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Abstract 

A dynamic ‘car-following’ extension of the conventional economic model of traffic 
congestion is presented, which predicts the average cost function for trips in stationary states 
to be significantly different from the conventional average cost function derived from the 
speed-flow function. When applied to a homogeneous road, the model reproduces the same 
stationary state equilibria as the conventional model, including the hypercongested ones. 
However, stability analysis shows that the latter are dynamically unstable. The average cost 
function for stationary state traffic coincides with the conventional function for non-
hypercongested traffic, but rises vertically at the road’s capacity due to queuing, instead of 
bending backwards. When extending the model to include an upstream road segment, it 
predicts that such queuing will occur under hypercongested conditions, while the general 
shape of the average cost function for full trips does not change, implying that 
hypercongestion will not occur on the downstream road segment. These qualitative 
predictions are verified empirically using traffic data from a Dutch bottleneck. Finally, it is 
shown that reduced-form average cost functions, that relate the sum of average travel cost and 
average schedule delay costs to the number of users in a dynamic equilibrium, certainly need 
not have the intuitive convex shape, but may very well be concave – despite the fact that the 
underlying speed-flow function may be convex. 
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1. Introduction 
Notwithstanding the long history of the economists’ and engineers’ study of road 

traffic congestion and congestion pricing (see Pigou, 1920; Knight, 1924; Wardrop, 1952; 
Walters, 1961; and Vickrey, 1969), academia has not yet reached general consensus on the 
fundamentals that should underlie such analysis. This is illustrated by the relatively large 
number of comments and replies that papers on congestion modelling seem to trigger (Else, 
1981, 1982, versus Nash, 1982; De Meza and Gould, 1987, versus Alan Evans, 1992; Andrew 
Evans, 1992, 1993, versus Hills, 1993; and Ohta, 2001ab, versus Verhoef, 2001b). Much of 
the debate centres around the modelling of cost functions for congested road use in the 
context of the conventional static economic model of traffic congestion, which – following 
Walters (1961) – uses the speed-flow function as the basis for the average cost function of 
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road use (see also Section 2 below). Two issues have been particularly heavily debated in the 
studies just mentioned: the economic interpretation of ‘hypercongestion’1 and its stability as 
an equilibrium outcome, and the question of which argument should be used in the definition 
of demand and supply functions used for characterizing equilibria in the market for road trips. 
These issues are not entirely unrelated: an analyst who uses traffic density as the argument in 
the cost and demand functions may conclude that a unique, stable market equilibrium may 
occur at the hypercongested branch of the speed-flow function (e.g. Ohta, 2001a). 

This paper reconsiders the derivation of cost functions from speed-flow relations from 
a dynamic perspective, with an emphasis on the phenomenon of ‘hypercongestion’. To that 
end, the paper first summarizes the main results obtained with a dynamic extension of the 
conventional model, presented in two earlier papers (Verhoef 2001a, 2003), and will then test 
these empirically by contrasting the model’s qualitative, aggregate predictions to insights 
obtained from empirical data for a well-known bottleneck on the Dutch road network (The 
Coenplein, near Amsterdam). This dynamic extension involves a simple car-following model, 
where the car-following equation is a first-order differential equation, linking a driver’s 
instantaneous speed choice to the distance from her leader. Because distance is the inverse of 
density, and because the conventional model is based on a relation between density and speed, 
the car-following model is easily made consistent with the conventional model for stationary 
state traffic. Two variants of this model will be considered: one in which there is a single 
homogeneous road of constant capacity, and one in which there is a bottleneck halfway this 
road due to a reduction in the number of lanes. 

Dynamic stability analysis for the homogeneous road setting – the situation for which 
the conventional model predicts that all (positive) flows below capacity could in principle 
occur both as a hypercongested and as a normally congested equilibrium – demonstrates that 
hypercongested stationary states are in fact dynamically unstable. This means that there are no 
equilibrium paths to such a stationary state from any other stationary state (hypercongested or 
not). This finding will be substantiated in Section 3, and the implications for the shape of the 
average cost function (for full trips) that can be derived from the speed-flow function will be 
identified. These are that this function will coincide with the conventional function for 
normally congested speeds, but instead of bending backwards it will rise vertically at the 
road’s capacity (if queuing before its entrance is allowed). 

In contrast, when applied for a road with a bottleneck, the model shows that in a 
dynamic equilibrium with endogenous departure times (á la Vickrey, 1969), hypercongestion 
will occur with certainty during the equilibrium peak, provided the equilibrium number of 
users over the peak, relative to the capacity of the downstream road segment, is sufficiently 
large. However, hypercongestion will prevail on the upstream, high-capacity segment of the 
road, whereas the speed on the downstream, low-capacity segment will asymptotically 
approach the constant value consistent with the maximum flow (i.e., the capacity) of that 
segment. This will be discussed further in Section 4.  

Section 5 will compare the main qualitative predictions of the theoretical model with 
empirical traffic data, which include observations upstream and downstream of a bottleneck. 
It is shown that these are largely consistent. 

Finally, Section 6 will consider reduced-form average cost functions, that relate the 
sum of average travel cost and average schedule delay costs to the number of users in a 
dynamic equilibrium, for the proposed car-following model of traffic congestion. 
                                                 
1 ‘Hypercongestion’ is the term used in the economics literature to indicate the lower branch of the speed-flow relation for 
which density has become so high and speed so low that the traffic flow (the product of speed and densities in stationary 
traffic conditions) has fallen below its maximum possible value (see also Section 2 below). The upper branch of the speed-
flow function, where the same flow levels are obtained at a higher speed and a lower density, is called ‘normally congested’. 
In the engineering literature, this normally congested branch is often referred to as ‘uncongested’ and the hypercongested 
branch as ‘congested’. The economics terminology will be used in this paper. 
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2. The conventional model and a continuous-time – continuous place generalization 

2.1. The conventional economic model of traffic congestion 
The conventional model of traffic congestion considers stationary state traffic on a 

single road with identical users. The main advantage of this approach is its – relative – 
simplicity, owing to the fact that speeds (S), densities (D) and flows (F) are pre-supposed not 
to vary over time nor place (i.e., along the road). Because in reality, stationary traffic 
conditions could occur only if the (inverse) demand function were stable over time, a logical 
implication of taking a stationary state perspective appears to be that the inverse demand 
function in such a model be defined with respect to the number of completed trips per unit of 
time, and hence traffic flow (strictly speaking measured at the road’s exit, but due to the 
assumed constancy of flow along the road, this can be equated to ‘flow’ in general).2 

The basis of the standard static model is the engineers’ ‘fundamental diagram of traffic 
congestion’, which depicts how speed S falls monotonously with traffic density D. Because 
traffic flow F is identically equal to the product of speed and density in a stationary state (see, 
however, also footnote 4), the well-known backward-bending speed-flow function can be 
derived from this fundamental diagram (a sufficient condition being that a maximum density 
exists for which speed falls to zero). Walters (1961) observed that the inverse of speed (travel 
time per unit road length) multiplied by the constant length X of the road and by the value of 
time vot (assumed exogenous and constant) reflects the average (time) costs AC per trip 
(ignoring other costs of travel). The backward-bending speed-flow function thus implies a 
backward-bending AC-curve, which is depicted in Figure 1. 

