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Abstract  
Non-recurrent congestion in transportation networks occur because of the stochasticity of the 

demand and of the supply. Intelligent Transportation Systems such as Advanced Traveler 
Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS) intend to 
reduce non-recurrent congestion by providing information to the users or by controlling the 
unexpected traffic flows. For these reasons, the design of ATIS and ATMS requires to be able to 
forecast non-recurrent congestion. This paper proposes to measure non-recurrent congestion 
using dynamic traffic simulations performed with METROPOLIS. Stochastic events are 
generated that reduce the capacity of the network randomly. Users can adapt to the unexpected 
conditions from one day to another. Travel time increases are measured at the metropolitan level 
using large-scale realistic simulations. Assuming that most users are risk averse, any uncertainty 
corresponds to a utility loss. This utility loss is computed from the simulation results for several 
level of occurrences of incidents.  
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1. Introduction  
In real transportation networks, the travel time for a given journey often exhibits variability 

due to various sources of stochasticity. Indeed, the travel demand may vary from one day to the 
next because of external events such as sport events but also because the efficiency of the 
infrastructure undergoes unpredictable changes (e.g. weather condition and accidents). A 
substantial amount of the congestion observed in transportation services is believed to be due to 
those unexpected events. This is often referred to as non-recurrent congestion. A distinction is 
made between recurrent and non-recurrent congestion: recurrent congestion occurs on a regular 
basis and is caused by the fact that a given infrastructure has a lower capacity than the demand it 
needs to accommodate during peak periods. Before a peak period, no recurrent congestion 
occurs. As soon as the incoming flow exceeds the capacity of the infrastructure, recurrent 
congestion builds up. After the peak period, queues discharge and recurrent congestion 
disappears. Non-recurrent congestion is different since it can occur haphazardly at any moment 
of the day. From the point of view of the traveler, travel times are thus uncertain. The 
consequence of non-recurrent congestion is that the user does not know which route to select if 
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he has not received relevant information. This first impact of a potential piece of information is 
the fact that an individual realizes ex post that he did not select the fastest route (which is not to 
say that the total cost is necessarily larger, but just that some users may unilaterally reduce their 
travel costs). The second impact of information is that it reduces the uncertainty. The fact that for 
example a user knows that he will arrive later than expected implies that he can, for example, re-
plan his appointments or call his wife (or husband) to postpone the meal (and therefore hope to 
eat a warm dish). This reduction of uncertainty is widely described in the literature, but very little 
work has been done in order to measure how much this can be valued by the users. We propose 
to evaluate how much users value the certainty of their travel alternatives. This evaluation is 
crucial to the introduction of Intelligent Transportation Systems (ITS). Indeed, Advanced 
Traveler Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS) are 
designed to reduce non-recurrent congestion by different means such as the provision of traffic 
information and route guidance. ATIS and ATMS cannot reduce recurrent congestion except for 
occasional drivers that ignore the network properties. Therefore, the evaluation ex ante of the 
amount of non-recurrent congestion of a given system provides an upper bound for the gain that 
can be expected from the real implementation of an ATIS or ATMS.  

It should be noted that the frontier between recurrent and non-recurrent congestion is blurred: 
if some incidents are well-known to occur too frequently at a given location, users may well 
anticipate them. Users react to recurrent congestion by departing at a time that is compatible with 
their own schedule constraints and their willingness to incur congestion delays. Typically, this 
implies a trade-off between facing long travel times and arriving close to the desired arrival time. 
Users react to non-recurrent delays by altering their pre-trip decisions (such as mode shift, 
departure shift and path selection) as well as their en-route decision (i.e. route diversion, parking 
choice) by selecting travel alternatives that are compatible with the level of risk that they are 
willing to bear and based on the expectations they have from the transportation system. 
Obviously, a broad panel of reactions are possible, depending on the risk aversion of users and on 
their knowledge of the network. The microscopic agent-based simulation approach is an ideal 
tool to capture the heterogeneity of travelers.  

The remainder of this paper details how o measure the impact of incidents on the level of 
nonrecurring congestion and the corresponding loss of utility for travelers. The impacts on travel 
time delays are measured by introducing random incidents in a microscopic traffic simulation of 
the peak period. The corresponding loss of utility is measured by combining the results from an 
empirical survey with the results of the simulation. 

