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Abstract  
This paper presents a framework for the calibration of microscopic traffic simulation 

models using aggregate data. The framework takes into account the interactions between the 
various model parameters and the OD flows by estimating OD flows jointly with the model 
parameters. An optimization-based approach has been used for the joint calibration. A 
systematic search approach based on the Box algorithm is adopted for the solution of the 
resulting minimization problem. OD estimation is based on the generalized least squares 
(GLS) estimator. Since the calibration of the parameters depends on the estimated OD flows 
and vice versa, the proposed framework is iterative. The applicability of the approach is 
demonstrated through its application to case studies using MITSIMLab, a microscopic traffic 
simulation model.  
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1. Introduction  

Microscopic traffic simulation models have drawn significant attention in evaluating 
the impact of changes in network infrastructure (e.g. adding a lane to an existing roadway or 
adding a road to a network), traffic control devices (e.g. retiming of traffic signal settings or 
installing a ramp metering scheme) and application of Intelligent Transportation Systems 
(ITS). However, the reliability of such models hinges on how field conditions are captured 
by the parameters in the simulation model. Calibration of the simulation model is required in 
order to achieve the best reproducibility of field conditions. Calibration is the process by 
which the parameters of various components of the simulation model are set so that the 
model will accurately replicate observed traffic conditions.  

Two groups of parameters require calibration in traffic simulation models: driving 
behavior parameters and travel behavior parameters. Driving behavior includes acceleration, 
lane-changing and intersections models. Travel behavior is represented by route choice 
models. In addition, OD flows are an important input to the simulation model. However, 
because of the spatial extend of the applications, OD matrices, let alone accurate, dynamic 
ones, are not readily available, and so, input OD flows need to be estimated.  

Calibration of traffic simulation tools, especially microscopic ones, is not a trivial task. 
The source of the difficulty is that the data usually available is aggregate measurements of 
traffic characteristics (e.g. flows, speeds and occupancies at sensor locations, travel times, 
queue lengths), which are the emergent results of the interactions between various behaviors 
of individual vehicles. Therefore, this type of data does not support independent calibration of 
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the various models the traffic simulator consists of. A number of papers have been published 
on the subject of calibration of microscopic simulation models. Overall, the treatment of the 
problem is at a very early stage and rather incomplete and limited. Most published studies 
focus on one component of the simulation model, while assuming the others are given. For 
example, Daigle et al. (1998), Abdulhai et al. (1999), Lee et al. (2001), Gardes et al. (2002), 
Kim and Rilett (2003) and Park and Schneeberger (2003) calibrate only driving behavior 
parameters. These studies all apply the simulation model to traffic corridors that do not 
involve route choice. They also assume that OD flows are either given or estimated, 
independent of the simulation model. Ma and Abdulhai (2002) use genetic algorithms to 
calibrate various parameters, including route choice parameters, but still assume given OD 
flows.   

The calibration is in many cases an ad-hoc, sequential procedure, using algorithms that 
may not be appropriate for the problem. Some parameters are calibrated, often through trial 
and error. Their values are then fixed for the calibration of a second set and so on. Such 
procedures do not include feedback loops to capture interactions between the parameters of 
interest. Hourdakis et al. (2003) propose one such procedure. They first seek to match 
observed traffic flows by calibrating global parameters, such as vehicle characteristics. Next 
they calibrate local link-specific parameters, such as speed limits, to match observed speeds. 
A quasi-Newton algorithm is used for the solution of the various sub-problems.  

In contrast, significant amount of research has dealt with the estimation of OD flows. 
Dynamic OD estimation techniques were proposed, among others, by Cremer and Keller 
(1987), Nihan and Davis (1987), Cascetta et al. (1993) and Ashok and Ben-Akiva (1993). 
These estimators rely on the availability of an assignment matrix, which captures the effects 
of route choice and traffic dynamics. Cascetta and Postorino (2001) suggest an OD estimation 
approach that explicitly includes a route choice model, but assume that the parameters of that 
model are given.   