Figure 1. The backward-bending average cost curve (AC) and two inverse demand curves (E 
and E′) defined over traffic flow (F) 

 
Every positive flow below capacity (cap) is attainable as a ‘hypercongested’ 

equilibrium with high costs (above the horizontal line) and as a ‘normally congested’ one with 

                                                 
2 The possible alternative argument of density (D) would be appropriate for an inverse demand function only in the 
implausible circumstance (at least for commuting) where people’s utility were derived directly from being on the road, 
instead of from completing a trip (and hence from leaving the road); whereas the ‘total number of trips accomplished’ (N) is 
not defined in a stationary state: this number increases linearly with the time period considered. It should be acknowledged, 
however, that this issue of identifying the appropriate argument is a source of ongoing debate in the literature. For instance 
Ohta (2001a) proposes density, and Hills (1993) proposes the total number of trips explicitly uncorrected for a time 
dimension; both considering a static congestion technology. 

AC E

x

y

z

x’

ε
AC

hypercongestion

normal congestion

cap

E’

F



 

4

low costs (below the horizontal line). The confrontation with a downward-sloping inverse 
demand function (E) yields puzzling results, feeding the debates mentioned earlier (see also 
Chu and Small, 1996). Three candidate equilibria are suggested: x and y (both 
hypercongested), and z (normally congested). Candidates y and z appear stable for quantity 
perturbations (a slight increase in flow leads to AC>D, so that flow will be pushed back, and 
vice versa for a slight decrease in flow), and x and z for price perturbations (a slight decrease 
in the price (AC) leads to excess demand, so that the price will be pushed upwards, and vice 
versa for a slight increase in the price). Even stability analysis therefore appears inconclusive, 
and the model in general cannot predict whether or not hypercongestion will occur in 
equilibrium, regardless of whether price or quantity perturbations are considered the 
appropriate type to consider. Moreover, with a demand curve such as E’, only one 
(hypercongested) candidate equilibrium x’ remains, which is, however, unstable for quantity 
perturbations. If one believes that quantity perturbations would be the appropriate type to 
consider for a congested road in absence of tolling, this would discomfortingly and counter-
intuitively imply that no stable equilibrium exists for a demand function such as E’, and the 
model simply cannot predict what will happen. 

An important shortcoming of the above stability analysis is that the stationary state 
approach only allows consideration of simultaneous and identical changes in traffic conditions 
along the entire road. This ignores that in reality, traffic flows, densities and speeds along the 
road will be endogenous variables, dependent on the (history of) arrival rates of ‘new’ users at 
the road’s entrance – somewhat confusingly referred to as the departure rate (from home) in 
the sequel. Downstream conditions will typically not respond immediately to a change in this 
departure rate. To incorporate this idea into the model, its presupposed inherently static and 
non-spatial nature (F, S and D obtain the same value over time and along the entire road) 
nature has to be abandoned. The next sub-section describes how this can be accomplished. 

 
2.2. A continuous-time – continuous place generalization of the conventional model 

based on first-order car-following modelling 
One simple transformation suffices to obtain the simplest plausible continuous-time – 

continuous-place generalization of the static model discussed above. This involves converting 
traffic density into its inverse: distance between cars. The proposed formulation stipulates that 
an individual driver i, at each instant t, chooses a speed Si

t as a function of the distance δi
t 

from the car in front of him – his ‘leader’, in car-following terminology. Consistency (for 
stationary states) between a standard static model based on a speed density relation SD(D) and 
its proposed continuous-time – continuous-place counterpart can easily be established. This 
simply requires using a car-following equation for which Si(δi

t)=SD(D) for δi
t=1/D. 

For a given initial state (e.g. an empty road, or an exogenously defined stationary 
state), and for any exogenously (as in Section 3) or endogenously (as in Section 4) determined 
time profile of departures from home, the model then endogenously determines traffic 
conditions for each location x and each time t. Typically, an individual driver’s speed varies 
over time and location, the speed at a given location varies over time, and the speeds at a 
given time vary with location. This dimensional richness (i.e., the continuous-time – 
continuous place congestion technology) comes at a price: no analytical closed-form solutions 
exist other than for stationary states. The model namely consists of a set of N (the number of 
users considered) interdependent first-order partial differential equations3 of the type: 

                                                 
3 The first-order structure of the car-following equation distinguishes it from standard car-following models, where typically 
a driver’s acceleration is defined as a function of the speed difference with and distance from his leader. However, also in the 
present model, a driver will be accelerating when driving slower than his leader, and no infinite de- or acceleration will occur 
provided the first driver modelled never drives at infinite speed. 
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Nevertheless, a number of general properties of the model were derived in Verhoef 
(2001a, 2003), that do not depend on a specific choice for the function S(δi

t), but only require 
it to be continuous, smooth for positive speeds, increasing for speeds below the free-flow 
speed, to obtain a constant maximum ‘free-flow’ speed for distances exceeding some value, 
and to obtain a value of zero for some minimum (positive) distance, approximately the length 
of a vehicle. For the purpose of illustrating the results, a numerical version of the model was 
used in these papers, and will also be used below, where the distance-speed function S(δi

t) 
depicted in Figure 2-I is used (the units are meters m for distance and seconds s for time): 
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Equation (2) assumes that the speed falls to zero when the distance between cars is 5 
meter (approximately the length of a car), while the maximum free-flow speed of 33 1

3  m/s 
(120 km/hr) is obtained if δ≥100 meters (or when no leader is present). For intermediate 
values of δ, an arbitrary polynomial function is used, for which S(δ) is continuous at δ=5 and 
δ=100, and smooth at δ=100. The implied speed-flow curve for constant speed stationary 
states4 (for a single lane) is shown in Figure 2-II (flow is calculated as F=S(δ)/δ). The 
maximum flow of 0.965 veh./s occurs at a speed of 17.55 m/s (= 63.18 km/h) and a distance 
of 18.195 meters (a density of 0.055 veh./m). This maximum flow is appreciably higher than 
the usually empirically measured maxima of 2000 – 2500 vehicles per hour per lane (e.g. 
Small 1992, Figure 3.4), but this deviation is not expected to affect the qualitative properties 
of the model. 
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Source: Verhoef (2001a) 

Figure 2. The distance-speed function (I) and the implied speed-flow function for stationary 
states (II) for the numerical simulation model 

                                                 
4 A stationary state for the dynamic model is defined as a situation where the flow is constant over time for every point along 
the road. This implies that the flow must be constant along the road, and that S and hence δ at a certain location does not 
change over subsequent driver. Verhoef (2001a) demonstrates that speed and density (or its inverse, δ) need not be constant 
along the road in a stationary state; i.e., acceleration or deceleration during trips is possible in a stationary state. This will for 
instance occur when the stationary state involves a vertical queue before the road’s entrance, so that drivers start their trips at 
a zero speed. Interestingly, the standard definitional relation F=S⋅D or its equivalent F=S/δ do not apply when a stationary 
state involves acceleration or deceleration (Verhoef, 2001a). The stationary states shown in Figure 2-II, however, are constant 
speed stationary states. 
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Two more assumptions ought to be made explicit, involving the road’s exit and its 
entrance. First, near the exit of the road, a driver’s speed could not be determined if his leader 
were assumed to vanish into thin air once completing his trip (δ is no longer defined). To 
avoid kinks in individual drivers’ ‘clock-time speed’ functions – which could easily become a 
strong driving force in the model if they cause upstream moving shock-waves – drivers’ 
speeds near the exit are calculated as if all preceding drivers continue their trips after the exit, 
on a road with the same capacity as the (final segment of) the road modelled. Second, if upon 
arriving at the road’s entrance, a driver’s leader has not yet travelled the minimum distance 
required for a positive speed, it is assumed that a vertical queue with FIFO queuing discipline 
arises before the road’s entrance (this assumption is relevant for Section 3 below). 