2. Measurement of utility loss  
The most widely used model to capture risk behavior in Economics is that of expected utility 

theory. It relies on two separate assumptions. Firstly, it assumes that preferences can be described 
by a utility function that is known to the modeler. Secondly, it assumes that the attitude toward 
risk can be rationalized by an expected utility function. This latter function depends on a 
parameter ϑ called the risk aversion. A survey was administered by one of the author to estimate 
the level of risk aversion of drivers in Ile-de-France. Respondents are asked lottery-type 
questions where they have to rank different lotteries assigned to different level of risk. The 
method has been used also to compute the risk aversion of private investors (see the web site 
www.RiskDynaMetrics.com). Of course in the transportation area, the users are asked to 
compare route with different variability of travel times, while in the finance application, 
respondents are asked to compare different financial products which differ according to their 
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level of risk and return. In both case the alternative are naturally ranked and we can use an 
ordered discrete choice model to estimate the level of risk aversion of the users and to determine 
the different factors and socio-economic characteristics, which influence the level of risk 
aversion. We found out, for example, that men are less risk averse than women, and that blue 
collars are more risk averse than white collars. Basically, the socio-economic characteristics and 
the purpose of the trip do influence the level of risk aversion. The major outcome of the survey 
(see Figure 7 of [4]) is the provision of the distribution of risk aversion in the population of 
drivers. In this paper, travelers are assumed to be mostly risk averse (i.e. to have a positive degree 
of risk aversion). Therefore, the variability of the driving conditions corresponds to a loss of 
utility. Different expected utility functions have been proposed in the literature. We select the 
Constant Absolute Risk Aversion (CARA) utility function. The utility of an journey with travel 
time τ  is given by:  

 

where  denotes the index of absolute risk aversion , which is constant in the case of the 
CARA utility. The limit case 0→θ

 

corresponds to the risk neutral individual with ττ −=)(U . 
Travel times are assumed to be stochastic during some time period T, that can span a whole 
morning peak period or several days. That variability is described by a probability distribution 

))(( tf τ . 1τ According to the expected utility theory developed by von Neumann et Morgernstern, 
the expected utility of an individual who uses the system at time t is given by:  

  
while the utility of the expected outcome is given by:  

 
where χτ  is the expected travel time:  
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The time compensation, denoted by stochastic system described by ))(( tf τ or a risk-free system 
with an average travel time τ+ .  

Therefore,  
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    (1)  

So far we have considered that the utility was only dependent on the travel time. In practice it 
is often desirable to use a travel cost specification C(t) that depends on other components: 
boarding costs, egress and access costs, schedule delay costs, etc. In that case, the monetarization 
of the utility loss can be computed using eq. (1) and has then the dimension of money. A 

meaningful parameter to measure the relative monetary impact is  which has no units. 
 

3. Simulation of non-recurrent congestion  
So far, nothing has been assumed concerning the probability distribution of travel times (or 

travel costs) ))(( tf τ . We propose to compute ))(( tf τ  by performing explicit Monte-Carlo 
simulations in which the stochasticity is caused by random incidents. The incidents disrupt the 
capacities of some road sections. The corresponding travel time delays are computed using the 
simulation tool METROPOLIS.  

3.1. Information-based traffic simulation  
METROPOLIS ([10, 12, 11]) is a simulation tool that has been developed by the authors. It is 

