

1

BUNCH BREAKER: A REINFORCEMENT LEARNING MULTI-AGENT FOR
TRANSIT OPERATIONS CONTROL

Amer S. Shalaby, Kenny Ling

Department of Civil Engineering University of Toronto 35 St. George Street Toronto,
Ontario, Canada, M5S 1A4, Telephone: (416) 978-5907 Fax: (416) 978-5054

E-mails: amer@ecf.utoronto.ca, kennyling@rogers.com

Abstract

Transit agencies often implement operations control strategies so as to mitigate the effects
of transit vehicle bunching along transit routes. Typical control strategies include vehicle
holding, expressing and short turning, which are usually implemented through manual means
via field supervisors or central control centers. The objective of this study is to automate
vehicle bunching control by means of multiple Reinforcement Learning (RL) agents that act
on a series of successive signalized intersections. The multiple Reinforcement Learning
agents developed in this study include the “bunch-splitting”, “holding” and “expressing”
agents which work cooperatively to break up a vehicle bunch if one is detected and to build a
reasonable headway between the paired vehicles. Various elements of the RL agents such as
the action set, the reward and the state space are set up under a traffic signal control context.
Simulation results indicated that these multiple Reinforcement Learning agents could split up
a streetcar bunch and prevent it from forming again with a high success rate.

Keywords: Reinforcement learning; Microsimulation; Modelling; Headway control; Public

transport and intermodality
Topic Area: B1 Public Transport and Intermodality

1. Background and objectives

Bunching of transit vehicles is an undesirable operational problem that plagues many
urban transit routes, particularly ones with high service frequencies (5-minute headways or
less). It is usually caused by excessive delays experienced by a transit vehicle at a transit stop,
with such delay increasing as the transit vehicle travels further downstream because of
higher-than-average dwell times. At the same time, the next transit vehicle experiences less
dwell times at such transit stops (due to less-than-average passengers waiting) and eventually
it catches up with the previous transit vehicle, creating a “bunch” of the 2 vehicles which
travel as such thereafter. Contributing factors that give rise to the bunching phenomenon
include excessive traffic congestion, variable passenger demand, idiosyncratic driver
behavior, transit vehicle failure, driver/passenger emergency, poor weather conditions, etc.
Vehicle bunching causes excessive wait times for passengers, unreliable transit operations,
uneven loading of transit vehicles, inefficient utilization of rolling stock, etc. As such, transit
agencies often implement control strategies, usually through manual means via field
supervisors or central control centers, in order to avoid the occurrence of vehicle bunching
and/or to mitigate its effects if it occurs. Typical control strategies include bus holding and
short turning (Abkowitz and Tozzi, 1987; Wilson et al., 1992).

In a previous study, Ling and Shalaby (2003) developed an innovative approach to
headway control of a high frequency transit route (30 streetcars per hour) by means of
adaptive traffic signal control. A Reinforcement Learning agent was developed to modify in
real time the traffic signal timing so as to minimize headway variability. For example, if a
streetcar is detected upstream of an agent-controlled intersection and it is arriving earlier than

2

the schedule headway of 120 seconds from the previous transit vehicle, the agent determines
the optimal signal time setting to “delay” the second transit vehicle at that intersection such
that the schedule headway is restored. The single agent was shown to be effective in reducing
headway variability and reducing the incidents of bunching. However, it cannot deal with a
bunch if it already occurred. This paper presents an extension to this work to deal with this
particular problem. The objective is to develop multiple Reinforcement Learning agents to
act on a series of successive signalized intersections to break up a vehicle bunch if one is
detected and to build a reasonable headway between the paired vehicles.