3. The dynamic instability of hypercongested equilibria for stationary state traffic 
Verhoef (2001a) studied what will be called the ‘dynamic stability’ of the stationary 

state candidate equilibria found along the AC-curve in Figure 1. Dynamic stability, in this 
context, is defined as follows: can the ‘target’ stationary state equilibrium considered, denoted 
with superscripts 1 and defined by {F1≡S1⋅D1, S1=vot⋅X/AC1, D1=1/δ1}, be reached or 
approached asymptotically from any other initial stationary state (denoted with superscripts 
0), different from the target state 1, following any possible change in the departure rate (ρ) of 
new users? If the answer is yes, the target stationary state is said to be dynamically stable; 
otherwise it is classified dynamically unstable. 

Note that the question framed above implicitly assumes that both the normally and 
hypercongested equilibria can indeed sustain as stationary states, when disregarding dynamic 
stability, in the present car-following model. For completeness, this is proven to be true in 
Verhoef (2001a). Any initial stationary state 0 along the AC-curve, hypercongested or non-
hypercongested, will sustain (without queuing before the road’s entrance) if and only if ρ0=F0 
continues to hold true following the initial state. 

Knowing that any target stationary state 1 can only be consistent with a constant 
departure rate ρ1, the stability analysis was simplified to a procedure of starting with an initial 
stationary state 0, setting the arrival rate ρ1 equal to the target flow F1, and proving which 
stationary state, if any, would be approached (asymptotically). As we will see, the results 
make it highly implausible that target stationary states that are classified dynamically unstable 
according to this type of stability analysis would appear dynamically stable when allowing ρ 
to follow a more complicated pattern following the initial stationary state (e.g., when over- or 
undershooting F1 temporarily). However, this is not proven formally in Verhoef (2001a). 

When we thus start with an initial stationary state 0 and next study the consequences 
of a structural change in the arrival rate of new users to ρ1 ≠ ρ0, the following stationary states 
or in some cases steady states (where a stationary state prevails on the road but a vertical 
queue before the entrance is growing at a constant rate) can then be shown to be approached 
asymptotically (proofs are provided in Verhoef, 2001a): 
1. State 0 is non-hypercongested, ρ1<ρ0<cap: the new equilibrium is the non-

hypercongested stationary state with F1=ρ1. 
2. State 0 is non-hypercongested, ρ0<ρ1<cap: the new equilibrium is the non-

hypercongested stationary state with F1=ρ1. 
3. State 0 is hypercongested, ρ1<ρ0<cap: the new equilibrium is the non-hypercongested 

stationary state with F1=ρ1. Hence: hypercongestion will dissolve after a reduction in the 
arrival rate of new users at the entrance. An intuitive explanation is that for a move to the 
hypercongested stationary state with F1=ρ1, the speed would be required to decrease after 
a reduction in the arrival rate, which would require the distances between cars to decrease 
below δ0. However, the reduction in the arrival rate means that distances will instead 
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increase above δ0 (for the first drivers especially near the entrance, but finally along the 
entire road), so that speeds will increase. 

4. State 0 is hypercongested, ρ0<ρ1<cap: the new equilibrium is a steady state in which a 
queue is growing before the road’s entrance at a rate equal to ρ1–ρ0, and a flow F0=ρ0 will 
sustain on the road as a hypercongested stationary state – which, however, does not 
involve constant hypercongested speeds S0 as in the initial state, but where instead each 
driver accelerates throughout his trip once having left the queue, and approaches the 
hypercongested speed S0 asymptotically from below. For a move to the hypercongested 
stationary state with a flow F1=ρ1, the speed on the road would now be required to 
increase after an increase in the arrival rate, which would require the distances between 
cars to increase above δ0. However, the increase in the arrival rate means that these 
distances will instead decrease below δ0; in particular near the entrance. Speeds near the 
entrance will therefore decrease (but because every individual driver accelerates, the 
original flow level F0 will sustain; compare footnote 4) and a queue will be formed before 
the road’s entrance. 

5. State 0 is non-hypercongested, ρ0<cap<ρ1: the new equilibrium is a steady state with a 
flow F1=cap on the road, and in addition a queue will be growing before the road’s 
entrance at a rate equal to ρ1–cap. 

These 5 points together imply that there is no transitional path that would lead to any 
of the hypercongested equilibria suggested by the conventional model. The candidate 
equilibria on the upper branch of the AC-curve in Figure 1 can therefore be ignored for 
market analyses, as these are dynamically unstable. Instead, the results suggest that the true 
‘supply curve’ coincides with the lower branch of the AC-curve for non-hypercongested 
speeds, and would at cap not bend backwards, but instead rise vertically (representing 
queuing costs). This is illustrated in Figure 3, in which the arrows correspond to the five 
foregoing results, and the bold curve gives the ‘true’ AC-curve, henceforth defined as the 
curve showing average travel time costs as a function of traffic flow in dynamically stable 
stationary or steady states only. 

Only one dynamically stable candidate equilibrium for an inverse demand function 
such as E in Figure 1 (not redrawn in Figure 3) remains, namely the non-hypercongested one. 
And for an inverse demand function such as E’ in Figure 1, the resulting equilibrium would 
be a stationary state equilibrium with a queue of constant length before the road’s entrance, 
implying constant queuing costs equal to the vertical distance between AC(cap) and E’(cap) 
in Figure 1, and with an arrival rate ρ equal to the flow on the road, F=cap – after a 
transitional phase as described under point 5 has taken place. (With elastic demand, a queue 
will not be growing indefinitely long, but the arrival rate of new users at the entrance will fall 
as the total trip cost including queuing cost rises during the transitional phase). 

The dynamic extension of the standard static model just presented thus takes away 
much of the ambiguity present in the standard exposition as in Figure 1. For an inverse 
demand function that intersects the upward sloping branch of the AC-curve, the analysis 
shows that that this (unique) intersection will be the unique, stable market equilibrium. For an 
inverse demand function that does not have such an intersection, a quite different market 
equilibrium involving queuing is identified (providing queuing before the entrance is 
physically possible – otherwise, no steady state equilibrium will exist), in which the flow on 
the road obtains the maximum possible value. This equilibrium is not even suggested by the 
standard model (compare Figure 1). Also this equilibrium is unique and stable. For either 
case, no hypercongestion will occur on the road. 
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Note: For arrows 1 – 3, the tail corresponds to ρ0=F0 and the head to ρ1=F1. 
 For arrow 4, the tail corresponds to ρ0=F0 and the head to ρ1 (but note that F1=F0<ρ1 will hold). 