The literature on joint OD estimation and parameter calibration is very limited. Liu 
and Fricker (1996) presented a two-step heuristic search method to sequentially estimate OD 
flows and route choice parameters on uncongested networks. In the first step, the route choice 
parameters are fixed and OD flows are estimated by minimizing the difference between 
observed and modeled link flows. In the second step, the link flows that were obtained from 
the first step are used to calibrate the route choice parameters using a maximum likelihood 
method. Yang et al. (2001) proposed an optimization model for simultaneous estimation of 
OD flows and coefficient of the travel cost in a logit-based stochastic user equilibrium model. 
The use of an analytic model allowed the problem to be formulated as a differentiable, 
nonlinear optimization problem.   

The objective of this paper is to present a systematic procedure for joint estimation of 
OD flows and calibration of behavior parameters using aggregate data. The rest of this paper 
is organized as follows: Section 2 describes the overall framework for the calibration of 
traffic simulation models and the role of aggregate calibration with in its scope. In section 3 
we formulate the aggregate calibration problem. And in section 4 propose a solution 
approach and describe its details. The proposed approach is demonstrated through case 
studies in section 5. Finally, section 6 summarizes our findings and proposes directions for 
future research.   
 
2. Calibration methodology  

An overall framework for calibration and validation of traffic simulation models is 
shown in Figure 1 (Toledo et al. 2003).  

The framework consists of two steps: initially, the individual models the simulation 
consists of (e.g. driving behavior and route choice models) are estimated using disaggregate 
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data, independent of the overall simulation model. Disaggregate data includes detailed driver 
behavior information such as vehicle trajectories. The individual models may be tested 
independently, for example, using a holdout sample.   

In the second step, the simulation model as a whole is calibrated and validated using 
aggregate data. The role of aggregate calibration is twofold: (i) to ensure that the interactions 
between the individual models within the simulator are captured correctly, and (ii) to refine 
previously estimated parameter values for the specific site being studied.   

While this two-step approach is desirable, data availability often dictates what 
steps are feasible. Most often, only aggregate data collected through loop detectors is 
available and therefore only aggregate calibration and validation are possible.   

 
Figure 1 Overall calibration and validation framework 

 
3. Aggregate calibration formulation  

Aggregate calibration can be formulated as an optimization problem, which seeks to 
minimize a measure of the deviation between observed and corresponding simulated 
measurements and between the calibrated parameter values and their a-priori expected values. 
We will formulate the problem and develop solution algorithms under the assumption of 
stationary steady state conditions. The assumption is that the observation days are drawn 
during a period in which steady state traffic conditions prevail. That is, while OD flows and 
experienced travel times may vary for various observation days, these differences are due to 
random effects and do not represent a change in the underlying distributions of these 
variables. Furthermore, driving behavior and route choice parameters are assumed stable over 
the period of observation. It is important to note that the steady state assumption concerns the 
variability between observation days. We do not assume a steady state within each 
observation day.  

Under the assumption of steady state traffic conditions the experienced travel times 
produced by the simulation model using the estimated parameters and OD flows should be 
consistent with the habitual travel times used as inputs to the simulation model. The resulting 
problem formulation is given by:  
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where,  
β, OD : parameters to be calibrated: driving and route choice behavior and OD flows.  

: vectors of average (over days and replications) observed and simulated traffic 
measurements at various time-space points, respectively.  

: a-priori behavioral parameters and OD flows.  

: measure of discrepancy between and . 

: measure of discrepancy between the calibrated and a-priori OD flows.   

: measure of discrepancy between the calibrated and a-priori values of behavior 
parameters.  

: time dependent expected habitual and experienced link travel times, 
respectively.  

: the simulation model as the function which generates simulated traffic 
measurements and link travel times , respectively.  

The exact form of the objective function in the formulation above depends on the 
assumption regarding the distribution of the modeling error. For example, under the 
assumption that these errors are normally distributed the generalized least squares formulation 
with the following objective function may be used:   

 
where, W1 , W2 , W3 : variance-covariance matrices of traffic measurements, OD 

flows and behavior parameters.  
 
