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Abstract 

Timetables are of utmost importance to a rail business because a rail carrier’s 
profitability is heavily influenced by its service offerings. A need for demand responsive 
schedules is obvious not only because there is a risk that some potential customers may 
turn away if the customer’s preferred itinerary is not attainable, but also because the take-
up of some services in a fixed schedule may be low and therefore not profitable. We focus 
our attention on the step of constructing schedules that match, or respond to, customer 
demand, whilst maintaining the minimum operating costs for the rail carrier. We formulate 
the rail scheduling problem as a constraint satisfaction problem and propose a constraint-
based search algorithm to solve the problem. The model is tested on data from the Royal 
State Railway of Thailand with 184 customers. The results show that the schedules 
generated have the potential to reduce the rail carrier’s operating costs, enhances the 
customer satisfaction through a demand responsive schedule. 
 
Keywords: Rail container transport; Freight rail scheduling; Demand responsive schedule 
Topic Area: D2 Freight Transport Demand Modelling 
 
1. Introduction 

In the past, the transportation of rail freight was considered not to be an efficient mode 
of transport particularly in terms of physical accessibility and cargo handling. Since the 
advent of containerisation in the mid 1940s, rail carriers have gained higher profitability by 
tailoring containerised freight and have become more competitive with other inland 
transport providers. 

Container rail service differs from conventional freight rail in several important aspects. 
Because of the high costs of container handling equipment, container rail networks have 
relatively few and widely spaced terminals. Networks with around ten terminals are 
common and the network flows are relatively simple. A typical container makes few or no 
stops and may be transferred between trains only up to a few times on its journey. In 
addition, small lot sizes of shipment, frequent shipment, and demand for flexible service 
are important characteristics in the transportation of rail containers. 

Even though container traffic has increased, the increase in market share of rail 
transport, particularly in short-haul and medium-haul, has not been successfully achieved. 
Therefore, there have been efforts to investigate the factors influencing modal choice. The 
results have shown that the frequency and reliability of service are the main factors 
influencing shippers’ decisions on the choice of transport mode.  

A rail carrier’s profitability is influenced by the railway’s ability to construct schedules 
for which supply matches customer demands. For the transportation of containerised 
freight, shippers can often choose between rail and truck. A need for responsive flexible 
schedules may become obvious not only because there is a risk that some potential 
customers may turn away if the customer’s preferred itinerary is not attainable, but also 
because the take-up of some services in a fixed schedule may be low and therefore not 
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profitable. In order to construct a profitable schedule, a rail carrier needs to engage in a 
decision-making process with multiple criteria and a number of operational constraints, 
which is very challenging. 

There is a large body of literature on freight rail scheduling, using diverse modelling 
structures and solution approaches. A recent survey by Cordeau et al (1998) suggests most 
of them cater for fixed schedules. However, our model incorporates challenging practical 
situations which involve: (i) non-uniform arrivals with distinct target times, i.e., not all 
containers are available at the beginning of the planning time horizon and must be treated 
as distinct customer bookings, (ii) a demand responsive service providing the flexible 
schedules, and (iii) a probabilistic decrease in customer satisfaction with deviation from 
target time. Table 1 contrasts our proposed model against those in the literature. 
 

Table 1 Comparison of our proposed model to related literature 
Literatures Non-uniform 

Demand 
Demand 

Responsive 
Customer 

Satisfaction 
Solution 

Approach 
Crainic (1986) No No No Heuristics decomposition 
Haghani (1989) No No No Heuristics decomposition 
Keaton (1992) No No No Lagrangian relaxation 
Huntley and et al (1995) No No No Simulated annealing 
Branlund  et al (1998) No No No Lagrangian relaxation 
Gorman (1998) Yes No No Tabu-enhanced genetic 
Brucker et al (1999) No No No Two-phase local search 
Gualda and Murgel (2000) No No No Heuristics 
Newman and Yano (2000) No No No Heuristics decomposition 
Yano and Newman (2001) Yes No No Heuristics decomposition 
Our paper Yes Yes Yes Constraint-based search 

 
A few attempts have been made to generate flexible train schedules, which may be 
categorised into two types according to how the overall demand is met. Huntley et al. 
(1995), Gorman (1998), and Arshad et al. (2000) aggregate customer demands with 
minimum operating costs through flexible scheduling. They do not propose to meet 
individual demands. Newman and Yano (2000), Yano and Newman (2001), and Kraft 
(2002) share the same spirit of our study by being responsive to individual demand. Their 
models satisfy the operational constraints fully for each customer. In contrast, our 
framework models customer satisfaction, computed from preferred and alternative booking 
times, which is considered as one of the business criteria. Therefore, some customers might 
not be given their most preferred booking times. This framework is a natural one for 
supporting decisions as a rail carrier can measure how well their customers are satisfied 
and the implications of satisfying these customers in terms of cost. 

From Table 1, the solution approaches for freight rail scheduling problem may be 
classified into two groups: mathematical approaches and heuristic methods. However, 
these approaches are complicated and fully rely on problem-specific knowledge. Hence 
they are not flexible nor convenient to implement, in particular, when the rail business 
criteria and operational constraints in the rail optimisation model need to be changed. In 
this paper, we present an alternative way to solve the freight rail scheduling problem. Our 
solution algorithm learns implicitly from a search history and targets for the optimal 
schedule.  

The remainder of this paper is organised as follows. In section 1, we describe our rail 
scheduling model. Hard and soft constraints are defined and a constraint satisfaction 
representation of the problem is given. In section 2, we present a constraint-based search 
algorithm to solve the problem. In section 3, we introduce techniques that can improve the 
existing container rail schedules. In section 4, a case study and experimental results are 
given. Finally, we conclude the paper with a discussion of our results in section 5. 
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2. Problem formulation 
Container rail services are independent of one another in the sense that demands for a 

container movement in a specific service do not interact with the demands in any other 
services. In addition, complex networks with many container terminals are capital-
intensive and not practical for custom procedures when containers are moved within an 
international context.  