2. Theory and methodology

Ling and Shalaby (2003) provide an introductory exposition of the Reinforcement
Learning method, which is repeated here for the benefit of the reader. Reinforcement
Learning is one of the most active research areas in the Machine Learning and Artificial
Intelligence community (Sutton, 1998). This method has been applied quite extensively in
Psychology, Neuroscience, Optimal Control and Artificial Intelligence. Under this approach,
the learner or decision maker is called the agent. The agent interacts with its environment at
each of a sequence of discrete time steps, t = 0, 1,2, 3… (see Figure 1) At each time step t, the
agent receives some representation of the environment state S(t). And according to the
learned policy of the agent, a particular action A(t) is selected out of all actions available
under that state. Roughly speaking, a policy is a mapping from perceived states of the
environment to actions to be taken under those states. The policy is simply the “brain” of a
Reinforcement Learning agent. One time step later, in part as a consequence of its action, the
agent receives a numerical reward R(t) and finds itself in a new state S(t+1). The purpose or
goal of the agent is formalized in terms of a special reward signal passing from the
environment to the agent.

Figure 1. Relationship between states, actions and rewards

The goal of the agent can be achieved by maximizing the expected return, Rt, which is

defined as some specific function of the reward sequence. For the simplest case, the return is
the sum of the rewards:

Ttttt rrrrR ++++= +++ L321 Eqn. (1)

3

Note that the magnitude of the future rewards depends on how the environment
responds according to the future actions of the agent. Obviously, the magnitude of future
rewards is fairly unpredictable and has a smaller relevance to the current action at. As such, it
is more appropriate to have the agent focus more on the immediate reward than future
rewards. A discount factor is introduced into the above equation to take this concept into
account:

∑
=

+++++ =+++=
T

k
kt

k
tttt rrrrR

0
13

2
21 γγγ L Eqn. (2)

The discount rate, γ, is a parameter that ranges from 0 to 1. For instance, a reward
received k time steps in the future is worth only γ k-1 times what it would be worth if it were
received immediately. If γ equals 0, the agent will only be concerned about the immediate
reward and totally ignores future rewards. In such a case, the agent is said to be “myopic”.
And as γ approaches 1, the agent will give more weighting to the future rewards and becomes
more “farsighted”.

A state value function determines the long-term desirability of a specific state after
taking into account the states that are likely to follow, and the rewards available in those
states. Equation (3) expresses a recursive relationship between the value of a state, V(s) and
the values of its successor states.

[]∑ ∑ +=

a s

a
ss

a
ss sVRPassV

'
'')'(),()(ππ γπ Eqn. (3)

where:

{ }
{ }

agent the ofpolicy
'ss,aa,ss|rE reward next the of value expected R

aa,ss|'ss Prob iesprobabilit transition P

tttt
a

'ss

ttt
a
'ss

=
=====

=====

++

+

π
11

1

Solving a Reinforcement Learning problem means, roughly, finding a policy that
achieves a lot of reward over the long run. A policy π is defined to be better than or equal to a
policy π’ if its expected return is greater than or equal to that of π’ for all states. In other
words, π ≥ π’ if and only if Vπ (s) ≥ Vπ’(s). The policy that is better than all other policies is
defined as the optimal policy π*. So, the optimal state value function, V* is defined as:

)s(Vmax)s(V * π

π
= Eqn (4)

Notice that in Eqn (3), the determination of state value requires a complete set of state

transition probabilities and expected rewards. Under a deterministic environment, the
transition probabilities and expected reward values are fixed and can be obtained through a
perfect model of the environment. However, under a stochastic environment like a
transportation system, these values are variable and cannot be estimated. Thus, instead of
estimating the state value function directly, we adopt the approach of Q-learning, which is
having the agent to learn the action value, Q(s,a) directly. The action value, Q(s,a) is the
reward received immediately upon executing action a from state s, plus the value of
following the optimal policy thereafter.