4. Solution approach  

The problem formulation in equation (1) is difficult to solve. Evaluation of the 
objective function involves running the simulation model and is therefore computationally 
expensive. Furthermore, the dimensionality of the calibration parameters, in particularly 
the OD flows, can be very high even for networks of modest size. In order to overcome 
these difficulties, we propose an iterative solution approach, which is based on 
decomposition of the problem by parameter group (i.e. OD flows, behavior parameters). 
The OD estimation sub-problem The proposed approach is shown in Figure 2. This 
strategy creates two sub-problems: an OD estimation problem, for which existing efficient 
solution methods may be used, and a parameter calibration, which typically has a much 
lower dimensionality.     
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Figure 2 Solution approach to the steady state calibration problem 

 
Every iteration consists of several steps. At each step a set of parameters are 

calibrated, while the remaining parameters are fixed to their previous values. The OD 
estimation step requires the generation of an assignment matrix, which itself depends on the 
route choice behavior and experienced travel times. Habitual travel times are important 
explanatory variables in route choice models. Hence, based on the existing OD flows and 
simulation parameters habitual travel times are calculated. These travel times along with the 
current route choice parameters are used to generate an assignment matrix. Using this 
assignment matrix, OD estimation can be performed (using GLS or other methods). The new 
OD flows are then used to re-calibrate route choice and driving behavior parameters and so 
on.  

Various variations of the basic solution approach are possible. For example, habitual 
travel times may be re-calculated following the updating of each set of parameters and inputs 
(i.e. OD flows, route choice parameters and driving behavior parameters) or only once a full 
iteration in which the estimates of all the parameters have been modified is completed. 
Moreover, the order in which the three sets of parameters are calibrated may be modified. 
Another variation, considering the closer inter-dependency between OD flows and route 
choice parameters is to perform several iterations of these two steps before updating the 
driving behavior parameters. In this case, the calibration of route choice and driving behavior 
parameters will be done in two separate steps, and using similar mathematical formulations.   

The next sections describe the various components of the solution approach in 
detail.   
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4.1. Habitual travel times  
Route choices depend on habitual path travel times as explanatory variables. 

Calibration of the model parameters requires knowledge of these travel times. However, field 
measurements of travel times are most often unavailable, and planning studies can only 
provide initial values, which may be inconsistent with the simulation output obtained using 
the estimated OD flows and the calibrated parameters of the route choice model. Furthermore, 
travel times from planning studies are static and inconsistent with the dynamic nature of most 
simulation applications. For a given candidate solution for the OD matrix, route choice and 
driving behavior parameters, an iterative day-to-day learning model, in which habitual travel 
times are calculated as the weighted average of the experienced travel time and the expected 
travel time of the previous iteration (Cascetta and Cantarella 1991) is used. At each iteration 
of this process, representing a day, habitual travel times are updated as follows:  

 
: expected habitual and experienced travel times on link i, time period t on 

iteration j, respectively.  
: weight parameter ( 0 <λ<1).  

This process is repeated over several iterations until travel times converge to a steady 
state equilibrium in which habitual travel times and experienced travel times are consistent. 
 
4.2. Assignment matrix  

OD estimation, which will be described in the next section, requires an assignment 
matrix as input. Usually the assignment matrix, which is a function of the route choice and 
travel times, is not readily available and needs to be generated from the model. Assuming a 
path-based route choice model, the assignment matrix may be calculated analytically as:  

 
where,  

: fraction of vehicles from OD pair r departing at time interval p, and traveling 
through sensor location s at time interval h.  

: the set of paths connecting OD pair r. 

: fraction of vehicles using path k departing at time interval p, and traveling through 
sensor location s at time interval h (sensor-path fractions).   

: fraction of demand for travel (between OD pair r) departing at time interval p,  
which uses path k.  