We consider the container rail service from a container seaport to an inland container 
depot (ICD) in which the weekly schedule is provided and revised every week. Once 
containers arrive at the seaport, they can be transported to their final destinations by rail or 
truck via an inland container depot, or directly by truck. This paper assumes an advance 
booking scheme as illustrated in Figure 1. It also assumes that all containers are 
homogeneous in terms of their physical dimensions, and they will be loaded on trains 
ready for any scheduled departure times. Note also that we consider a standard container, 
which is measured in Twenty-Equivalent Unit (TEU). 

 

 
 
 
 
 
 
 
 

Figure 1 A short-term advance booking scheme 
 

The day is divided into hourly slots for booking and scheduling. Customers are 
requested to state a preferred booking time or an earliest booking time in advance. A 
number of alternative booking times for each shipment may be specified, which might be 
judged from experience or estimated by the customer’s delay time functions. These 
alternatives not only help a rail carrier consolidate customer demands to a particular train 
service with minimum total costs, but also provide flexible departure times for the 
customer’s transport planning strategy. 

It is noted that a preferred booking time and each alternative booking time may cover a 
few hours, which is illustrated in Table 2. This happens in practice because the service 
time needed to move containers from the loading point of a containership to the train 
container platform may vary. In addition, customers may have to allow more time for 
unexpected delays. 
 

Table 2 Possible departure timeslots for customers 
Departure Customers (shippers) 
Timeslot Customer 1 Customer 2 Customer 3 … Customer n 

.   P   
Mon: 0900 – 1000  P A1   
Mon: 1000 - 1100 P P A1  A3 

. P    A3 
Wed: 1800 - 1900  A1 A2   

P:  preferred booking times, A: alternative booking times 
 
It is also noted that there may be some customers that book the container rail service 

close to the end of a week; therefore their alternative booking times may fall into the 
following week. In this paper, the model takes preferred booking times for those customers 
and their alternatives are not considered.  

Advance booking  Week of operation 

Tentative schedule Slack time

Fixed schedule

Confirm 
booking Time horizon 
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2.1. Rail container scheduling model 

A real-world optimisation problem tends to have a large number of constraints which 
may be hard or soft. In our problem, train capacity, service restrictions, and some customer 
requirements are hard constraints, whilst minimum number of trains, maximum customer 
satisfaction, minimum timeslot operating costs are soft constraints. Naturally, we can 
formulate the rail container scheduling problem as a constraint satisfaction problem (CSP) 
and then introduce a constraint-based search algorithm to solve this class of constraint 
satisfaction problem 

We consider a problem faced by a typical large rail carrier; more than several 
thousands containers every week. To simplify our discussion, the following notation will 
be used: 
 

Subscripts: 
t : schedulable timeslot (departure time), t = 1, 2, 3, …, T 
j : customer,  j = 1, 2, 3,…, M 
Set: 
Sj  : set of possible booking times for customer j     
Ct : set of potential customers for departure timeslot t      
R : set of service restrictions for departure timeslots   
Decision variables: 
xt  : 1, if a train departs in timeslot t, 0 otherwise      
ytj : 1, if customer j is served by the train departing in timeslot t, 0 

         otherwise  
Parameters:  
wtj : customer j satisfaction score in departure timeslot t  
rt : train congestion cost in departure timeslot t   
gt : staff cost in departure timeslot t   
P2 : capacity of a train (number of containers) 
Nj : demand of customer j (number of containers) 

 
The optimisation criteria in the constraint satisfaction model are handled by 

transforming them into soft constraints. This is achieved by expressing each criterion as an 
inequality against a tight bound on its optimal value. As a result, such soft constraints are 
rarely satisfied. 

A feasible solution for a CSP representation of the problem is an assignment to all 
decision variables in the model that satisfies all hard constraints, whereas an optimal 
solution is a feasible solution with the minimum total soft constraint violation. For a linear 
constraint satisfaction problem, the violation vi of constraint i is defined as follows: 
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where aij are coefficients, bi is a numeric value and xj are decision variables. 
When all decision variables are assigned a value, the violation of hard and soft 

constraints can be tested. A quantified measure of the violation can be used to evaluate 
local moves for our solution algorithm (described in section 2). 
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2.1.1. Soft constraints (optimisation criteria) 

The number of trains - the aim is to minimise the number of trains on a weekly basis, 
which is defined as: 

∑
=

≤
T

t
tx

1
;θ                 (2) 

where: θ is a lower bound on the number of trains, e.g., ⎥⎥
⎤

⎢⎢
⎡ ∑ j j PN 2/)(  

Customer satisfaction – the objective is to maximise the total customer satisfaction score. 
The satisfaction score is assigned values from a function of the delay time related costs. 
Each customer holds the highest score at a preferred booking time, the score then decreases 
probabilistically to the lowest score at the last alternative booking time, i.e., later than 
preferred departure times would cause a decrease in the future demand, and the rail carrier 
is expected to take a loss in future revenue. For the evaluation of a schedule, the 
probability of customer satisfaction is then multiplied by the demand. The customer 
satisfaction constraint can be expressed as: 
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where: Ω is an upper bound on customer satisfaction, i.e.,∑
j

j
j N

W
)

100
( ; Wj is the maximum 

satisfaction score on a preferred booking time for customer j 

Timeslot operating costs – the aim is to minimise the operating costs.  A rail carrier is 
likely to incur additional costs in operating a demand responsive schedule, in which 
departure times may vary from week to week. This may include train congestion costs and 
staff costs. The train congestion cost reflects an incremental delay resulting from 
interference between trains in a traffic stream. The rail carrier calculates the marginal delay 
caused by an additional train entering a particular set of departure timeslots, taking into 
account the speed-flow relationship of each track segment. The over-time costs for crew 
and ground staff would also be paid when evening and night trains are requested. The time 
slot operating costs constraint is defined as: 
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where: )( δλ +  is a lower bound on the timeslot operating costs, ∑
∈

=
aTt

trλ ; Ta is the set of θ 

least train congestion costs, ∑
∈

=
bTt

tgδ ; Tb is the set of θ least staff costs, θ  is a lower bound 

on the number of trains. 