)'s(V)a,s(r)a,s(Q *γ+= Eqn (5)

Now, the key problem is finding a reliable way to estimate values for Q, given only a
sequence of immediate rewards r spread out over time. This can be accomplished through
iterative approximation. Notice the close relationship between Q and V*,

4

)'a,s(Qmax)s(V
'a

* = Eqn (6)

Rewriting Eqn (5) gives rise to,

)'a,'s(Qmax)a,s(r)a,s(Q
'a

γ+= Eqn (7)

The right hand side of the equation is a target presumed to indicate a desirable

direction in which to move, though it may be noisy. The iterative approximation of Q(s, a)
can be illustrated by the following equation,

e]OldEstimatTarget[StepSizeeOldEstimateNewEstimat −+← Eqn (8)

Substituting Eqn (7) into the target of Eqn (8) gives,

)]a,s(Q)'a,'s(Qmax)a,s(r[)a,s(Q)a,s(Q
'a

−++← γα Eqn (9)

The Q-value, or Q(s, a), is normally referred to as the action value function. The

discount factor γ controls the relative contribution of future rewards (obtained from the next
state) to immediate rewards. As γ approaches 1, the future rewards will be given greater
emphasis and the agent is more farsighted. The difference between the target and old
estimates is in fact an error term in the estimate. Adjustment of the old estimate is
implemented by taking a step toward the “Target”. In fact, the value of step size, α is
equivalent to the learning rate of the Q-learning agent. A large step size allows the agent to
identify the action that happens to be the optimal one with a shorter training time. However,
the tradeoff is that the state-action pair Q-values will fluctuate a lot and may encounter
problems in reaching convergence.

Initially, the Reinforcement Learning agent has no knowledge on what actions to
perform under different situations that help to achieve the goal. There is no teacher or
supervisor to guide the behavior of the autonomous agent. When the agent is placed in a
particular situation, it must carry out the best action according to its own experience.

The environment then responds to the agent’s action by returning a reward or penalty
and brings the agent to a new state. Through out this kind of interaction with the
environment, the agent gradually learns how to differentiate between “good” and “bad”
actions under different situations. The repetitive process of carrying out expected good
actions and achieving positive feedback under a particular situation acts like a “positive
reinforcement”. The agent can use its experience to improve its performance over time.

A major feature of Reinforcement Learning is the trade-off between exploration and
exploitation. In order to accumulate a lot of rewards in the long run, the agent must select an
action that is estimated to have the highest “value” among the possible actions. In this sense,
the agent exploits what it already knows in order to obtain more rewards. Note that the
“value” of the selected action may not actually be the highest one since it is only an
estimation made by the agent based on its current knowledge. Therefore, it is beneficial for
the agent to try occasionally other possible actions so that previously missed out actions
which might be good ones are explored. In other words, the agent is exploring in the hope of
making a better action selection in the future.

3. The testbed

The 504 King streetcar route corridor in Downtown Toronto was selected as the testbed
for this study. This is one of the most heavily used public transit routes in Toronto (nearly
50,000 passengers per day). The route is operated with a very high frequency of 30 streetcars
per hour and consists of a total of 114 streetcar stops. About 100 of these stops are located

5

10-15 meters before the signalized intersection (i.e. near-sided transit stops). The end-to-end
trip time is approximately 60 minutes.

Currently, unconditional priority for streetcars is implemented at most signalized
intersections along the King Streetcar Route. Once detected by an upstream detector, each
streetcar is granted signal priority (green extension or red truncation) until it clears the
intersection (i.e. passes a downstream detector) or a maximum extension is reached. Because
most transit stops are near-sided, streetcars have to stop for loading/unloading passengers
before clearing the intersection. The streetcars travel along the left lane of King St., and when
stopped for loading/unloading passengers, traffic in the right lane is required to stop by law.

Although transit speed has improved following implementation of the above priority
scheme, the high frequency route (30 streetcars per hour) has been experiencing poor
reliability in terms of deviation from the planned headway. In addition, the magnitude of
headway deviation tends to increase as streetcars travel further downstream. Thus, the
problem of “streetcar bunching” still exists.

