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Abstract 
Traveler information has the potential to reduce travel times and improve their reliability. 

Past studies have identified critical issues and parameters that influence the quality of route 
guidance and its impact on travel time savings. A key concern with the dissemination of 
driver information is the phenomenon of overreaction. Prediction-based route guidance 
based on short-term forecasts of network state is expected to be more effective in 
minimizing overreaction than naive strategies based on historical or current traffic patterns. 
DynaMIT (Dynamic network assignment for the Management of Information to Travelers) 
is a simulation-based decision support system designed to generate prediction-based route 
guidance. This paper outlines a simulation framework to examine the effectiveness of 
DynaMIT's guidance in an objective laboratory environment, and presents results from 
controlled simulation experiments to quantify the effect of various guidance generation 
parameters on the quality of DynaMIT's guidance. 
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1. Introduction 

Drivers using information from an Advanced Traveler Information System (ATIS) could 
potentially make better travel decisions, thereby benefiting both guided drivers as well as 
those without access to traffic information. Traveler information can be pre-trip or en-
route, based on when the information is accessed by the traveler. En-route information, 
while still allowing the driver to switch to alternative routes, precludes a change in the 
departure time or mode (in some cases, however, the driver might have the option to park 
away from the final destination and switch modes for the remainder of the trip). 
Descriptive information provides the driver with descriptions of current or future traffic 
conditions, and leaves the actual choice of route to the driver. Alternatively, prescriptive 
information recommends a particular route, with some fraction of drivers complying with 
the system's recommendation. 

A real concern while disseminating traveler information is the phenomenon of 
overreaction. A high percentage of drivers reacting to real-time information can merely 
shift congestion spatially and/or temporally, thereby rendering the disseminated guidance 
inconsistent with experienced trip conditions. Such a scenario can seriously undermine the 
reliability of, and public confidence in the ATIS. Consistency implies that driver response 
to information is already captured when guidance is generated, thereby preventing 
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overreaction. Anticipatory route guidance, seen as the key to achieving consistency, is 
based on the prediction of future traffic states, thus allowing the system to effectively 
guide equipped drivers. 

Limited theoretical and simulation-based analyses on small networks have generally 
confirmed the need for prediction-based guidance (see, for example, Ben-Akiva et al., 
1991, Kaysi, 1992 and Ben-Akiva et al., 1996). Recent work (Bottom et al., 1999) provides 
a rigorous mathematical formulation of the guidance generation process as a fixed-point 
problem, and explores its solution from an algorithmic perspective. Simulation-based 
results demonstrating the effect of various guidance generation parameters on network 
performance are presented, but do not include the effects of information penetration rate 
and demand prediction accuracy on system performance. 

The objective of this paper is to evaluate the effect of three design parameters on network 
performance: 

• Frequency of information update 
• Penetration rate of information sources (i.e. the fraction of guided drivers) 
• Demand prediction error 

A simulation-based evaluation laboratory MITSIMLab (Yang, 1997, Yang, 
Koutsopoulos, 1996) is employed to analyze the sensitivity of network performance as a 
function of the above parameters. DynaMIT, a simulation-based Dynamic Traffic 
Assignment system, is used. DynaMIT has been designed to generate consistent, 
anticipatory route guidance through detailed modeling of complex demand-supply 
interactions (Ben-Akiva et al., 1997, Ben-Akiva et al., 2002).  

The remainder of this paper is organized as follows. Section 2 provides an overview of 
DynaMIT. A description of the evaluation methodology and MITSIMLab are presented in 
Section 3. The results of a detailed case study are outlined in Section 4, with the final 
section summarizing the numerical results and findings.  
 
2. Overview of DynaMIT 

DynaMIT (Dynamic Network Assignment for the Management of Information to 
Travelers) is a system for the generation of consistent, anticipatory route guidance. 
DynaMIT combines a flexible microscopic demand simulator and a detailed mesoscopic 
supply simulator to effectively capture complex demand and supply processes and their 
interactions. Accurate modeling of origin-destination flows, pre-trip and en-route driver 
decisions, traffic dynamics, queueing and spillback allow the system to estimate and 
predict network state in a realistic manner. DynaMIT is designed to prevent overreaction 
by ensuring that the generated guidance is consistent with the conditions that drivers are 
expected to experience. This is achieved through explicit modeling of drivers’ reaction to 
information. The flexible simulation system can adapt to diverse ATIS requirements, and is 
designed to handle a wide range of scenarios including incidents, special events, weather 
conditions, highway construction activities and fluctuations in demand. We present here a 
brief overview of the system's framework (a detailed review of DynaMIT's model 
components can be found in Massachusetts Institute of Technology, 2000). 