2.2. Hard (operational) constraints  

Maximum capacity – this constraint ensures the demand must not exceed the capacity of a 
train. The maximum capacity constraint is defined as: 
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Coverage constraint – it is a reasonable assumption that in practice customers do not want 
their shipment to be split in multiple trains, this constraint ensures that customer can only 
be served by one train. The coverage constraint is given as: 

  
∑
∈
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jSt
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Timeslot consistency – this ensures that if timeslot t is selected for customer j, a train does 
depart at that timeslot. On the other hand, if departure timeslot t is not selected for 
customer j, a train may or may not run at that time. The constraint is defined as: 

 
 ttjt Cjyx ∈∀≥ ;                  

(7) 
 

Service restriction - this is a set of banned departure times. The restrictions may be pre-
specified so that a railway planner schedules trains to achieve a desirable headway or to 
avoid congestion at the container terminal. The constraint is defined as: 
 

      Rtxt ∈∀= ;0                      (8) 
2.2.1. Implied constraints 

The soft and hard constraints completely reflect the requisite relationships between 
all the variables in the model, i.e., the operational requirements and business criteria. 
Implied constraints, derivable from the above constraints, may be added to the model. 
Whilst implied constraints do not affect the set of feasible solutions to the model, they may 
have computational advantage in the solution algorithm as they reduce the size of the 
search space. 

 
Timeslot covering – a timeslot covering constraint can be thought of as a set covering 
problem in which the constraint is satisfied if there is at least one departure timeslot xt 
serving customer j; otherwise the algorithm assigns a fixed violation penalty vs to that 
constraint. This constraint favours a combination of selected departure timeslots that 
covers all customers. Any quantification of vs could be used. The timeslot covering 
constraint is defined as: 
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2.3. Customer satisfaction 

In a highly competitive market, assessing customer satisfaction for the transport 
service is of great importance to a rail container carrier. A rail carrier could take advantage 
of the knowledge of customer satisfaction to improve its service and to strengthen its 
competitive position with respect to the other transport services. A rail carrier could 
increase the quality of service and market share by tailoring a service that satisfies 
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individual customers. The rail schedule may be just one of the factors including cost, travel 
time, reliability, safety, and so forth. As customers have different demands, it is hard to 
find a single definition of what a good quality of service is. For example, some customers 
are willing to tolerate a delayed service in return for sufficiently low total shipping costs. 

In this paper, we only investigate customer satisfaction with respect to the rail schedule. 
To acquire the customer satisfaction data, face-to-face interviews were carried out. The 
outline of the survey interview is tabulated in Table 3. 

 
Table 3 The outline of the survey interview 

Shipping Information 
Type of company (shipping line, freight forwarder, MTO, .etc) 
Type of container and commodity value per ton 
Container density measured 
Shelf life of commodity in days 
Annual container volume shipped  
Period of advance booking regularly used. 
Modal Characteristics for Each Mode (Shipping Time) 
Arrival time at seaport 
Discharging time at seaport 
Waiting time at the discharging point 
Haulage time from the discharging point to main terminal 
Waiting time at seaport terminal 
Loading time at train/truck terminals 
Travel time 
Modal Characteristics for Each Mode (Shipping Costs) 
Freight rate (TEU-ton-km) and Commodity rate factor 
Terminal storage cost at seaport terminal/shipside (TEU-ton/day) 
(day = a consecutive 24-hour period) 
Free time storage period at seaport terminal (days) 
Reduction rate if containers are removed from terminal/shipside within a free time 
storage (day-percent) 
Terminal handling charge per TEU-ton 
Overhead cost for waiting time at seaport terminal/shipside (TEU-ton/day) 
Departure times 
Preferred train departure time 
Alternative departure time I 
Alternative departure time II 
Others alternatives 

 
This survey includes 184 customers currently using both rail and trucking services or 

using only rail but with a potential to switch their shipment to truck in the future. The 
containerised cargo is classified into four categories as follows: 

1. Cargo type I (perishable consumer goods): food and beverages, dairy products, 
fruits and vegetables (24 customers) 

2. Cargo type II (durable consumer goods): household products, and furniture (52 
customers) 

3. Cargo type III (intermediate products and raw materials): textile fibres, tobacco 
leaves, paper and paperboard, chemicals (67 customers) 

4. Cargo type IV (capital goods and others): iron and steels, metal manufacture, non-
electrical machinery and parts, construction materials (41 customers) 

 
To quantify customer satisfaction, customer satisfaction functions are developed. 

These use customer characteristics, shipping information and modal characteristics as 
primary data. Total shipping costs associated with movement by modes are calculated as a 
percentage of commodity market price or value of containerised cargo, expressed in price 
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per ton. Average shipping costs of the containerised cargo and the market price are 
summarised in Table 4. 