For arrow 5, the tail corresponds to ρ1 and the head to F1=cap. 

Figure 3. Schematic overview of the dynamic stability analysis for the conventional AC-
curve, and the resulting ‘true’ AC-curve for dynamically stable stationary or steady states (in 

bold) 

 
One might object that hypercongestion is often observed in reality, implying that the 

above analysis must be wrong. However, we have not yet explored whether traffic in the 
queue, before the road’s entrance, would evolve under hypercongested conditions, once the up 
to now assumed vertical queuing technology would be replaced by car-following behaviour 
similar to what is up to now considered to apply on the road itself. This issue was investigated 
in Verhoef (2002), to which we turn now. 

4. Peak congestion and a bottleneck: dynamic equilibria 
Verhoef (2003) extended the above modelling framework into two directions. First, in 

order to study the question of whether hypercongestion can be generated in a model with the 
proposed car-following congestion technology once a downstream bottleneck exists, the 
extension considers the situation where the single road has a bottleneck halfway, comparable 
to the set-up of Mun (1999). This bottleneck is caused by a reduction in the number of lanes 
(from two to one; see Figure 4), where traffic on each lane behaves according to the same 
distance-speed relation as assumed for the constant-capacity (single lane) model described 
above. To prevent discrete changes in speed, it is assumed that traffic merging takes place 
gradually, over a road segment of positive length between two locations indicated with x1 and 
x2. Between these two points, a given user i to an increasing extent considers another diver i–1 
(always coming from the different lane in a dynamic equilibrium; see Verhoef, 2003, for a 
proof) as his relevant leader, instead of the ‘upstream leader’ i–2. This smooth process was 
represented in the numerical model by redefining a driver’s t

iδ (for use in (1) and (2); t 
denotes time) as follows: 
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The function w thus defines the weights attached to drivers i–2 and i–1, which sum up 
to unity. An (otherwise arbitrary) functional specification for w was chosen that secures that 
the weight for driver i–2 falls continuously over time from 1 to 0 as driver i–1 proceeds from 
x1 to x2, and that w has a zero time derivative at the instants driver i–1 passes x1 and x2. 
 
 
 
 
 
 
Source: Verhoef (2003) 

Figure 4. The spatial lay-out of the road network and the implied bottleneck 

 
Second, to investigate whether hypercongestion, if generated, can occur as a 

(dynamic) equilibrium phenomenon, the demand side of the model is adjusted. Specifically, 
the analysis in Section 3 assumed inelastic ‘continuous’ demand (a given constant departure 
rate), which was changed exogenously to investigate dynamic stability of stationary state 
equilibria. Verhoef (2003) considers inelastic ‘peak’ demand: a given number of users want to 
use the road near some desired arrival time (elastic overall demand could easily be introduced, 
but was ignored to maintain comparability with prior dynamic economic equilibrium models, 
which typically assume inelastic overall demand). The departure times and hence the overall 
duration of the peak are endogenized, so that instantaneous demand is not inelastic. A 
dynamic equilibrium is obtained if, as in Vickrey (1969), the sum of travel time costs, 
schedule delay costs and tolls (if levied) is constant over time if travelling occurs, and higher 
otherwise (no user can improve total trip costs by choosing a different departure time; note the 
intuitive parallel with Wardrop’s (1952) first principle). As customary in this literature, the 
schedule delay cost function was assumed to be piecewise linear for the numerical model, 
with slopes –β for early arrivals and γ for late arrivals. 

A main question studied with the model is whether hypercongestion can and/or will be 
generated as a dynamic equilibrium phenomenon by the model.5 The answer is yes. More 
precisely, provided demand is large enough relative to the capacity of the downstream (single 
lane) road segment, so that the peak lasts sufficiently long, it can be inferred that 
hypercongestion will arise with certainty. However, hypercongestion will arise on the 
upstream (large capacity) road segment only. On the downstream (small capacity) road 
segment, in contrast, the flow will asymptotically approach the maximum flow (for that 
segment), capds, and speeds will be constant. 

If we compare this downstream segment with the single road in the previous section, 
the latter finding is consistent with result 5 from the stability analysis. Indeed, the departure 
rate will exceed capds from some moment onwards. This is needed to maintain the equilibrium 

                                                 
5 The other main question concerns optimal pricing, which will not be addressed here. 
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condition that travel times should increase over time, to match for the falling schedule delay 
costs for arrivals before the desired arrival time. For the upstream segment, with a capacity 
capus = 2·capds, the fact that the inflow exceeds capds whereas the outflow asymptotically 
approaches capds (from below) implies that the average distances and hence speeds between 
vehicles must be falling over time. This will continue until the inflow into the upstream 
segment, as well as the flow at each point along that segment, would become equal to capds, 
too. But with a departure rate exceeding capds, this could occur only if a queue would be 
formed before the upstream segment’s entrance. And as demonstrated in Verhoef (2001), a 
stationary state on the upstream segment with a flow (capds) below capacity (2⋅capds) and with 
queuing before the road’s entrance can only exist if that stationary state is hypercongested.6 In 
other words: speeds will be falling on the upstream road segment until a hypercongested state 
is reached, provided demand is sufficiently large and hence the peak lasts sufficiently long. 
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Figure 5. The clock-time speed function for driver i=4000 in the numerical simulation model 

for peak demand and with a bottleneck halfway the road 

Figure 5 illustrates these results, by showing the clock-time speed function for driver 
i=4000 in the numerical simulation model for peak demand with the number of users N=5000, 
and with a bottleneck halfway the road (details of the model and its equilibrium are given in 
Verhoef, 2003). The speed on most of the upstream segment is indeed (near) the 
hypercongested speed consistent with ½⋅cap according to Figure 2-II (the high speed over the 
first meters is caused by the fact that driver 4000 arrives slightly after the desired arrival time, 
so that hypercongestion is in fact already dissolving), while the speed on the downstream 
segment is near the value consistent with cap according to that same Figure 2-II. 

In summary, the homogeneous-road model from Section 3 showed that 
hypercongested equilibria are dynamically unstable and can therefore be ignored in market 
analyses, while the ‘bottleneck-road’ model from this section predicts that hypercongestion 
will occur with certainty as a dynamic equilibrium phenomenon on the upstream road 
segment. These conclusions are by no means incompatible, since the homogeneous road in 
fact corresponds with the downstream segment of the bottleneck road in the present section 
(both have no downstream bottleneck), which too will not have hypercongestion. Likewise, 
the upstream segment of the bottleneck-road corresponds with the vertical queue in the 
homogeneous-road model (both have a downstream bottleneck). The bottleneck-road model 
thus show that queuing will take place under hypercongested conditions; and more precisely: 
at the hypercongested speed that is (for the upstream segment) consistent with a flow equal to 
capds. 