Figure 1 outlines DynaMIT’s framework. DynaMIT integrates various sources of off-line 
and real-time traffic data, such as the network, historical traffic conditions and real-time 
traffic surveillance, to generate accurate estimates and predictions of network state. 
Designed to operate with limited historical data, DynaMIT has the capability to build up 
the database on a day-to-day basis. The real-time information is provided by the 
surveillance and control systems on the network. DynaMIT is designed to interface with a 
wide range of surveillance and control systems. The minimum real-time information 
required by DynaMIT is time-dependent link flows, incident characteristics (location, 
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starting time, duration, severity), and traffic control strategies. DynaMIT operates in a 
rolling horizon framework. 

 

Figure 1. DynaMIT Framework 
 
Most existing surveillance systems are limited to vehicle detectors located at critical 

points in the network. The information provided by these traffic sensors must therefore be 
used to infer network-wide traffic conditions. The state estimation module performs the 
task of providing estimates of current network state in terms of OD flows, link flows, 
queues, speeds and densities. A detailed network representation coupled with state-of-the-
art traveler behavior models allows DynaMIT to generate demand and network state 
estimates that are congruent, while utilizing the most recent information available from the 
surveillance system. 

DynaMIT’s demand estimation is sensitive to the guidance generated and information 
provided to the users, through an explicit simulation of pre-trip departure time, mode and 
route choice decisions. The pre-trip demand simulator updates historical OD matrices by 
modeling the reaction of each individual to guidance information, and aggregating 
individual trips to obtain updated OD matrices. These flows are further adjusted to reflect 
the current travel demand on the network, since actual OD flows could diverge from 
historical patterns due to capacity changes (such as road or lane closures and special 
events) and other day-to-day fluctuations. The OD estimation model uses updated 
historical OD flows, real-time surveillance measurements of actual link flows, and 
estimates of assignment fractions (the mapping from OD flows to link flows based on route 
choice fractions and perceived travel times) to estimate OD flows for the current 
estimation interval in real-time.   

The network state estimator utilizes a traffic simulation model that simulates the actual 
traffic conditions in the network during the current estimation interval. Inputs include 
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demand estimated by demand simulator, updated capacities and traffic dynamics 
parameters, the control strategies implemented and the traffic information and guidance 
disseminated. The driver behavior model captures the responses to ATIS in the form of en 
route driver path choices.  

A key input to the OD estimation model is the assignment matrix obtained from the 
traffic simulator. The demand simulator and network state estimator may have to go 
through several iterations before converging to a consistent estimate of current network 
state. The output of this process is an estimate of the actual traffic conditions on the 
network, including origins and destinations of vehicles, link flows, queues, velocities and 
densities. 

The OD prediction model operates on the aggregated historical demand adjusted by the 
pre-trip demand simulator to provide the required estimates of future OD flows. The 
network state prediction module predicts future traffic conditions for a given control and 
guidance strategy, using current estimates of network state and predicted OD flows as 
inputs. It uses a traffic simulation model and driver en route behavior model to predict the 
performance of the network for the prediction horizon. The traffic information and 
guidance generation function uses the predicted traffic conditions to generate information 
and guidance according to the various ATIS in place.  

The DynaMIT guidance generation algorithm results in unbiased and consistent 
information. While unbiasedness guarantees that the information provided to travelers is 
based on the best available knowledge of current and anticipated network conditions, the 
consistency prevents overreaction by ensuring that DynaMIT's predictions of expected 
network conditions match what drivers would eventually experience on the network. Such 
a guidance strategy means that there is no better path a driver could have taken under the 
provided information (for a detailed treatment of the consistency problem, see Bottom et 
al., 1998). An iterative process is employed in order to obtain guidance that satisfies these 
requirements. An iteration consists of a trial strategy, the state prediction under the trial 
strategy, and the evaluation of the predicted state (for consistency). Since, in general, the 
updated historical OD flows depend on future guidance and information, the update of the 
historical OD flows (using the departure time and mode choice models) and the OD 
prediction models are included in the iteration. This approach is quite general, and is 
applicable to cases with both pre-trip and en-route information availability. 

DynaMIT explicitly models driver response to information. Pre-trip departure time and 
path choice, as well as en-route path choice, are captured through discrete choice models 
(Antoniou et al., 1997). Further, path choice decisions are based on the Path-Size Logit 
model (Ben-Akiva, Bierlaire, 2003, Ramming, 2002) to account for driver perceptions of 
overlapping paths. 
 
3. Evaluation methodology 

Figure 2 illustrates the proposed evaluation framework. A detailed microscopic traffic 
simulation laboratory will be used to simulate the movement of individual drivers between 
various O-D pairs on the “real” traffic network, and also replicate the operation of the 
surveillance (sensor) system. The simulated traffic counts from the surveillance component 
will feed into the prediction-based information generation module (DynaMIT). The 
information generated by DynaMIT will be communicated to the traffic simulator. 
Simulated drivers with access to information might make route and departure time choices 
that affect traffic flows. The result of these choices is intercepted by the surveillance 
system, and will impact the predictions (and hence the generated guidance) during future 
time intervals. 