 
Table 4 Modal cost percentages for each mode (×1000 Baht /ton) 

Cargo Types -Cost Cost /Unit Price Market Modal Cost Percentages 
 Truck Rail Price* Truck Rail ∆ 

Freight rate (FR)       
Type I 2.21 1.55 25.00 8.84 6.20 2.64 
Type II 6.71 2.96 68.00 9.87 4.35 5.52 
Type III 10.45 7.56 87.20 11.98 8.67 3.31 
Type IV 0.95 0.21 13.00 7.30 1.62 5.68 
Terminal handling charge (THC)       
Type I 0.28 0.51 25.00 1.12 2.04 -0.92 
Type II 0.57 1.04 68.00 0.84 1.53 -0.69 
Type III 1.18 2.06 87.20 1.35 2.36 -1.01 
Type IV 0.03 0.08 13.00 0.23 0.61 -0.38 
Terminal storage charges (TC)       
(Within free time storage) 0 0  0 0 0 
Overhead cost (OC)       
(Within free time storage) 0 0  0 0 0 
Total shipping costs (TSC)       
Type I 2.49 2.06 25.00 9.96 8.24 1.72 
Type II 7.28 4.00 68.00 10.70 5.88 4.82 
Type III 11.63 9.62 87.20 13.34 11.03 2.31 
Type IV 0.98 0.29 13.00 7.54 2.23 5.31 

* Estimated by the Department of Business Economics, Ministry of Commerce, Thailand (2002) 

We assume that all customers know a full set of shipping costs and can justify the 
modal preferences on a basis of accurately measured and understood costs. The freight rate 
may be adjusted by the relative costs that a customer may be willing to pay to receive 
superior service. For example, some customers may have higher satisfaction using a 
trucking service even if the explicit freight rate is higher; speed and reliability of the 
service may be particularly important if the containerised cargo has a short shelf life.  

To determine customer satisfaction between modes, we assume that the difference 
between modal cost percentages is a normal distribution. The customer satisfaction is then 
derived from cumulative probability functions. Figure 2 illustrates the customer 
satisfaction function of cargo type I. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 The customer satisfaction function of cargo type I 
 

Figure 2 shows that if there is no difference between the modal cost percentages, 
customers tend to state their satisfaction on the service between rail and truck equally. The 
commodity that has a small difference between the modal cost percentages causes a high 
sensitivity in the total shipping costs. For instance, the commodity type I has an average of 
the difference between modal cost percentages 1.72; when the transport of containers are 
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delayed by rail, it will result in an increase in the total shipping costs. For this type of 
commodity even a small cost increase can lower the customer satisfaction using container 
rail service quite substantially. This is due to a high sensitivity in the total shipping costs. 
An average difference between the cost percentages (mean value) could imply the lowest 
satisfaction for the container rail service. If the satisfaction is below this level, customers 
may turn to use a trucking service instead; otherwise, they would tolerate with the rail 
service. Nowadays, it is obvious that rail carriers would try to keep the customer 
satisfaction above this level. 

Once the satisfaction function has been developed, a customer satisfaction score can 
be obtained from the modal satisfaction probability. This probability could be used to 
predict the market share between transport modes and to test the modal sensitivity when 
the rail schedule is changed. 

The customer satisfaction score is on a percentage scale and all customers have a rail 
satisfaction score ranging from 0 to 100. Note that all customers currently using container 
rail service may already hold a certain level of satisfaction score regardless of taking the 
quality of rail schedule into account. Once the rail carrier has been chosen as a choice of 
transport mode and later the schedule is delayed, customers incur additional total shipping 
costs, i.e., terminal storage and overhead costs involved at the seaport. This would result in 
a decrease in customer satisfaction. An example of the calculation of customer satisfaction 
score is shown in Table 5. 
 

Table 5 Customer satisfaction score 
Shipping Lists Unit Value 

Commodity type Type IV 
Ship arrival time Day: Time Mon: 0900 
Discharging time  Hour 4 
Free time storage allowance Day 3 
Reduction rate on THCs   
- Scheme (I) Day ( %) 1 - 25% 
- Scheme (II) Day - % 2 - 20% 
- Scheme (III) Day - % 3 - 10% 
Departure times Day: Time  
- Preferred timeslot (P)  Mon: 1500-1700 
- Alternative (I)  Tue: 0900-1600 
- Alternative (II)  Wed: 0900-1600 
- Alternative (III)  Thu: 1600-2200 
Modal cost percentages (%) P* A1 A2 A3 
- Trucking 9.51 9.51 9.51 9.51 
- Rail 3.78 3.84 4.09 4.33 
- ∆ 5.73 5.67 5.42 5.18 
The customer satisfaction score 86 75 60 37 

P* is a modal cost percentage when the first reduction rate scheme is applied 
 
2.4. Generalised cost 

For the evaluation of a schedule, a cost function taking into account the number of 
trains can be expressed in terms of operating costs; but it is hard to express customer 
satisfaction using a monetary unit. In this paper, we express the customer satisfaction on a 
rail scheduling service in terms of shipping costs related to the delay time. We introduce 
the term “virtual revenue loss” as a unit cost. This term is derived from the difference in 
probability of choosing the container rail service between the preferred timeslot and the 
alternatives. The probability is then multiplied by a demand and freight rate per demand 
unit. Therefore, a generalised cost function is the sum of the operating costs and the virtual 
revenue loss:  
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)()( 321 vFRvFCvG +++++= δλθ            (10) 

where: FC is a fixed cost of running a train; FR is a freight rate per ton-container; v1, v2, v3  
are penalty costs (soft violations) for the number of trains, customer satisfaction, and 
timeslot operating costs constraints respectively. 
 
3. Solution algorithm 

As the size of the rail container scheduling problem that needs to be routinely solved 
in industry is large, i.e., there are several thousand decision variables in our rail scheduling 
model, this makes an optimal train schedule unattainable within a reasonable run-time on a 
standard personal computer. In this section, we propose a constraint-based search 
algorithm that can generate near optimal schedules within a reasonable time.  

