the conclusions based 
on Figure 6; at low percentages, the ANN outperforms the GM. When the input data 
increases, differences in performance decrease. The results of the Rotterdam Rijnmond 
case show roughly the same pattern; at low percentages, the ANN out-performs the GM. 
When the input data increases, differences in performance decrease. Neural networks have 
more difficulties in estimating extreme values. 

 
4.5. Explaining the results 
 Is there an explanation for these results? Firstly, all matrices show roughly the same 
pattern; at low percentages neural networks outperform gravity models, at high percentages 
gravity models outperform neural networks. Neural networks show their ability of 
extrapolation of data; they can very well cope with small data sets. The performances of 
gravity models, when calibration data percentage is high, seems to be related to the built-
up of the matrices; the matrices were built using gravity models.  
     So, when the calibration dataset nears 100%, the only matrix the gravity model 
estimates is its own creation. Therefore, the conclusion that gravity models outperform 
neural networks, when high percentages of data are used, is not very strong. This could 
favour the use of neural networks, even when datasets are large. Due to the data 
management after training, neural networks were able to estimate both high and low trip 
values, also beyond the limits of the training sample. 
     In first instance it seems that no general conclusion can be drawn upon the relationship 
between complexity and results; no clear relationship is shown for either of the models. 
The gravity models appear to be less sensitive to complexity and more stable in results 
whereas neural networks show strongly varying results when complexity increases. The 
following four conclusions can be drawn: (i) when complexity is minimal, 2, data is most 
structured and neural network performance is best. This stresses one of the qualities of 
neural networks: pattern recognition; (ii) contrary to this point, when complexity is at its 
maximum, 10, neural network performance is worst. The complex matrix reveals the least 
order and therefore the fewest patterns. This results in an RMSE increase; (iii) results 
within complexity groups are mostly grouped together. This fact shows that the complexity 
built up of the test sets is consistent; (iv) and the differences in results between neural 
network models and gravity models are not stable. Especially the difference between both 
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models in matrix 16 is small. This stresses the fact that neural networks perform best in 
situations where data is most structured; matrix 1, complexity 2, shows the largest 
difference in (average) RMSE values. 

 
4.6. Discussion and conclusions 
 This research part shows that neural networks out-perform gravity models in both 
synthetic and real situations; when data is scarce. These results are promising for future 
trip distribution modelling, which is an important step for good transport planning. The 
results were obtained using both synthetic and real world datasets. This gives the 
opportunity to control the test. 
      As seen in the different figures, neural network performance, compared to gravity 
models, is best when data is scarce. As stated before, the synthetic matrix data was 
generated using a gravity model. This creates a situation in which gravity models should 
give good results. However, the gravity model only gives the best results when calibration 
percentage is high; gravity models only reproduce their own results. In situations close to 
reality, with only limited amounts of data, neural networks show their abilities. This 
strengthens the results of neural networks.  
     The investigation into the trip length frequencies gives an insight into the absolute 
performances of both methods. Neural networks show better performances on trip length 
frequencies when data is scarce. Due to the data management after training, neural 
networks were able to estimate both high and low trip values, also beyond the limits of the 
training sample. 
      The behaviour of both methods changes when complexity increases. The datasets are 
complex enough, especially the random matrices, to come close to reality. Results show 
that neural networks perform better under conditions in which data is structured. But, 
results show also that even performances of the random matrix and real world matrix are 
good. Due to the large number of trips in the Rijnmond case, the RMSE values were higher 
than in the synthetic cases.  
     It is difficult to obtain a good estimation for the total number of samples necessary to be 
sure about the results. In addition, it can be concluded that large sample sizes are necessary 
due to amongst others the random initialisation process of neural networks. Furthermore, 
the used calibration process for gravity models needs 40 times more samples than the 
neural network.  
 
5. Discussion and conclusions 
 Can neural networks be used in trip generation modelling? Yes neural networks can. 
But there are hardly any advantages compared to regression models, at least in this setting. 
The performance of both regression and neural network models is good and are not 
significantly different. The differences in results of the RMSE-indicator and the indicator 
on total trips are eye-catching. Looking at the desired outcome, the total trips, neural 
networks have an advantage. But this is not significant either. Furthermore, the influence 
of a neural network configuration is present. The differences in RMSE when different 
neural network set-ups are used are not big. However, the necessity stays to do good pre-
processing in order to find the best suitable network structure.  
     Can neural networks be used in trip distribution modelling? The study shows that neural 
networks outperform gravity models when data is scarce. The conclusion that gravity 
models out-perform neural networks when more than 50% data is available seems less 
certain, due to the research method and the generation of the synthetic data. 
     So, the performance of neural networks is promising. The research shows that the trip 
generation and -distribution problems are complicated ones, but also two important steps in 
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transport planning. Many errors generated during these two phases are passed on to the 
next steps. Often, real world problems have only limited data. And contrary to this 
research, real world problems have only one sample of that data. Scarce data can give 
difficulties during calibration of models and results have high standard deviations. The 
extent to which the available data suits a calibration process determines the performance. 
However, in the case of trip distribution if only 20 percent or less data is available, the 
calibration process can lead to a large number of different matrices. In this study, a total 
dataset is available as a reference for determining the quality of the estimated data; the 
RMSE. 
     This paper adds new inputs to the discussion of trip generation and -distribution 
modelling with neural networks. New methods, like neural networks, can be a leap into the 
direction of good and accurate results. 
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