The route choice fractions, f
kp 

, may be calculated using the route choice model 
implemented in the simulation model. The sensor-path fractions can be calculated using the 
experienced link travel times and appropriate assumptions about their distributions and 
about the distribution of the departure within time intervals. For example, assuming 
deterministic travel times and a uniform distribution of departures within time intervals, 
sensor-path fractions are calculated as follows:  
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where 
D: the duration of a time interval.   

: experienced travel time from the origin to sensor location s for vehicles departing at 
time interval p and using path k.  

Alternatively, in cases where the analytical calculation of the assignment matrix is 
prohibitively expensive (e.g. when a link-based route choice model is used or in the presence 
of traveler information) the assignment matrix may be inferred directly from simulation 
realizations. Multiple runs of the simulation should be used in order to obtain the expected 
value of the assignment matrix, rather than the one corresponding to a specific realization.   

Regardless of the way the assignment matrix is calculated it may be beneficial to 
smooth it with previous estimates. In particular, smoothing may be useful if the assignment 
matrix is derived from a small number of simulation realizations. In this case the stochastic 
nature of the simulation model may cause the values of various entries in the matrix, 
especially those corresponding to OD pairs with very low demand, to fluctuate erratically 
from iteration to iteration. Typically, the smoothing function will take the form:   

 
where,  

: assignment matrix used in iterations j and j+1, respectively.  

: assignment matrix estimated for iteration j+1, either analytically or from simulation 
realizations.   

: smoothing factor, for example using MSA: . 
Although the smoothing formulation above only uses the assignment matrix from the 

previous iteration, the effects of earlier values are implicitly captured since they are 
encapsulated in this matrix. It is also straightforward to extend the above formulation to 
explicitly include additional previous estimates (at the cost of having to maintain these 
estimates). 

 
4.3. OD Estimation  

The OD estimation problem requires three sets of inputs: traffic measurements, a seed 
OD matrix (which includes a-priori estimates of OD flows) and an assignment matrix. OD 
flows estimated in previous studies may be used as the seed OD flows. Seed OD flows may 
also be extracted from planning models. Although this matrix may not be up to date, it still 
contains valuable information regarding the structural relationships among OD pairs (Ashok 
and Ben-Akiva 2000) and therefore can improve the quality of the solution. The assignment 
matrix, as discussed above, is usually estimated from the simulation model itself. Assuming a 
known assignment matrix A, a seed OD matrix and that the available measurements are traffic 
counts, the OD estimation sub-problem is formulated as a constrained optimization problem, 
which seeks to minimize the deviations between estimated and observed traffic counts while 
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also minimizing the deviation between the estimated OD flows and seed OD flows. The 
constraint being imposed is that OD flows are non-negative. In this paper, we adopt the GLS 
formulation proposed in Cascetta and Nguyen (1988) although other methods may also be 
used. The GLS formulation is given by:  

 
where,  

: observed traffic counts at sensor locations.  
A : assignment matrix that maps OD flows to counts at sensor locations.  

As with the assignment matrix and for similar reasons, smoothing of OD matrices with 
those estimated in previous iterations may be useful. For example, using the OD matrix from 
the previous iteration:  

 
where,  

: OD matrix used in iteration j and j+1, respectively.  

: OD matrix estimated for iteration j using equation (7).  

: smoothing factor, for example using MSA: . 
j +1 
 

4.4. Parameter calibration  
Using the GLS formulation and given OD flows and habitual travel times, the 

parameters of the driving behavior models and the route choice model are obtained as the 
solution to the following optimization problem:   

 
The above formulation assumes that driving behavior and route choice parameters are 

calibrated jointly. However, for a specific application, there may be reason to believe that 
either travel behavior or driving behavior is the main source of the simulation error. In this 
case, variations of the calibration procedure may be utilized. For example, if it is assumed that 
travel behavior is an important source of error, a procedure in which several iterations of OD 
estimation and route choice calibration are performed before a driving behavior calibration 
step may yield better results. Toledo et al. (2003) apply this variation to a network in 
Stockholm, Sweden. The formulations of the route choice and driving behavior parameter 
calibration steps are similar to the one presented in equation (9), but with only the relevant set 
of parameters in each case.   