intended to be a fully dynamic model that features within-day as well as day-to-day traffic 
dynamics. We recall here some of its properties that are relevant to our current study. Traffic 
models have usually two main components: (a) a supply model that describes how the traffic 
conditions evolve in the road network given the users’ driving choices, sometimes called DTA 
(Dynamic Traffic Assignment) and (b) a demand model that describes the users’ behavior given 
their driving environment and other drivers’ decisions. The architecture of METROPOLIS 
considers information as a third component of transportation models (see Fig. 1). Information 
means, in the broad sense, any piece of knowledge that can play a role in the users’ travel 
decisions: experienced travel times, shortest routes, congestion levels, radio messages, road 
guidance advice, etc. Information is user specific since it corresponds to the users’ perception of 
traffic conditions. In the case of the introduction of ATIS or even radio broadcasts, we can 
consider that information has a physical layer and is a separate entity. For the supply side, we 
assume that dynamic congestion laws provide some aggregate data on the traffic conditions. All 
this data about the network state is embedded in the information block. Some external 
information can also take place in that box, like information provided by ATIS devices, radio 
broadcast or other technologies. In turn, users are assumed to be disaggregated and make use of 
the available information (which can be user specific like in the case of ATIS equipment) to 
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perform their travel decisions. The supply consists of the coded car network: zones, intersections 
and links. The congestion is located on links and modeled by dynamic congested laws. Both 
supply and demand data interact in the simulator that computes sequentially the mode choice, the 
departure time choice and eventually, the route choice for each simulated user. Destination choice 
is not modeled. We distinguish three types of information data:  

• historical or pre-trip information is the users’ perception of the traffic congestion from 
previous days,  

• instantaneous information is acquired en-route and interacts in the route choice: users 
perform direction choice at each intersection and can be diverted from their original paths 
due to changes in the information structure,  

• external information consists of any information provided to the users exogenously by any 
devices or technology (ATIS, variable messages signs, radio broadcasts, etc.).  

The traffic assignment procedure uses a mesoscopic event-based approach. As the traffic sim-
ulator proceeds, the within-day time evolves. Supply outputs are collected as dynamic level of 
services: time-dependent travel times and time-dependent traffic flow patterns on each road sec-
tions. On the demand side, users choices are collected: departure time, route and mode taken. 
These results may be aggregated to compute Measures Of Effectiveness (MOEs) or performance 
indexes. When the simulation of the considered period (e.g. morning peak) is over, the learning 
process uses these results to update the historical information of previous days. The overall 
process consists in looping sequentially over the traffic simulation procedure and the learning 
process. This corresponds to the day-to-day dynamics of the simulation. Consequently, the 
framework model within-day dynamics, mainly with the departure time model and the DTA pro-
cess as well as day-to-day dynamics captured by the learning process. If everything remains the 
same in term of input data and in the absence of exogenous shock, the system is assumed to con-
verge toward a stationary state. Indeed, users improve continuously their knowledge of the traffic 
condition. At one point, they will not be able to improve anymore their travel choices in order to 
minimize their travel cost. The simulator computes a generalization of Wardrop’s first principle: 
at equilibrium, no user can strictly decrease it generalized by changing either his mode, his route 
or his departure time. 

3.2. Learning process  
The learning process can be seen as a black box that models day-to-day dynamics: it captures 

the fact that users take into account their past driving experiences in future travel decisions. The 
data processed here is the information that must be understood in a broad sense. It groups 
together historical drivers’ information and instantaneous information. It consists in any data 
relevant to user travel choices, like data required to estimate time-dependent shortest routes, but 
also the expected variability of travel times under non-recurrent situations or data relevant to road 
tolls.  

Input Historical information denotes the accumulated knowledge that users gain from 
using the transportation system days after days. Should traffic conditions never change 
(which is never the case in real life), this historical information would reach a stationary 
state and remain constant in a well behaved model. Instantaneous information refers to 
what each user may learn during the within-day simulation: perception of actual traffic 
conditions, forecasts or exogenously simulated information provided to the drivers, etc. 
Instantaneous information is continuously updated as the dynamic assignment proceeds, 
while historical information is only updated daily. Information is partially shared among 
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the drivers (public information) and partially specific to individual drivers (private infor-
mation). Information determines all the travel choices modeled in the simulator: Mode, 
departure time and route choices. The flexibility of this information handling allows, for 
instance, to provide different users segments with different sets of instantaneous informa-
tion based on their equipment (e.g. navigation systems). External information consists in 
any information provided from the outside of the transportation system by means of 
information technology like radio, variable messages signs, on-board computers, etc.  