                                                 
6 An easy way to see this is to observe that when constructing an initial state with a queue and a non-hypercongested 
stationary state with a flow below capacity, regardless of the arrival rate at the back of the queue, the inflow into the road will 
immediately increase to a value above the assumed initial non-hypercongested flow on the road. 
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Which are the implications of the present bottleneck-road set-up for the shape of the 
AC-curve for the bottleneck-road, compared to that shown in Figure 3? Recall that we defined 
the AC-curve as representing possible stationary or steady state equilibria only. These exist 
only for downstream flows up to a level capds. At that level, the AC-curve will not bend 
backwards, but again rises vertically, as in Figure 3. For this vertical branch, the only 
difference with the homogeneous-road model is that the vertical distance between the 
minimum possible AC(capds) and any equilibrium value of AC(capds) (at the intersection with 
an inverse demand defined over flow in a stationary state) would not reflect waiting costs 
incurred in a vertical queue. Now it reflects travel costs on the upstream segment above the 
minimum possible upstream costs for a flow capds – a part of which will generally be 
travelled under hypercongested conditions. Interestingly, therefore, although a part of the trip 
will be driven under hypercongested conditions, the AC-curve is still not backward-bending 
in those equilibria – in sharp contrast with what might be inferred from the conventional 
analysis. This reflects that, starting in such a stationary state equilibrium and raising the 
departure rate ρ above capds would not cause the flow on the downstream segment to drop, 
but would only lead to larger (and growing) travel times on the upstream segment, and a 
larger and growing portion of that segment to be travelled at a hypercongested speed. 

The shape of the AC-curve for stationary equilibrium flows below capds will also be 
comparable to that shown in Figure 3. However, the relation with the shape of the speed-flow 
function will be slightly more complicated than in Figure 3. The total travel time would then 
namely no longer correspond to a single speed, because the equilibrium speed will be higher 
on the upstream than on the downstream segment. The AC-curve for F<capds therefore 
reflects the average, non-constant speed over the full trip (as well as the length of the full road 
and the value of time). 

An AC-curve as defined above is of theoretical interest, because of the fundamental 
difference with the conventional AC-curve of Figure 1 which also considers stationary traffic 
conditions only. It is however not of direct use for an empirical testing of the model’s 
predictions, because stationary state conditions will seldom apply in reality, and are 
particularly unlikely for the range of most interest: the vertical branch of the AC-curve. The 
question rises whether a curve similar to the AC-curve would be predicted by the model also 
for non-stationary traffic conditions. As we will see in the next section, this appears to be the 
case if some mild restrictions are placed on the time pattern of the departure rate that causes 
traffic conditions to be non-stationary – restrictions which are consistent with standard 
dynamic equilibrium departure patterns as also applying in Verhoef (2002). Another 
shortcoming of the AC-curve when used in the context of dynamic equilibrium models is that 
it does not reflect schedule delay costs and – related to this – is not directly related to dynamic 
equilibrium cost levels. This second shortcoming will be addressed in Section 6, when 
addressing ‘reduced-form’ cost functions for dynamic equilibrium models. 

5. Comparing the predictions with observed traffic data 

5.1. Formulating testable hypotheses 
Because stationary traffic conditions seldom apply in reality, especially not for the 

vertical branch of the proposed AC-curve, it is important to formulate testable hypotheses 
based on the above models that go beyond these models’ behaviour in stationary traffic 
conditions. Because one could make many assumptions on possible time-varying patterns of 
departure rates that would give rise to non-stationary traffic conditions, it is useful to restrict 
attention to the typical case of traffic congestion and queuing. This involve the situation 
where traffic is initially relatively light and the departure rate ρD has a level well below capds, 
then rises monotonically to a level well above capds, stays above capds sufficiently long, and 
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next falls again monotonically to a level well below capds. For the resulting non-stationary 
traffic conditions, the models just discussed would then predict that the following stylized 
facts will be observed on a road that has a higher upstream than downstream capacity: 
H1. The arrival rate (or outflow of the road) ρA (at the exit of the downstream segment) will 

approach the downstream capacity capds and stay close to it at least as long ρD has not yet 
fallen below capds. As a result of the predicted induced time-varying queuing on the 
upstream segment, a parametric plot of travel times tt(tA) (tA denotes the arrival time) as a 
function of ρA(tA) will have a shape similar (but not identical) to AC(F) in Figure 3. In 
particular, tt(ρA) – which will be the short-hand notation for this parametric plot – will not 
bend backwards, but will rise vertically at capds.7 

H2. Along the downstream road segment, traffic flow will approach its capacity capds, at the 
constant speed consistent with this flow, at least as long ρD has not yet fallen below capds. 
Observations of combinations of instantaneous speed and flow levels along the 
downstream road segment will therefore include only non-hypercongested situations, and 
observations up to the flow equal to capds. 

H3. On the upstream road segment, queuing before the downstream segment’s entrance will 
take the form of driving under hypercongested conditions, at a flow equal to capds 
(compare Section 4). Observations of combinations of instantaneous speed and flow levels 
along the upstream road segment will therefore cover both hypercongested and non-
hypercongested situations, and do not necessarily include observations up to the flow 
equal to the upstream capacity capus. 

In this section, these hypotheses will be verified on the basis of a simulation using the 
model described in Section 4 above, and on the basis of empirical observations. Sections 5.2 
and 5.3 first provide the main backgrounds of both sources. 

 
5.2. The simulation model 

The supply side of the simulation model is fully defined by equations (2) and (3), with 
the remaining parameters set as follows: x1 = 9 000 (the location of the beginning of the 
bottleneck in Figure 4), x2 = 11 000 (the ending of the bottleneck), and X = 20 000 (the length 
of the road). The locations used for reporting upstream and downstream instantaneous traffic 
conditions are denoted xU = 8 000 and xD = 12 000, respectively. 

Instead of using the equilibrium departure rate obtained under the piece-wise linear 
schedule delay costs used in Verhoef (2003), the exogenous time-pattern depicted in Figure 7 
(upper panel) was used. This would be an equilibrium pattern when the schedule delay cost 
function had a shape given by K – vot·tt(tA), with tt(tA) as depicted in Figure 8 (upper panel) 
and K a constant. The reason for using this departure rate pattern was to increase 
comparability with the shape of that observed in the empirical data (Figure 7, lower panel). 
Departures occur over a time frame of 4 000 seconds, during which 3506 users make a trip. 

 
5.3. The empirical case study 

For this study, empirical data were available for a study area north of Amsterdam, 
depicted in Figure 6. Unfortunately, the network is more complex than that used in simulation 
model. As in the simulation model, there is only one downstream segment: the southbound 
western part of the A10 (the Amsterdam ring road). There is however a ‘composite’ daily 

                                                 
7 Whereas for a given ‘bottleneck-road’ with a given car-following equation, AC(F) will be uniquely defined, tt(ρA) will not 
be. Due to the path-dependency inherent in car-following models, the exact travel time that a driver arriving when the arrival 
rate equals ρA will have incurred will depend on the initial state and the full history of departure rates before his departure. 
But under the single-peaked departure rate patterns considered, the general shape of tt(ρA) will always resemble that of 
AC(F). 
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traffic jam of drivers who want to enter this segment, located on the northern segment of the 
A10 (westbound) and on the A8 (southbound), with an additional spill-back to the A7 
(southbound) when congestion reaches its peak. 
 