The selection of a solution algorithm for the parameter calibration problem must 
recognize the simulation stochasticity. For the case studies reported in this paper, a sequential 
search technique based on Box’s Complex algorithm (Box 1965) was used. The advantage of 
the Complex algorithm for this application is that, it only requires calculation of the objective 
function value and does not use any gradient information, which is difficult to calculate 
accurately in a stochastic model. The Complex algorithm is a sequential search technique 
designed for nonlinear optimization problems with nonlinear constraints. The algorithm is 
initiated by randomly generating a set of m feasible starting points in the n-dimensional space 
of the decision variables ( mn≥+1, Box recommends m =2n ). The objective function at each 
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point is evaluated and at each iteration, point w, the one with the worst (highest) objective 
value, is replaced by a new point which is α≥1  times as far from the centroid of the remaining 
points as the reflection of point w in the centroid:  

 
 

are the values of point w, at iterations j and j+1, respectively. X
j 

is the centroid 
of the remaining points. α is a parameter. Box recommends the value 1.3.  

If a point repeats as the worst one in consecutive iterations, it is moved half the 
distance to the centroid of the remaining points:  

 
If the generated point violates any of the constraints it is moved a small distance δ into 

the feasible area for constraints involving a single variable or towards the centroid of the 
remaining points according to equation (11) for more complex constraints. The same 
procedure is also used to generate the feasible initial set of points. These steps are repeated 
until convergence is reached.   

The initial points are spread over the entire feasible region, and therefore, the 
algorithm tends to find a global optimum solution. This is an important advantage of the 
Complex algorithm in the context of traffic simulation models, given the highly nonlinear 
nature of these models.  

Every objective function evaluation requires running several replications of the 
simulation model. Therefore, the computational time increases significantly with the 
number of parameters to calibrate. However, the number of parameters in a microscopic 
traffic simulation model is typically very large. Thus, it is crucial to identify the set of 
parameters that have the largest impact on the simulation outputs through sensitivity 
analysis and focus the calibration effort on a these parameters. 

 
5. Case studies  

In this section we present the application of the proposed calibration methodology to 
calibrate the microscopic traffic simulation model MITSIMLab (Yang and Koutsopolous 
1996) for two different applications. The first is a small application with known OD flows and 
no route choice that allows testing the behavior of the Complex algorithm for parameter 
calibration. The second is a complex, medium scale network that demonstrates the complete 
calibration methodology.  
 
5.1. Case study 1: the HCQS network   

The Highway Capacity and Quality of Service (HCQS) committee of Transportation 
Research Board developed an artificial case study to test various traffic simulation models 
(Bloomberg et al. 2003). The network, shown schematically in Figure 3, includes a freeway 
and two intersecting arterials. In addition to the detailed geometric layout, vehicles mix and 
signal settings, average link speeds and densities during the third 15-minute interval within 
the peak hour were available for calibration. This case study assumes perfect knowledge of 
OD flows. Moreover, no route choice is present in the network. Therefore, driving behavior is 
the only source of simulation error and the only component to be calibrated.  

A sensitivity analysis was performed to find the most important parameters for 
calibration. The network is relatively uncongested, and so, simulation results were more 
sensitive to the parameters of the acceleration behavior compared to lane-changing 
parameters. The acceleration model implemented in MITSIMLab includes three driving 
regimes: car-following acceleration, car-following deceleration and free-flow (see Ahmed 
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1999 for details). The scale parameters of these three models were selected for calibration. 
The formulation set forth in equation (9) was used for the parameter calibration. Based on the 
available data, the following from of the objective function was used:  

 
 are the observed and simulated speeds on link i, respectively.  

are the corresponding density measurements. ω is a weight parameter for the 
density measurements (the weights for speed measurements are normalized to 1).   