 
3.1. Constraint-based search 

The constraint-based search algorithm works with a complete assignment to all 
decision variables in the optimisation model, starting with an initial random assignment, in 
which some operational constraints in the model can be violated or some constraints are 
relaxed. In the iteration loop, the algorithm randomly selects a violated constraint. For 
example, the assigned train timeslot for which the demands exceed a train capacity or the 
assigned timeslot that is not consistent with the customer booking times. Having selected a 
violated constraint, the algorithm randomly selects one variable in that constraint and 
another variable from the search space. Then, two flip trials are performed, i.e., changing 
the current value of the variable into the other binary value. Suppose that Gj takes the value 
gj at the start of the iteration so A = (g1, g2, …, gm | h), where m is the total number of 
variables and h is the total violation of all hard constraints. Suppose further that G1, G2 are 
selected and that their flipped values are 21, gg  respectively. We look at the assignments 
A1 = ( )121 |...,,, hggg m , A2 = ( )221 |...,,, hggg m and select the alternative with the smaller 
total hard violation. The total hard violation is compared between iterations. 

 

 
Figure 3 The constraint-based search procedure 

 
Whenever all operational (hard) constraints are not violated, the algorithm stores the 

soft violation penalties as feasible objective values, together with the associated variable 

proc constraint-based search 
  input soft  and hard  constraints,  nbIterations or timeLimit 

A := initial random assignment  
for i := 1 to nbIterations do  

C := select-violated-hard-constraint (A)  
 flip C, A1, A2 

      if (h1 < h2) then (A ← A1)     
    else  (A ← A2)   

           if h = 0 then A is feasible 
           record solution A 

end if 
 if h = 0 then reinitialise A  

      end if 
end for   
output feasible solutions found 

end proc 
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values. The algorithm continues until the iteration limit, nbIterations or the time limit, 
timeLimit is reached. The procedure of the constraint-based search is given in Figure 3. 

 
3.2. Hierarchical constraint violation 

The hierarchical violation scheme allows the search algorithm to apply specific 
weights to constraints and/or sets of decision variables. In our rail container scheduling 
model, constraints carry different weights. 

We distinguish between soft and hard constraints. The search algorithm works solely on 
the hard constraints. Whenever all hard constraints are satisfied, soft constraint violations 
present feasible objective values in terms of the generalised cost. 

 
3.2.1. Hard violations 

Hard violation weights allow the search to give priority to satisfying particular sets of 
hard constraints and/or variables that lead to feasible schedules. Hard violation weights are 
applied to maximum capacity, timeslot consistency, and timeslot covering constraints.  

For the violation of maximum capacity constraint, we consider that any number of 
containers in timeslot t exceeding train capacity of  is penalised with the same violation vm. 
An attempt to apply different violation weights to different number of exceeded containers 
on a train makes little sense because one can never guarantee whether the lower number of 
exceeded containers would be more likely to lead to feasible schedules. The violation for 
maximum capacity constraints is defined as: 
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For the timeslot consistency constraint, the algorithm assigns the violation vc if the 

train does not depart at timeslot t but there are some customers assigned to that timeslot. 
The violation for timeslot consistency constraints is defined as: 
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where: L is the number of potential customers for timeslot t 
 

3.2.2. Timeslot violations 
The timeslot violation weights influence the search towards minimising a generalised 

cost whilst satisfying the operational constraints. The timeslot violation (vt) depends on the 
possibility of assigning a particular timeslot on a schedule with a minimum generalised 
cost. It is noted that the total hard violation h is the sum of hard violations (vm, vc, vs) and 
timeslot violation (vt). When total hard violations (vm, vc, vs) are satisfied, the timeslot 
violation (vt) is set to zero. 

An attempt to derive the timeslot violation weights in a monetary unit by trading off 
between objectives is not possible. This is because the train schedule is not a single 
departure timeslot but is a set of timeslots used; thus considering only a single timeslot 
separately from the others cannot represent a total cost for the rail carrier. However, as in 
practice some business criteria play more important roles than others, the way to solve the 
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tradeoff between soft constraints for a single timeslot is to apply hierarchical violation 
weights to the rail business criteria. 

 
4. The improved schedule 

In this section, we describe the construction and use of the probabilistic learning 
method that steer the constraint-based search by inferring, from its recent violation history, 
the likely optimal value of chosen variable of interest. The quality of train schedules is 
improved using this technique. 

 
4.1. Minimum train loading 

The minimum train loading is used to ensure satisfactory revenue for the rail carrier 
and spreads out the size of shipment on train services. The carrier may need to set the 
minimum train loading as high as possible, ideally equal to the capacity of a train. The 
minimum train loading is directly related to the number of trains expected (serviced), 
which is defined as: 

 ⎥
⎥

⎤
⎢
⎢

⎡
= ∑

j
j PNT 1exp /                (13) 

where: Texp is the number of trains expected, Nj is the demand of customer j, P1 is the 
minimum train loading 
 

Apart from ensuring satisfactory revenue, the minimum train loading is a key feature 
of the performance of our solution algorithm. The higher the minimum train loading, the 
more constrained the problem is and hence the number of feasible schedules decreases. 
This increases the usefulness of the probabilistic learning method (described in section 
3.2).  

From the computational point of view, it is hard to guarantee that the train schedule 
constrained by the highest minimum train loading, derivable from a lower bound on the 
number of trains θ, would be feasible. If such a feasible schedule exits, it would imply that 
the schedule is approximately optimal. With this information, our search algorithm can be 
advised to move towards a near optimal schedule directly. However, it is still very hard to 
find the optimal schedule without the aid of the probabilistic learning method. 