 

5

 
Figure 2. Evaluation Framework 

 
The evaluation of DynaMIT requires a simulator that can accurately mimic driving and 

travel behavior, while simulating the operation of a variety of control and routing 
strategies. In this research, we use MITSIMLab, a detailed microscopic traffic simulation 
laboratory, to represent the real world and to simulate driver reaction to the guidance 
generated by DynaMIT. A flexible design provides a set of parameters to control the 
interactions between MITSIMLab and DynaMIT. 

MITSIMLab consists of a microscopic traffic simulator (MITSIM) and a traffic 
management simulator (TMS). While MITSIM models detailed driver behavior, TMS 
mimics the traffic control and traveler information systems. The traffic control and route 
guidance strategies generated by DynaMIT feed back into MITSIM through the TMS, and 
affect the subsequent behavior of guided drivers. The corresponding changes in traffic 
patterns are recorded by the surveillance system, and communicated to DynaMIT in order 
to generate fresh control strategies and guidance. A wide range of measures of 
effectiveness can be obtained from MITSIMLab in order to evaluate network-wide travel 
times and delays. 

MITSIM uses a microscopic simulation approach, in which movements of individual 
vehicles and operations of traffic control and surveillance devices are represented in detail.  
This representation is necessary for evaluating dynamic traffic management systems at the 
operational level, since it allows for capturing the stochastic nature of traffic flow, drivers' 
response to real-time traffic information, and operations of surveillance sensors. 

Figure 3 illustrates the interactions between MITSIMLab and DynaMIT. DynaMIT 
integrates historical information with the latest surveillance data from MITSIM to perform 
state estimation. This step yields the best estimate of the current network state, which 
forms the starting point for traffic prediction and guidance generation. The network state 
prediction module forecasts future traffic conditions based on the current network state, the 
proposed control and routing strategies, and predicted OD flows. The generation of control 
and routing strategies involves iterations between a proposed strategy and the predicted 
network performance under that strategy. One of two actions are taken based on the 
evaluation: 

• If a satisfactory strategy has been identified, the strategy is implemented; or, 
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• If additional strategies need to be tested, another generation-prediction iteration is 
conducted. 

The generated strategies are communicated to the control and routing devices simulated 
in MITSIM, through the ATIS module. Drivers' reactions to the disseminated information 
and changes in the control system are reflected in subsequent traffic flows, which are 
intercepted by the simulated surveillance system for the next state estimation step. 

 
Figure 3. MITSIM-DynaMIT Interactions 

 
4. Case study: sensitivity of results to design parameters 

Network description: The Central Artery/Tunnel network from Boston spans 7.5 miles 
of highway, totaling 161 lane-miles, half of which will be in tunnels. The network has four 
major highway interchanges connecting new roads to existing highway systems. The 
multiple interchanges and the circular geometry with many on and off ramps provide more 
than one choice of route between almost all OD pairs in the network. The proposed 
deployment of the latest ITS technologies and elaborate surveillance and control devices 
on this network makes it a useful choice for studying and evaluating the impact of ATIS. 

The network (Figure 4) consists of 182 nodes and 211 links. The links are further divided 
into 639 segments based on link geometry. The Third Harbor/Ted Williams tunnel segment 
is a two-way, four-lane, controlled access toll highway approximately four miles long. The 
scenarios in this paper study the effectiveness of guidance in minimizing the negative 
impacts of an incident in the tunnel. 
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Figure 4. The Study Network 

 
Demand patterns and ATIS: Table 1 depicts the OD demand profile used in this case 

study. The values in the table represent vehicle departures per hour, from the respective 
origins. The demand is further classified by departure intervals of duration 15 minutes, in 
order to better capture traffic dynamics. The simulated ATIS models information 
penetration through the percentage of guided vehicles for each OD pair (A value of 30% 
was used for all scenarios except when studying the effect of guidance penetration). 
Guided drivers were assumed to have in-vehicle access to descriptive network-wide 
information generated by DynaMIT. Un-guided drivers continued on habitual paths chosen 
based on historical estimates of perceived travel times. The estimation and prediction 
lengths were fixed at 10 and 20 minutes respectively. 