The microscopic traffic simulation software Paramics (Quadstone, 2000) was used to
model the entire King St. corridor including its crossroads (Lee, 2001). The geometric layout
of the road network was built according to the Toronto Centerline data. The traffic demand
volumes were encoded into the network using data from the Transportation Tomorrow
Survey conducted in 1996 in the Greater Toronto Area. The developed network has been
tested in a previous research project (Shalaby et al., 2003) and results indicate its high
accuracy in replicating the real traffic and transit operations taking into account the
interaction between traffic signals, streetcars and the general traffic. A plug-in program that
contains the source code of the Reinforcement Learning algorithm was imported into
Paramics as an Application Programming Interface (API) to test the performance of the
proposed algorithm.

4. Application of multiple q-learning agents

In a previous study (Ling & Shalaby, 2003) the single Q-learning agent demonstrated
its capability of reducing streetcar’s headway deviation. The improvement in the streetcar’s
reliability performance is most obvious for cases with mild degree of headway deviation.
However, streetcars with extremely high headway deviation cannot be handled properly by
implementing the agent on one single signalized intersection. Consider, for example, two
streetcars with headway of 10-20 seconds between them arriving together at the Q-agent
controlled intersection. Ideally, the agent should build up the gap between these two
“bunching” streetcars and recover to the scheduled headway. Unfortunately, this can hardly
be done properly by making use of only one Q-learning agent controlled intersection, because
the phase length is under constraints of certain practical maximum and minimum values.

On the other hand, if the Q-learning agent can be implemented over several
consecutive signalized intersections, we can expect that the gap between the “streetcars
bunch” builds up slowly as it travels through these intersections until a reasonable headway
can be achieved. This study develops three different types of Q-learning agents, namely the
“bunch-splitting” agent, the “holding” agent and the “expressing” agent. Each agent has its
own state space, action scheme, action domain, reward scheme and local level objective.
Despite the fact that these multiple agents have slightly different objectives, the
combinatorial effect of those actions carried out by the multiple agents ensures the ultimate
goal of mitigating the bunching problem.
Selection of location

Previous literature [Rossetti et al.,1998; Strathman et al.,1993] has pointed out that the
fluctuating demand at transit stops is one of the major factors that contribute to the
deterioration of performance and reliability for a transit route. It also implies that the smaller

6

the number of transit stops in between consecutive Q-learning agent controlled signalized
intersections, the smaller the uncertainties (randomness factor) being introduced into the
problem. Therefore, multiple consecutive signalized intersections with a minimum number of
transit stops in between them is more suitable to be selected as a testbed for the multiple Q-
learning agents. In this study, the number of signalized intersections required for the multi
Q-learning agent is arbitrarily set to three. The optimal number of signalized intersection to
implement the algorithms will be of great interest in future research.

According to the simulated King St route, the following three signalized intersections
were found to match the above selection criteria:

 King & Bay
 King & Yonge
 King & Church

Therefore, the above intersections were selected as the testbed for the multiple Q-
learning agents of this study. Since the agents applied to these signalized intersections work
together to achieve a common goal, the intersections of Bay, Yonge and Church will
henceforth be named as the 1st, 2nd and 3rd intersection, respectively.
The state space

It is crucial for the state variables to capture all the necessary information relevant to the
situation and be useful in aiding the agents to make the best decision. In developing he single
Q-Learning agent (Ling and Shalaby, 2003), it was found that a state space based on the
following pieces of information was quite effective: the current status of the signal phase and
the transit vehicle’s current headway. As such, the same state space definition was used for
each of the three agents of this study.

It is noteworthy that the training time of the agent increases exponentially with the
increase in the total number of states. For the agent to learn at an acceptable rate, a discrete
state space is adopted as opposed to a continuous one. The number of data types fed to the
agent determines the dimensions of the state space matrix. For the “bunch-splitting” agent,
the signal cycle is divided into 20 intervals and the gap time among the bunch is categorized
into 6 ranges. A two-dimensional matrix (a total of 120 states) is formed as shown in Table 1.