Few techniques for proving the existence of feasible solutions within a given integer 
optimisation problem have been proposed, such as the interval Newton method (see 
Kearfott (1998)). Nevertheless, practical implementations of these techniques have not yet 
been described, and for a large-scale optimisation problem, the methods are awkward and 
fail to prove feasibility. 

In this paper, we can derive the minimum train loading from the problem specific 
domain. If the minimum train loading is relatively low the possibility of having no feasible 
schedule is also low; however, if the minimum train loading is so high a feasible train 
schedule would unlikely exist. Ideally, suppose that there are ten customers with the 
uniform demands of 20 containers, and the capacity of a train is 60. Therefore, the 
averaged demand is 20 and the standard deviation is 0, and this standard deviation 
indicates the degree of schedule having no feasible solution r. Suppose further that, if the 
demands are consolidated with the maximum train utilisation, the minimum train loading 
P1 = 50 will ensure the existence of feasible schedule, in the other words, r is zero. 

However, the uniform customer demand never occurs in practice; in addition, non-
uniform arrival times on the demands and different customer’s booking preferences could 
make the consolidation by averaged demand underestimated. This is because some 
customer’s booking times may only be consistent with a particular set of departure 
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timeslots. In this paper, we partition customer demands into a day timeslot and the demand 
is averaged by each day. Then, the mean for averaged demand for the total classified days 
is calculated. Note that, each classified day can have the same demands due to the number 
of customer’s booking preferences given within a week of operation. Now, we can find the 
minimum train loading by first defining a certain level of r, e.g., r = 20% means that the 
chance of schedule having no feasible solution is 20%, in other words, the confident level 
is 80% on the existence of a feasible schedule. The minimum train loading P1 is defined as 
follows: 
 

P1  = ⎡ ⎤∑
j

j TMN //                (14) 

where: M is the total number of customers, T = ⎣ ⎦rP µ/2 ,  µ  and σ are mean and standard 
deviation of averaged demand for the total classified days,  µr  is the mean with a 
percentage of r, ( ) ( )[ ] 100/100 rr −×+= σµµ  
 

It is noted again that the algorithm assigns the number of trains departing in timeslots 
according to the number of trains expected Texp, and this rule is maintained during the 
search process. With P1, whenever all hard constraints are satisfied (a feasible schedule is 
obtained), the minimum train loading is increased by removing one train from the current 
state of the feasible solution, i.e. Texp = Texp – 1. 

 
4.2. Probabilistic learning method 

In this section, we develop the value choice model that can predict a likely optimal 
value for a decision variable in the optimisation model. The choice model is based on the 
logit method and the proportion method. 

For the container rail optimisation model, decision variables may take several 
different values across the set of feasible schedules. Thus, it is very difficult to predict a 
good consistent value for the variables. However, when the problem is severely 
constrained and has few feasible solutions, this can be done by setting a high value of 
minimum train loading as described in section 3.1, it may well be that some decision 
variables would take more consistent values in all the feasible schedules during the search.  

Once a variable has been selected, the search algorithm has to choose a value that is 
likely to lead to a smaller total degree of hard violation in a complete assignment. In our 
solution algorithm, two variables are considered at each trial iteration. The first variable is 
chosen in a violated constraint and considered as a variable of interest, the second variable 
is randomly selected from the search space and used for a comparison. Flipping the first 
variable might result in a reduction in total hard violation. However, it might be that 
flipping the second variable would result in even more reduction in the constraint violation. 
Therefore, the flipped value of the first variable is not accepted and the unflipped value is 
recorded for the lowest total hard violation.  

As illustrated in Table 6, the history of constraint violation is recorded whilst the 
algorithm performs trials of flip assignments. Each time a decision (binary) variable is trial 
flipped in its value, the total degree of hard constraint violation associated with its two 
possible values is compared. 
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Table 6 Constraint violation history 
Flip Variable x1 Hidden Combination  
Trial Current Flipped Variable Current Flipped *

1x  
 Value 1h′  Value h1 xj Value h2 Value h2  

1 1 26 0 22 15 1 26 0 36 0 
2 1 20 0 12 9 0 20 1 6 1 
3 1 15 0 14 30 0 15 1 10 1 
N 0 46 1 53 8 0 46 1 31 0 

h : total degree of hard constraint violation, *
1x : value of x1 chosen in the flip trial 

note that, only 1h′ , h1 , and *
1x are recorded for the violation history of x1 

 
Clearly, the interdependency of the variables implies that the effect of the value 

chosen for any particular variable in isolation is uncertain. This observed inconsistency is 
taken to be a result of the uncertainty or random behaviour on the part of a given value 
choice decision. Therefore, at each flip trial, the algorithm is enforced to select the choice 
of value with lowest total hard violation (disutility) for a variable of interest. 

 
4.2.1. Logit method 

We can derive a choice probability by assuming a joint probability distribution for 
the two random disutilities. At each flip trial n the algorithm selects a choice value for x = 
0 or x = 1 with the lowest total hard violation (disutility). Under the assumption that the 
non-deterministic total hard violation is logistically distributed, applying a standard logistic 
distribution function and probability theory, a specific probabilistic choice model, the logit 
model (see Ben-Akiva and Lerman (1985)), can be obtained as follows: 
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where: P0n is a probability for flip trial n choosing value 0. 