Output Once a simulation day (or morning rush) is completed, the historical information is 
updated according to the driving conditions experienced by the simulated drivers. The 
updating process is based on a Bayesian mechanism that combines the historical informa-
tion and the last day changes in the network usage according to the user characteristics (i.e. 
perception and cognitive abilities). Since these mechanisms are typically very expensive to 
implement literally at the numerical and computing memory point of view (see [13]),  

we decided to resort to heuristic laws. The historical information available to users on day 
1+χω  is the output of the learning process on day ω , that is, the accumulated knowledge of the 

ω  previous days (i.e. a Markov process of order 1). For a given O-D pair, the expected travel 
time when departing at time dt on day 1+χω  is computed as follows:  

 
Note that this process is considerably different from MSA (Moving Successive Average) since 

it does not converge necessarily. A typical value used in practice is λ = 0,1. 

3.3. Generation of incidents  
A possible solution to evaluate the impacts of non-recurrent traffic incidents would be to use a 

static traffic assignment approach. Given the distribution of the probability of occurrence of the  
incidents )(tf I , links could be characterized by a stochastic capacity. Fully stochastic assignment 
algorithms can then be used to solve the problem (see [14]). This latter approach lacks however 
an important aspect which is within-day departure time choice adjustment. Indeed, if users 
encounter non-recurrent traffic congestion on certain part of the network at certain moment of the 
day, they might decide to schedule their trip at another time. Also, the impacts measured by the 
static approach are those of a supposedly long-term situation where the users have some-how 
discovered )(tf I  by experiencing traffic conditions. But the transient situations to get to that 
situation might yield much bigger impacts that cannot be measured without taking into account 
explicit day-to-day dynamics. Note that a sophisticated dynamic traffic assignment is not 
sufficient since some mechanism has to be responsible for the adaptation of (exogenous) 
departure time profiles.  

Exogenous traffic hazards are straightforward to introduce in event-based models such as 
METROPOLIS. At the beginning of each day (or morning peak), a random number is drawn for 
each link where a potential incident can happen. If R < p then an incident happens on that link 
( )(tf I  is uniform). The probability of occurrence p is the same for a selected subset of important 
links of the network (e.g. main arterials with more than two lanes) and p = 0 

 

for the rest of the 
network. The incidents are characterized by a capacity drop of 50% that lasts for the whole 
morning peak. The linear bottleneck congestion model is applied throughout the whole simulated 
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period. Note that incidents could also be defined with a specific duration (e.g. half an hour for a 
stopped vehicle blocking a lane). We select only incidents that lasts for the whole simulated 
period (i.e. the morning peak) for the sake of simplicity. Nevertheless, these incidents still affect 
the departure time choice since roads are usually under-used (i.e. below capacity) at the 
beginning (and end) of the peak period. If the capacity drops recurrently during the peak period, 
some users will consider departing earlier or later to avoid congestion. Vehicles that reach an 
intersection are informed if an incident has happened on a downstream link so that en-route 
diversion is possible. 

4. Simulation results 

4.1. Control runs  
A first set of experiments is performed on the well-known toy network of Sioux-Falls to test 

the day-to-day adjustment process. About 50,000 individual trips are simulated. Incidents are 
introduced on four links that are located on the north-south corridor identified on Fig. 2. Three 
simulations are performed:  

1. base case scenario without incidents,  
2. introduction of incidents in the corridors from day #20 on,  
3. introduction of incidents in the corridor between day #20 and day #50.  

 
Fig. 3 presents the travel costs for the 100 first iterations of the three simulations. It can be 

seen that the impacts of the incidents are quite large on day #20 since users are uninformed and 
did not yet had the opportunity to adapt their travel habit. This would be the impact reported by a 
dynamic traffic assignment model without feedback on departure time choice. Note that even the 
base case system exhibits some oscillations. This is due to the fact that the simulation model is 
stochastic and that the exponential smoothing process does not lead here to a unique situation but 
rather to a set of stationary states. We will show below that this does not hinder the evaluation of 
non-recurrent congestion. Two things are worth noting on this example: the adaptation in the case 
of the standing incidents is such that the travel cost follows a decreasing trend. Also in the case of 
the third scenario, the decrease in travel cost does not happen immediately because of the inertia 
of the system. Note that during the first twenty iterations the three curves are, of course, 
overlapping. The peak at iteration #10 shows that the system is not yet completely stabilized. 