 
Table 1. Demand Profile by OD Pair and Departure Time Interval 

OD Pair Time 
Interval 1-2 1-3 4-2 4-3 5-2 5-3 6-2 6-3 7-2 7-3 

7:00-7:15 2080 320 120 600 144 624 128 608 16 16 
7:15-7:30 2600 400 150 750 180 780 160 760 20 20 
7:30-7:45 2600 400 150 750 180 780 160 760 20 20 
7:45-8:00 2340 360 135 675 162 702 144 684 18 18 
8:00-8:15 1300 200 75 375 90 390 80 380 10 10 
8:15-8:30 520 80 30 150 36 156 32 152 4 4 
8:30-8:45 0 0 0 0 0 0 0 0 0 0 
 

Performance measures and base case: Detailed records of each completed trip were 
obtained from MITSIMLab. An average travel time was computed for each simulation run, 
and the results from multiple realizations were further averaged to control for the 
stochasticity inherent in MITSIMLab. The time horizon in this study was the AM peak 
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period between 7:00 AM and 8:00 AM. The OD demand in Table 1 was simulated in 
MITSIM (with no guidance), to obtain a base reference point for comparing the subsequent 
scenarios. The average travel time under incident-free conditions was found to be 369 
seconds, or 6.15 minutes. The scenarios consisted of an incident in the Ted Williams 
tunnel (refer Figure 1). Beginning at 7:10 AM, the incident reduced the capacity of the 2-
lane tunnel to 720 vehicles per hour (representing a 65% reduction from its original value). 
It was further assumed that the incident cleared in 20 minutes, ending at 7:30 AM. The 
average travel time on the network (with no guidance information) was found to be 690 
seconds, or 11.5 minutes. The records of all completed trips affected by the incident were 
used in computing this travel time estimate. The simulation was run until 8:45 AM, well 
past the end of the incident, to ensure that traffic conditions were returned to base case 
levels after the end of the incident.  

The following sections describe the results of various sensitivity analyses performed in 
order to better understand the effect of information dissemination on travel time. 

Update Frequency: The update frequency plays an important role in the quality of the 
generated guidance. It is expected that a higher frequency of updates would result in 
drivers reacting to the information in a timely manner, and helps maintain the drivers' 
knowledge of current network conditions. The predictions generated by DynaMIT would 
also be based on more accurate estimates of current network state. 

Figure 5 validates this hypothesis, and leads to an interesting observation: The added 
savings of using an update interval greater than 15 minutes is not very significant. 
Similarly, the marginal benefit of using a very high update frequency (say every 2 minutes, 
as compared to every 5 minutes) is perhaps not worth the computational effort that is 
required in order to support it. The actual choice of update frequency might depend on 
other factors such as the computational power available, or the desired level of network 
performance. 

Figure 5. Effect of Information Update Frequency 
 

Guidance Penetration Rate: A guided driver is assumed to have access to descriptive 
information in his/her vehicle. The percentage of drivers with access to such in-vehicle 
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information was varied so as to study the phenomenon of overreaction. Various values of 
guided fractions (0%, 20%, 30%, 50%, 70% and 100%) were tested. The results are 
summarized in Figure 6. The results indicate a general trend of decreasing average travel 
times as the percentage of guided drivers increases. However, some overreaction was also 
observed, as indicated by the slight increase in travel times as the guided fraction increased 
beyond 70%. 

Figure 6 indicates that an increase in the update frequency (generating guidance every 5 
minutes instead of every 10 minutes) reduces the effect of over-reaction significantly (as 
seen from the lower slope of the plot between the last two data points). The shorter update 
interval allows the system to quickly adjust to changing network conditions, thereby 
providing more frequent and up-to-date information to equipped drivers. This indicates the 
need for better, more accurate anticipatory traveler information that accounts for future 
demands and driver behavior. 

Figure 6. Effect of Guidance Penetration Rate 
 
Demand Prediction Errors: Systematic demand prediction errors were simulated by 

adjusting the OD flows used by the guidance generation algorithm. The effect of both 
under- and over-predicting demand were studied. Figure 7 summarizes the results. As 
expected, any error in demand prediction has an adverse effect on the prediction accuracy. 
The results also indicate that the impact of over-predicting demand is less severe than 
when demand is under-predicted. An explanation for this observation is that the prediction 
module will yield more conservative travel time estimates with over-predicted demand 
than with a demand level lower than the actual values. 
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Figure 7. Effect of Systematic Demand Prediction Error 
 
5. Conclusion 

This paper describes a simulation-based analysis of traveler information quality, and its 
impact on network performance. The results provide a useful step towards quantifying the 
sensitivity of travel times with reference to guidance penetration, demand prediction error 
and update frequency. Experiments with DynaMIT indicate that overreaction can be 
controlled through more frequent information updates. Further, saturation in network travel 
times at both very high and very low update frequencies suggests a trade-off effect 
between desired performance and available computational resources. 

The results in this paper confirm some existing findings on overreaction, while providing 
valuable insights into the role played by critical parameters that control simulation-based 
guidance generation systems. A logical extension to this work is to study the effect of 
network state estimation on experienced travel times. The role of (pre-trip) mode and 
departure time switching in response to guidance can add a challenging dimension to the 
evaluation of ATIS. More work is required on large urban networks, to gain a deeper 
understanding of the guidance generation process. 
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