 
4.2.2. Proportional method 

The proportional choice model is also probabilistic but only depends on the number 
of occurrences of choice values in x* (Table 6), i.e., the total hard violation h is not 
considered. This choice model is designed to enhance the prediction when the violations 

0h and 1h are close, in this case, the logit model may not perform well. In addition, as the 
proportional model requires less computation, the logit model may be called only when an 
occurrence of any value in x* is not obviously dominating, i.e., the proportion of any one 
value in x* is less than a preset parameter D, e.g., D = 70%. A probability of choice value 0 
for the total number of flip trials N, P0 is defined as: 
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                         (16)  

As an outcome of the choice models is a probability of choosing a value for the 
variable, the variable is fixed at its predicted value for a number of iterations determined 
by the magnitude of the probability. When the number of fixing iterations F is reached, the 
variable is freed and its violation history is refreshed. During these iterations, other 
decision variables may become fixed. This sequence of fixing values for the variables 
helps intensify the search and targets the optimal schedule. 
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5. Experimental results 
The experiments are compared with results from a case study. The description of the 

case study is given first. The real case problem is then solved in order to demonstrate the 
performance of the model and solution algorithm proposed. 

 
5.1. Case study 

The eastern line container rail service in Thailand is selected for a case study because 
it has a very high volume of container traffic and serves the main import-export activities 
between Bangkok and the eastern region, the gateway of the country. 

Recently, it has been roughly estimated that more than a million containers a year or 
several thousand containers a day are transported between the two regions. About thirty 
percent of container movement is shared by rail. In 2000, because of  traffic congestion 
and environmental concerns, the government of Thailand decided to limit the number of 
containers through Bangkok port to 1.2 million containers a year. As a result, Laem 
Chabang port, located in the eastern region of the country, has to serve an increasing 
number of container flows between two regions. 

At present, the Royal State Railway of Thailand (RSRT) provides a weekly fixed 
schedule in which a certain number of trains are provided in fixed departure timeslots. The 
real life data is colleted from four successive weeks with 184 shipping companies. 

 
5.2. Performance of the proposed model and algorithm 

We present results for our solution algorithm on a test of four realistic data sets 
described in Table 7. In fact, more extensive tests have been conducted; however, we 
present here only four problems that typify the problem size and performance 
characteristics. 
 

Table 7 Characteristics of the test problems 
Test Customers Containers θ RSRT’s schedules Supply - Demand (∆) 
Case     Trains Capacity Capacity Trains 
W1 134 2907 43 57 3876 969 14 
W2 116 2316 35 42 2856 540 7 
W3 84 1370 21 28 1907 537 7 
W4 109 2625 37 50 3400 775 13 

θ : a lower bound on number of trains; a capacity of a train (P2) is 68 containers 
 
We present the results yielded by the implemented framework of our rail container 

scheduling model and solution algorithm, and compare them with current practice. Several 
constraint violation schemes are evaluated in order to investigate their robustness and 
sensitivity. The probabilistic learning method is also tested by comparing the results with 
the constraint-based search algorithm. 

From all test cases, we set the limitation of 5 minutes of CPU time, value choice-
specific parameter in the probabilistic learning method β1 = 0.05, number of flip trials 
(violation history) N = 20, percent decision method D = 80, the number of fixing timeslots 
nbFixX = 50, the number of fixing customers nbFixY = 100. Note that  nbFixX and nbFixY 
are the upper limits which the number of variables in the model can be fixed at their 
predicted values. However, when nbFixX or nbFixY is reached, the first variable in the 
fixing list is suddenly released, and a new predicted variable is inserted and fixed. Each 
test case is run five times. The results for the test cases are shown in Tables 8 - 11. 

The abbreviations displayed in Tables 3 - 6 have the following meanings: vc, vm, vs 
are hard violations for timeslot consistency, maximum capacity, and timeslot covering 
constraints respectively; fi is the optimality index factor, which allows the algorithm to 
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give priority between timeslot and hard violations; F is a preset number of fixing iterations; 
T*

exp is the number of trains expected at the last feasible schedule found; OC is the average 
operating costs (× 106 Baht); VC is the average virtual revenue lost (× 106 Baht); GC is a 
generalised cost and is the sum of OC and VC. 

Table 8 Computational results for test problem W1 
Test Violation fi F T *exp Proposed schedule’s costs Reduction 
No. (vc, vm, vs)    OC VC GC OC (%) 
1 (1, 1, 0) 0 0 53 4.77 0.85 5.62 12.16 
2 (1, 10, 0) 0 0 56 5.32 0.75 6.07 2.03 
3 (10, 1, 0) 0 0 - - - - - 
4 (1, 1, 10) 0 0 54 5.05 0.85 5.90 7.00 
5 (1, 1, 50) 0 0 50 4.50 0.82 5.32 17.13 
6 (1, 1, 100) 0 0 50 4.50 0.82 5.32 17.13 
7 (1, 1, 200) 0 0 51 4.61 0.82 5.43 15.10 
8 (1, 1, 100) 1 0 49 4.36 1.20 5.56 19.70 
9 (1, 1, 100) 5 0 50 4.50 0.82 5.32 17.13 

10 (1, 1, 100) 10 0 - - - - - 
RSRT schedule’s cost (OC) = 5.43, minimum train loading (P1) = 52, Texp = 56 

 
Table 9 Computational results for test problem W2 

Test Violation fi F T *exp Proposed schedule’s costs Reduction 
No. (vc, vm, vs)    OC VC GC OC (%) 
1 (1, 1, 0) 0 0 45 4.43 0.75 5.18 -9.93 
2 (1, 10, 0) 0 0 45 4.43 0.75 5.18 -9.93 
3 (10, 1, 0) 0 0 45 4.43 0.75 5.18 -9.93 
4 (1, 1, 10) 0 0 47 4.60 0.62 5.22 -13.26 
5 (1, 1, 50) 0 0 45 4.43 0.62 5.18 -9.93 
6 (1, 1, 100) 0 0 39 3.35 1.14 4.49 16.04 
7 (1, 1, 200) 0 0 47 4.60 0.62 5.22 -13.26 
8 (1, 1, 100) 1 0 40 3.48 1.05 4.89 12.78 
9 (1, 1, 100) 5 0 - - -  - 

10 (1, 1, 100) 10 0 - - -  - 
RSRT schedule’s cost (OC) = 3.99, minimum train loading (P1) = 50, Texp = 47 

 
In Table 8 - 9, we perform a sensitivity analysis to test parameters in the constraint 

violation scheme. For instance, test no. 1, the violations of timeslot consistency and 
maximum capacity constraints are given the same weight (vc, vm = 1), and the violation vs 
for timeslot covering constraint is not included. The results of test no.1-3 show that the 
violations vc and vm are not sensitive as they both represent infeasible schedules. This 
indicates the robustness of the solution algorithm, which does not require special tuning 
parameters between hard constraint violations. 