 
Figure 6. The study area for the empirical case study 

 
The traffic data used for this analysis consist of data which were derived from loop 

detector data, and that were pre-processed by a group of engineers at a Dutch consultancy 
bureau OC&C (the original data were unfortunately not available for the present research). 
They have produced figures that are averaged over all ‘normal’ working days (i.e., excluding 
holiday periods) in the year 2000. This has the advantage of giving a rather general picture by 
reducing dependency on day-specific circumstances, but – as we will see shortly – the 
disadvantage of introducing some conceptual problems due to the procedure of averaging 
over working days. The data consist of clock-time dependent measures (averaged for 15 
minutes intervals) for: 
1. The inflow into the network studied aiming for the downstream link considered (ρD(t); see 

Figure 7, lower panel), aggregated over the three upstream links, and measured at loop 
detectors that were chosen such that these are upstream of the queue’s tail even when it 
reaches its greatest length. This inflow was derived from total flow at these loop detectors 
by correcting for the share of traffic that, once arrived at the Coenplein, does not choose 
the downstream link considered (the A10 southbound) but instead goes east on the A10. 

2. The outflow from the network (ρA(t); see Figure 7, lower panel), measured at a detector 
some 2 km south of the Coenplein. 

3. Traffic flow (F(t)) at an upstream (U) and at a downstream (D) detector (both indicated in 
Figure 6); see Figure 9, lower panel. 

4. Traffic speed (S(t)) at the same upstream and a downstream detectors; see Figure 9, lower 
panel. 

The data in categories 2–4 above were obtained by a simple averaging of observations 
over all normal working days. The first variable required additional computations, performed 
by OC&C, based on a comparison of cumulative flows at the points of measuring ρD(t) and at 
the three exit links of the junction ‘Coenplein’. This allowed for the correction of total flows 
at the points of entrance that was necessary to identify that part of the flow heading for the 
downstream link considered. 

In what follows, no distinction will be made between travel times experienced in the 
three ‘sub-queues’ that can be distinguished, for the simple reason that the available data do 
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not allow making this distinction. These travel times (Figure 7, lower panel) were calculated 
by a comparison between cumulative inflows ρD(t) and outflows ρA(t), while using that the 
weighted average of distances between the inflow and the outflow detectors is 11 km (5.5 
minutes at a free-flow travel speed of 120 km/h, as applying in the beginning of the peak). As 
a result, the travel times reported are a weighted average for the three sub-queues. This 
simplification does however not affect the conclusions with respect to the issues of central 
interest in this paper; in particular the general shape of the tt(ρA) function. 

A final issue is whether in the case study, it is indeed the downstream link (on the 
A10) that is the bottleneck, as in the simulation model. It could of course be the case that the 
‘true’ bottleneck is the junction ‘Coenplein’ itself. The evidence in favour of the downstream 
link being the true bottleneck is that from its observed speed-flow function in Figure 9 (lower 
panel), one can infer that the Coenplein does not seem to limit its inflow below its capacity. 
That is: a maximum flow of some 2150 vehicles per lane per hour is observed, at a speed of 
around 65 km/hr. This corresponds to capacities and corresponding speeds found elsewhere 
(e.g. Small, 1992; and Smith, Hall and Montgomery, 1996). 

 
5.4. Comparing the results 

Figure 7 shows the time patterns of ρD, ρA, and tt(tA) for the simulation model (upper 
panel) and the empirical case study (lower panel). As explained in Section 5.2, the exogenous 
departure rate pattern for the simulation model (upper panel) was set such that it is single-
peaked, with a maximum well above the downstream segment’s capacity capds. As a result, 
traffic conditions follow the same pattern as in Verhoef (2002) and described in detail in 
Section 4 above. Note in particular that the arrival rate ρA approaches capds (= 0.965).8 The 
clock-time speed functions for drivers arriving near t = 3500 (not shown graphically) are also 
similar to what is shown in Figure 5, and hypercongested queuing occurs on the upstream link 
(see also Figure 9 below). Finally, travel times as a function of arrival time, tt(tA), show the 
expected single-peaked pattern. 

The empirical patterns in the lower panel of Figure 7 are roughly similar. (A 
conceptually minor difference with the simulation model is that after the peak, demand does 
not fall to zero.) Also here, ρD is single-peaked, exceeds ρA during the beginning of the peak 
and next falls below it. The latter remains flat for a significant part of the peak. The joint 
result is that tt(tA) has the expected single-peaked shape. This function tt(tA) was determined 
by assuming – consistent with the observations shown in Figure 9 – that the first driver that 
can be tracked (departing at 5:07:30) travels the 11 km considered at a free-flow speed of 120 
km/hr. His arrival time can then be determined as 5:13:00. The travel times for subsequent 
drivers were next calculated as the difference between the clock times at which cumulative 
inflows (after 5:07:30) and outflows (after 5:13:00) have reached the same value (the required 
continuous versions of both ρD(t) and ρA(t) were constructed by non-linear interpolation of the 
24 observations available for both between 5:00 and 11:00). The last step was to assign these 
travel times to their instant of arrival, tA. 
 

                                                 
8 The arrival rate ρA stays close to capds nearly to the end of the simulation, and then suddenly drops to a level approximately 
equal to the corresponding departure rate ρD. This is the result of a feature that was called ‘footloose queuing’, and discussed 
in greater depth, in Verhoef (2002): the drop in speeds that drivers experience due to the existence of the bottleneck dissolves 
while propagating downstream when ρD falls below  capds. 
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Figure 7. Inflows, outflows and travel times for the simulation model (upper panel) and the 

empirical case study (lower panel)  

 
The tt(ρA) functions shown in Figure 8 follow as the parametric plot of tt(tA) and ρA(tA) 

from Figure 7. A similar parametric plot can be constructed for departures, by combining 
tt(tD) and ρD(tD) (with tD denoting departure time) – where tt(tD) is not included in Figure 7.  
For ease of reference, the resulting plots tt(ρD) are also included in Figure 8. 
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Figure 8. Travel times by departure and arrival rate for the simulation model (upper panel) 

and the empirical case study (lower panel); arrows indicate development over time  

 
The patterns for the simulation model and the empirical case study are again similar. 

That is, as predicted in Hypothesis H1 in Section 5.1, tt(ρA) rises nearly vertically when ρA 
approaches a certain level. For the simulation model, this is no surprise, because it is fully 
consistent with the theoretical model from which the hypothesis was derived. It is, in addition, 
easily checked for the simulation model that the ‘certain level’ of ρA for which tt(ρA) appears 
to have a vertical asymptote corresponds to capds (0.965 veh./s). The lower panel of Figure 8 
shows that a similar patterns holds for the empirical case study for arrival rates around ρA = 
4300. As mentioned, for a two-lane highway this rate corresponds to generally accepted 
capacities. A conservative conclusion would thus be that the empirical observations do not 
reject H1. 