 
Figure 3 The HCQS network 

 
A set of six candidate points was used with the Complex algorithm. The convergence of the 
algorithm in terms of the lowest and highest objective values is shown in Figure 4. The 
difference between the highest and the lowest objective values after 20 iterations was 4.4%. 
Convergence is also achieved in the parameter value. The values of the three parameters for 
all six points are within 1.9%, 6.2% and 0.2% of the point with the lowest objective value. 
Since OD flows were perfectly known, simulated counts exactly matched the observed ones. 
Comparisons of the observed and simulated speed measurements on the freeway and arterial 
segments are shown in Figure 5. The results show a good fit between observed and simulated 
data. The root mean squared error (RMSE) of the model is 1.6 mph and the root mean squared 
percent error is 7.1%. The mean absolute error (MAE) is 1.3 mph and the mean absolute 
percent error (MAPE) is 4.6%.  
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Figure 4 Convergence of the Complex algorithm 

 

 
Figure 5 Comparison of observed and simulated speeds in the HCQS network 

 
5.2. Case study 2: Irvine, CA  

The study network, shown in Figure 6, is comprised of three major freeways (I-5, I-
405 and Route 133) and a dense network of urban arterials around them. The simulation 
representation consists of 298 nodes and 618 links. There are 80 signalized intersections 
within the study area. Data for calibration included time-dependent loop detector data 
collected from 68 sensor stations (30 on freeways, 38 on arterials) during 5 weekdays, and a 
static seed OD matrix from a planning study.  

 
Figure 6 The Irvine CA network 
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The availability of multiple days of data raises a question whether the assumption that 
stationary steady state conditions exist is realistic or not. The data shows little day-to-day 
variability, as Figure 7, which plots of time-dependent traffic counts for different days at two 
sensors locations, indicates. This result supports the steady state assumption and so, all 
observations were used jointly in the calibration process.  
 

 
Figure 7 Variability of traffic counts across days 

 
The simulation runs were performed for the AM peak period. Measurements were 

aggregated in intervals of 15 minutes. The calibration included estimation of OD flows and 
calibration of the travel time coefficient of the route choice model, the acceleration scale 
parameters described in the HCQS case study and two constants, one in each of the critical 
gap functions used to determine gap acceptance of the lead and lag gap in lane changing. The 
objective function in the parameter calibration step [equation (9)] was defined by:  

 
y

i
 and y

i

sim 

 are the average observed and simulated traffic counts at time space point i, 
respectively.  

Calibration results, comparing observed and simulated sensor counts are shown in 
Figure 8 for two of the time intervals. The RMSE and MAE of the model are 15.9 and 9.2 
vehicles per interval, respectively.  

 
Figure 8 Comparison of observed and simulated counts in the Irvine CA network 

 
6. Conclusion  

A framework for the calibration of microscopic traffic simulation models using 
aggregate data was presented. The framework takes into account the interactions between the 
various model parameters and the OD flows by estimating OD flows jointly with the model 
parameters. An optimization-based approach has been used for the joint calibration. Since the 
calibration of the parameters depends on the estimated OD flows and vice versa, the proposed 
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framework is iterative. OD estimation is based on the well known GLS estimator. A 
systematic search approach based on Box’s Complex algorithm is adopted for calibration of 
the parameters. This algorithm is particularly useful for the problem at hand since it does not 
require calculations of derivatives of the objective function, which would have been 
prohibitively expensive in the context of a simulation model. Moreover, the algorithm uses a 
set of initial starting points randomly spread over the search space and so, tends to find the 
global rather than local optimum points. Nevertheless, further research is required to identify 
efficient algorithms to perform the parameter calibration step.   

The applicability of the approach was demonstrated through its application to case 
studies using MITSIMLab, a microscopic traffic simulation model. While the results are 
promising, the case studies also demonstrated that further research is needed to improve 
computational performance. Research directions that may lead to improvements include 
development of more efficient optimization algorithms for calibration, and OD estimation 
techniques, and extensions to non-stationary cases.  
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