The violation scheme with vs shows a superior performance with respect to the 
quality of the schedule produced. This indicates that positive values of vs have a 
computational advantage as it influences the search for the feasible schedules. However, 
choosing too large a value for vs can decrease its effectiveness. Our experiments indicate 
that vs = 100 is a reasonable setting. 

The results also show the effect of introducing the optimality index factor fi. With the 
existence of fi, we obtain a slightly better quality of schedule. This is because the desirable 
schedule is mostly controlled by the minimum number of trains constraint as in practice it 
plays a more important role than other objectives. However, a high value of fi provides a 
low quality of results. This may be because the search is dominated by the timeslot 
violation and hard constraints have not been satisfied. 
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Table10 Computational results for test problem W3 
Test Violation fi F T *exp Proposed schedule’s costs Reduction 
No. (vc, vm, vs)    OC VC GC OC (%) 
1 (1, 1, 0) 0 50 27 2.40 0.42 2.82 9.43 
2 (1, 1, 0) 0 100 25 2.38 0.45 2.83 10.19 
3 (1, 1, 0) 0 200 - - - - - 
4 (1, 1, 0) 0 300 - - - - - 
5 (1, 1, 100) 1 50 26 2.39 0.45 2.84 9.81 
6 (1, 1, 100) 1 100 24 2.14 0.61 2.75 19.25 
7 (1, 1, 100) 1 200 25 2.38 0.45 2.83 10.19 
8 (1, 1, 100) 1 300 - - - - - 

RSRT schedule’s cost (OC) = 2.65, minimum train loading (P1) = 51, Texp = 27 
 
When the probabilistic learning method is incorporated, i.e., a preset number of 

fixing iterations F is set more than zero, the algorithm targets near optimal schedules 
quicker than  constraint-based search alone, whilst containing computational effort within 
the limitation of 5 minutes of CPU time. From test no. 1- 4, violation scheme (vc, vm, vs) = 
(1, 1, 0), and the optimality index factor fi is not applied. The performance of algorithm is 
still good enough. When the violation scheme and the optimality index are used, we get 
rather better schedules. This is because the change in constraint violations affects the input 
of the value choice models. The prediction is improved as the weights are tuned by the 
problem specific knowledge. We also examine the performance of algorithm having 
different numbers of fixing iterations F. The large number of fixing iterations affects the 
quality of schedule both positively and negatively. However, setting F between 100- 200 
iterations performs well in general. 

Table 11 Computational results for test problem W4 
Test Violation fi F T *exp Proposed schedule’s costs Reduction 
No. (vc, vm, vs)    OC VC GC OC (%) 
1 (1, 1, 0) 0 50 46 4.21 0.83 5.04 11.55 
2 (1, 1, 0) 0 100 43 3.93 1.08 5.01 17.44 
3 (1, 1, 0) 0 200 48 4.42 0.67 5.09 7.14 
4 (1, 1, 0) 0 300 - - - - - 
5 (1, 1, 100) 1 50 47 4.35 0.69 5.04 8.61 
6 (1, 1, 100) 1 100 41 3.82 1.23 5.05 19.75 
7 (1, 1, 100) 1 200 48 4.42 0.67 5.09 7.14 
8 (1, 1, 100) 1 300 - - - - - 

RSRT schedule’s cost (OC) = 4.76, minimum train loading (P1) = 55, Texp = 48 
 

Comparing the model results with current practice, in all test cases, there are some 
reductions in rail operating costs, but these are not considerable. This is because in practice 
the RSRT’s schedule is not fixed at the same service level everyday. The rail carrier 
normally cuts down the number of train services with a short notice if the train supply is a 
lot higher than the customer demand. This is done by delaying some customer’s departure 
times according to its demand consolidation strategy. 

As noted in test case W2 (Table 9), some feasible schedules based on our proposed 
model incur higher operating costs than RSRT’s schedule as more trains are required. This 
is one of the reasons for the RSRT to rely on its demand’s consolidation strategy. 
However, our best feasible schedule requires slightly lower number of trains to operate 
than the RSRT’s practice. In addition, our model maximises customer satisfaction, in other 
words, minimises the virtual loss of future revenue within a generalised cost framework. 
Therefore, the near optimal schedule could reflect the maximum degree of customer 
satisfaction within the restrictions of other rail business criteria through a demand 
responsive schedule. 
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6. Conclusions 
With the proposed demand responsive rail scheduling model, we are able to find a 

profitable schedule whilst satisfying customer demand within a generalised cost function. 
The schedule leads to some reductions in total operating costs and enhances the customer 
satisfaction through a demand responsive schedule. 

We also propose a novel method to solve the rail container scheduling problem. As 
the existing ways of solving the problem rely on complex heuristics and problem specific 
knowledge, our solution approach is more flexible and convenient to implement. The 
problem is modelled as a constraint satisfaction problem and solved using a constraint-
based search algorithm that learns implicitly from the constraint violation history and tries 
to fix a likely optimal value for the decision variables adaptively. It helps the search 
quickly target the optimal schedule.  
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