An important difference between the simulation results and the empirical observations 
arises towards the end of the period considered. The arrival rate for the numerical model 
keeps growing over time nearly up to the last drivers arriving, also when the travel time is 
already falling over time. For the empirical data, the arrival rate already appears to fall 
significantly when the travel time has come down to some 0.3 hours (18 minutes), a duration 
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for which the results for the early part of the peak suggest that queued traffic should still occur 
– if only because the implied average speed over the 11 km considered is still only 37 km/hr.  
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Figure 9. Observed speed-flow combinations on upstream (U) and downstream (D) road 

segments, and average speeds over full trips by arrival rate, for the simulation model (upper 
panel) and the empirical case study (lower panel); arrows roughly indicate development over 

time 

The most plausible explanation for this unexpected result is that the observations over 
this part of the peak provide weighted average (over working days) arrival rates and travel 
times that represent two distinctly different situations, namely one in which the queue still 
exists and the arrival rate still equals around 4000 veh./hr or more, and one in which the queue 
has already dissolved and the arrival rate has dropped to, for example, 3000 veh./hr. For later 
observations (when moving south-west along the tt(ρA) curve, the latter state receives an 
increasing weight, which explains the shape of the tt(ρA) curve over this range. It is especially 
here that the nature of the data (averaged over all ‘normal’ working days) may give a biased 
representation of what will occur during a single morning peak. This is due to the sharp drop 
in the arrival rate once the queue has dissolved (compare also the upper panel of Figure 8). 
For this reason, the empirical observations pertaining to clock times after around 9:00 should 
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be treated with suspicion, and will therefore be printed in a lighter shade in the final speed-
flow diagrams in Figure 9, for which these observation become particularly unusual. 

Verification of Hypotheses H2 and H3 requires consultation of speed-flow diagrams. 
Figure 9 shows these for the upstream (U) and downstream (D) observation points, with flow 
normalized with respect to the number of traffic lanes, and again with the simulation results in 
the upper panel and the empirical data in the lower one. For the former, the ‘true’ speed-flow 
function is known (see Figure 2-II), and is added in grey. Note that upstream traffic flow in 
the empirical data also includes vehicles that are heading for other downstream links than the 
one considered above: the flow data in Figure 9 represent total flow at the observation points. 

H2 refers to speed-flow observations on the downstream road segment. Both the 
simulation results and the empirical data confirm the hypothesis. No observations of 
hypercongestion occur on these segments in either panel. Next, for the simulation model, it is 
easily verified that the flow indeed approaches capds (= 0.965 veh./s), and the speed the level 
associated with this maximum flow (= 17.5 m/s). The relatively large number of observations 
near this point shows that these conditions apply over a relatively long time span – after 
which the flow drops rapidly and the speed rises rapidly. For the empirical data, no objective 
measure of capacity is available. However, the shape of the speed-flow function near the large 
concentration of observations around a flow of around 2150 veh./hr and a speed of around 65 
– 70 km/hr suggest that this is indeed near the road’s capacity. As mentioned, these values 
also correspond closely to prior evidence from other sources. 

Note that the final observations (after 9:00) for the empirical speed-flow function, 
printed in a lighter shade, seem to fall off the speed-flow function suggested by the earlier 
observations. This is consistent with the earlier hypothesis that these observations are biased 
due to the averaging over working days. This hypothesis is supported by the rather close 
correspondence between the pattern for these observations and the interpolating line, for the 
simulation results, between the final observation near capacity and the subsequent first 
observation that is well below capacity.  

Hypothesis H3 refers to observations on the upstream segment. The occurrence of 
both hypercongested and non-hypercongested observations on these segments is easily 
verified. Both diagrams show how the flow as measured at the observation points U first 
increases over the non-hypercongested range of the speed-flow function. Then the speed 
drops rapidly to a hypercongested level. The accompanying fall in flow is consistent with the 
notion that the flow in the queue will be approximately equal to that on the downstream road 
segment, while the flow upstream of the queue will exceed that level when the queue is 
growing. Similarly, when the queue dissolves and the speed rises back to a non-
hypercongested level, the observed flow will drop: a shrinking queue requires the flow in the 
queue to exceed the flow upstream of the queue. 

The empirical observations after 9:00 again follow the same pattern as the 
interpolating line for the simulation model. Again, the most plausible explanation is that these 
empirical observations are in fact weighted averages of observations on – or near – the upper 
and lower branches of the speed-flow function for this upper road segment. (Similarly, the 
two empirical observations on the nearly vertical branch – between the non-hypercongested 
and hypercongested range – may be largely attributable to time averaging, rather than 
corresponding to actual traffic conditions). Note, however, that also in the simulation results, 
there are two observations that clearly fall off the speed-flow function. These observations 
illustrate the point made in footnote 4, that when cars accelerate or decelerate, flow is not 
identically equal to the product of speed and density. 

H3 further stipulates that the hypercongested flow on the upstream segment be equal 
to downstream capacity capds. For the simulation results, it is clear that this is indeed 
(approximately) the case: the observations are near a flow of ½⋅capds (= 0.48); the variations 
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around this value are due to transitional dynamics. For the empirical data, this claim cannot be 
verified for two reasons: first, no objective measure for the downstream capacity is available; 
and secondly, the upstream link feeds into multiple downstream links, so that in fact multiple 
downstream capacities would have to be considered. 

The final statement in H3 says that for the upstream segment, no observations up to its 
capacity need be found. Again, in the upper panel this is easily seen to be the case. But also 
the empirical data can be interpreted this way. Specifically, the fact that traffic flows have 
been normalized with respect to the number of traffic lanes allows a comparison between the 
suggested speed-flow functions for the upstream and downstream road segment. The non-
hypercongested observations up to a flow of 1500 veh./hr suggest that these speed-flow 
functions may well be nearly the same. As for the simulation results, the upstream and 
downstream data would then give overlapping non-hypercongested observations up to a 
certain flow level, while the upstream road segment adds observations from the 
hypercongested branch, and the downstream road segment higher-flow observations from the 
non-hypercongested branch. It does not take a lot of imagination to pencil in, in the lower 
panel of Figure 9, a shared single speed-flow function that applies for both road segments (as 
shown in grey for the simulation model in the upper panel of Figure 9). 

Note that this also offers a simple explanation for the pattern often found in empirical 
speed-flow scatter plots entailing observations from the hypercongested branch. These often 
show a rather flat normally congested branch followed by a sharp drop towards the 
hypercongested range. The fact that hypercongested observations are included means that a 
downstream bottleneck must be present. But this, in turn, implies that speed-flow 
observations near the upstream road segment’s capacity are unlikely to be made, because a 
queue will arise even before the normally congested flow reaches capacity. As soon as the 
queue reaches the observation point, the observed hypercongested flow will be approximately 
equal to the downstream bottleneck’s capacity. The result will be a censored data set, showing 
a ‘blunter’ speed-flow curve than what would be found than in absence of the bottleneck. 