4.2. Impacts of incidents  
The second set of experiments is performed on a real-world example for the Paris area. The 

coded network consists of about 17,000 links and more than 3,000,000 individual trips are 
simulated for each morning period (the computation of a single iteration takes around 20 minutes 
on an Apple G5 with a clock speed of 2Ghz). Both commuting trips and non-commuting trips are 
simulated to take off-peak congestion into account. The incidents are introduced on the major 
roads of the area, defined as the roads that have at least three lanes (see Fig. 4). Several 
simulations are run for different probabilities of occurrence p ranking from 0 to 1. In each case, 
50 iterations (days) are performed. The corresponding global indicators are reported in Tab. 1. 
The impacts are important because each traveler uses on average at least one road sections that 
belong to the major roads (there are about 1,000 major-road links and the average trip length is 
16 links). The schedule delay costs measures the penalties incurred by travelers arriving too early 
or too late at their destination. Obviously, drivers arrive later than expected when the level of 
incidents increases. Note that the indicators show that the case p=0.5 is worse than the risk-free 
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case p=1, even if the average capacity of the overall system is higher. This discrepancy between 
the stochastic and the risk-free situation is evaluated in the next section. 

 
Table 1: Impacts of non-recurrent congestion.  

 

4.3. Utility loss  
The compensation χ introduced above for travel time variability is measured on the Sioux 

Falls example. This compensation is extended here to the compensation of travel cost variability 
instead. This value can then be interpreted as the utility loss due to uncertainty (or monetarization 
of uncertainty). Total travel costs includes free flow costs, queuing costs and schedule delay 
costs. The variability ))(( tCf  is computed by recording the total travel costs for T = 300 
iterations. Therefore, the monetarization of uncertainty is computed as follows:  

 

Incidents are introduced during the T iterations with same level of probability p. Several runs 
are performed for values of p ranking from 0 to 1. Fig. 5 presents the results of the evaluation of 
χθ as a function of the level of risk aversion θ. As shown in the control runs (Fig. 3), travel costs 
can oscillate even without incidents because of the stochastic nature of the traffic simulation. 
Nevertheless, those oscillations are rather small, which explains why the risk-free situations (p=0 

 

and p=1) correspond to the bottom curves associated with an (almost) null cost for uncertainty. 
As for the Paris example, the case p=0.5 yields the highest costs of uncertainty. Obviously it is 
not a linear dependence (see the discrepancies between (p=0.4 

 

and p=0.6).If we assume θ = 10$ 

(a value compatible with the survey results of [4]), we get the relative impacts is 
C
χφ =

 

reported in Tab. 2. The travel time equivalent of the compensation, χτ , is also computed by 
assuming a value of time of 10$/h. 
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Figure 1: Architecture of the day-to-day learning process implemented in the METROPOLIS simulation environment. 
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Figure 2: Congestion index on the Sioux-Falls network in the base case scenario (without 
incidents). Incidents are introduced on the most loaded north-south corridors (yellow links 

with index>1) 
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Table 2: Evaluations of the cost of uncertainty for an individual with a risk aversion level of θ 
= 10$ and a value of time of 10$/h 

 
 

Figure 3: Control runs. Three simulations with and without incidents. Day-to-day evolution of 
the total travel cost. 
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Figure 4: Ile-de-France area surrounding Paris. Incidents are introduced on the major roads 
(red). 

 
 

Figure 5: Monetarization of uncertainty. Measurements for different probability p of 
occurrence. 
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5. Concluding comments  
We have developed in this paper a method to measure both recurrent and non-recurrent 

congestion in transportation systems. The methodology relies heavily on the usage of 
METROPOLIS, a dynamic traffic simulation tool that is able to handle very large realistic 
networks. Random incidents are introduced in the system and users react to them by adapting 
their departure time and route on a within-day and day-to-day basis. We have stressed out the 
importance of day-to-day adjustment process by showing that the distinction between 
recurrent and non-recurrent congestion is blurred: if the same incidents occur with a given 
probability on a long period, users might eventually learn how to adapt and take into account 
travel time variability as an additional cost. This additional cost or monetarization of 
uncertainty has been estimated using both empirical measures and simulation results. This 
evaluation is fundamental to the designers and managers of ATIS and ATMS since it gives a 
benchmark of the potential benefit that can be obtained with such technologies. 
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