Finally, in both panels of Figure 9 a thick curve labelled ‘trip’ is included. This curve 
shows the average speed over the full trip (i.e. between the points of in- and outflow) as a 
function of the arrival rate per lane at the point of outflow. It is the inverse of the tt(ρA) curves 
shown in Figure 8, corrected for the length of the trip and the number of lanes on the 
downstream segment. These ‘average-speed – arrival-rate’ curves do not overlap the 
instantaneous speed-flow functions, but instead again show how an average speed (over the 
full trip) in the hypercongested range of speed levels would correspond with an arrival rate 
close to the downstream road segment’s capacity.  This difference underlines the pitfalls in 
deriving average cost functions from speed-flow functions in the conventional way. 
Moreover, the curves deviate already well before this arrival rate is reached. This is in the first 
place due to the inclusion of queuing time losses in the average-speed – arrival-rate curve, 
which begin to occur already before the arrival rate approaches the downstream capacity 
closely. Secondly, with a non-constant capacity, even for stationary state traffic would the 
average speed, over full trips, as a function of the arrival rate differ from the instantaneous 
speed consistent with the corresponding flow. 

6. Reduced-form cost functions for dynamic equilibrium models 
Up until this point, we have considered cost functions that relate travel costs to traffic 

flows or to arrival rates; i.e., output measures that are normalized with respect to the time 
dimension. Another type of cost function arises when we relate travel costs to the total 
number of users N, not normalized with respect to time. It is of interest to briefly address this 
type of cost function in the context of the proposed car-following model, especially because 
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these functions allow us to also include schedule delay costs – apart from travel time costs – 
which are an important component of total travel costs for dynamic equilibrium models. 

As explained above (and also in greater detail in Verhoef, 1999), cost functions with 
quantities rather than flows or rates of drivers are not meaningful to consider when modelling 
stationary state traffic. But for dynamic equilibrium models of traffic congestion, with 
endogenous departure times and peak duration, it is useful to consider such cost functions, as 
they show the impact on total travel costs when demand increases. One could call these 
‘reduced-form cost functions’, to reflect that these functions depict dynamic equilibrium cost 
levels as a function of total demand over the full peak, without directly conveying information 
on the dynamic patterns of travel time costs and schedule delay costs inside that peak, which 
underlie the realization of these cost levels. 

As shown for example by Arnott, De Palma and Lindsey (1998), the total travel cost 
(i.e., the sum of travel delay and schedule delay costs over all users) for the simplest version 
of Vickrey’s (1969) bottleneck model is quadratic in the number of users during the full peak, 
which renders the corresponding average and marginal cost functions linear. Their reduced 
form character is illustrated by two of their features. One is that different cost functions apply 
when optimal (or second-best) tolling is in place, compared to the no-toll cost functions (see 
equations (4.10a) versus (4.12) in Arnott, De Palma and Lindsey, 1998). The other is that 
unlike what would be the case for a static model with the same linear cost functions, the 
difference between average and marginal ‘reduced-form costs’ is not a measure for the 
optimal toll – which should be time-dependent. 

Figure 10. Reduced-form average cost functions for a dynamic equilibrium model based on 
car-following congestion technology 
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that these functions may also be linear. It is interesting to see what sort of shape is predicted 
by the car-following model used above. Figure 10 shows three such curves. The sum of 
average travel time costs and schedule delay costs for no-toll equilibria with varying levels of 
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shown were derived for the bottleneck road used in Verhoef (2003), which differs from the 
one used above only in that its total length X equals 30 000 instead of 20 000 meters. 
Furthermore, the demand-side parameters were defined as follows: the value of time α is 
equal to € 7.5 (the Dutch average), while the (constant) shadow prices for early and late 
arrivals were set at β = € 3.75 and γ = € 15, respectively. The curves shown in Figure 10 were 
constructed by interpolating observations for numbers of drivers N = {1, 500, 2500, 5000}. 

A first noteworthy feature is that, although the cost functions discussed in previous 
sections (that relate average travel time costs to arrival rates) all had the intuitive convex 
shape (see Figures 3 and 9), the reduced-form cost functions (that relate average total costs to 
the total number of users) have a concave shape. This shape therefore deviates even further 
from the intuitive expectation of convex functions, than do the linear reduced-form cost 
functions from Vickrey’s (1969) bottleneck model. 

The intuition behind the concave shape is most easily given for the no-toll average 
cost function. Consider a dynamic no-toll equilibrium for N users, with NE users arriving early 
and NL=N–NE users arriving late. Then imagine adding one user. This will make the peak last 
longer, and to start earlier and end later. But because of the assumed linearity of the schedule 
delay cost functions, the headways between the first NE users must remain the same to 
maintain constancy of costs over these users, although each of them departs earlier. In other 
words, we can imagine the additional driver as being ‘timed’ at the desired arrival time, with 
each of the original NE users arriving earlier and each of the original NL users arriving later. 
The duration of the peak will therefore increase; approximately with the inverse of the arrival 
rate at the most desired arrival time t*: ρA(t*). But since ρA(t*) is increasing in N, this increase 
in peak duration decreases with N. This means that the increase in schedule delay costs for the 
first and the last driver due to an increase in N decreases with N. Because these two drivers 
will drive at a free-flow speed, also the induced increase in their travel costs decreases with N. 
But because these travel costs are equalized over users in a dynamic equilibrium, the same 
holds for the equilibrium average costs. Hence the concave shape of cno toll. The concavity of 
cno toll can be expected to vanish as ρA(t*) approaches capds, which is why cno toll appears to 
become nearly linear when moving to the right in Figure 10. 

From the perspective of this paper, probably the most important conclusion is that a 
convex speed-flow relation, and an associated convex travel time cost function AC(F) for 
stationary states, may very well be consistent with a concave reduced-form average cost 
function (including both travel time and schedule delay costs) for dynamic equilibria. 

A second noteworthy feature of Figure 10 is that the generalized price experienced by 
users (including tolls) increases when tolling is implemented (as in Chu, 1995). This contrasts 
with the results of the Vickrey (1969) model for identical users, where this price does not 
change due to tolling (tolls exactly replace no-toll travel delay costs). However, the relatively 
small discrepancy between cno toll and ptoll in Figure 10 shows that this price increase will be 
modest, while the relatively large difference between ptoll and ctoll reflects that substantial 
efficiency gains are to be expected from departure time changes (the only source of efficiency 
gains in Vickrey’s (1969) model), rather than from trip suppression. 

7. Conclusion 
Both the theoretical model and the empirical data suggest that the average travel cost 

function for congested traffic will be markedly different from the backward-bending function 
known from the conventional analysis, derived directly from the speed-flow function. Instead 
of bending backwards, the average cost function will rise vertically: at the road’s capacity for 
a homogeneous road with a queuing facility before its entrance, or at the road’s downstream 
segment’s capacity in case of a ‘bottleneck road’. Hypercongestion is dynamically unstable 
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for roads without a downstream bottleneck, but will certainly occur on road segments with a 
downstream bottleneck as a dynamic equilibrium phenomenon, if demand is sufficiently 
large. When such hypercongestion occurs, however, the average travel cost function is still 
not bending backwards. Finally, it was shown that reduced-form average cost functions, that 
relate the sum of average travel cost and average schedule delay costs to the number of users 
in a dynamic equilibrium, need not have the intuitive convex shape, but may very well be 
concave – despite the fact that the underlying speed-flow function may be convex. 
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