Table 1. State space scheme of the “Bunch-Splitting" agent

For example, if the signal is running at 17 seconds into the East-West Green phase

and the gap time among the bunch is 15 seconds at the moment when the streetcar bunch is
detected within the zone of detection, the algorithm will inform the agent a state number of
34. A flowchart that clearly shows the flow of information in the state number determination

7

process is depicted in Figure 2. For the “holding” agent and the “expressing” agent, the state
space numbering scheme also utilize the elapsed time of the current signal phase and the
headway of the current streetcar. The only difference is that the headway information is
categorized into increments of 7 seconds (from 0-63+ seconds) and 12 seconds (from 0-120+
seconds) for the “holding” and “expressing” agents, respectively.

These agents have the capability of learning the passenger service time at the near-
sided transit stop located within the detection zone. Under such a high frequency transit route,
passengers are assumed to arrive at the transit stop randomly and uniformly. For instance, a
streetcar with a long headway (late run) can expect to have a longer service time at the stop
and vice versa. After an adequate number of revisits under a certain state, the agent starts to
learn the expected service time at the stop under a particular headway. Even if there is a
change in passenger demand profile, the agent is still able to capture its effect and readjust
itself because of the life-time updating process of Q-values.

Figure 2. State space information flow diagram

8

The actions
Under the context of Reinforcement Learning, the agent is supposed to be trained

until it can select consistently the best action among all available ones under a specific state
most of the time. The actions performed should be able to alter the state of the environment
and a reward is granted after the action is carried out.

A signal cycle can roughly be separated into the transit corridor split (EW-bound) and
the crossroad split (NS-bound). Each split can further be divided into two portions, which are
displayed green time and clearance time (amber & all-red). The agent is allowed to modify
the displayed green time portion of any split but not the clearance time. The clearance time
will remain fixed at the existing value for traffic safety reasons.

In this study, the agent will only be activated whenever a streetcar is detected within
the detection zone. Once the agent is activated, it is expected to modify the current signal
timing accordingly. If the agent is activated while at the displayed green time portion of the
cycle, the choice of action under different states is simply a duration period (in units of
seconds) applied to the currently running phase from this moment on (Figure 3). On the other
hand, if it is activated while at the clearance time portion, the duration period determined will
be applied to the following phase.

Figure 3. Action set of the reinforcement learning agent

Practical signal plan constraints & action domain

Although the Q-learning agent can learn the optimal policy to minimize the headway
deviation, it may run into the risk of giving a too long or too short green time & red time for
the transit corridor. Therefore, we have to impose some constraints on the choices of actions
by specifying the maximum and minimum green time. Specifically, the domain of actions
should be different under different elapsed times of the current signal phase running.
Although each agent has a slightly different action domain, the basic idea is the same. The
agent is set up in such a way that the proposed action will always check against the actions
domain table before a final decision is made. For instance, the “tick” or “cross” mark besides
each action in Figure 3 informs the agent whether the action selected is valid or not at that
instant.

9

The rewards
As mentioned earlier, the agent always attempts to maximize its reward. If the agent is

desired to perform some operation, a corresponding reward has to be provided in such a way
that in maximizing it the agent will achieve the desired goal. The reward of the “bunch-
splitting” agent is defined as the gap time between this pair of bunching streetcars measured
at the downstream detector of the corresponding signalized intersection. As mentioned
earlier, the agent achieves its goal by accumulating a lot of rewards in the long run. Thus, if
the agent can continuously select those actions which lead to a large gap time within the
streetcar bunch after the modified signal plan is carried out, the objective of splitting the
bunch is achieved.

The reward of the “expressing” agent is the negative of the time required to travel
through the road section between the upstream and downstream detectors. Since the agent
always favors actions that give rise to a good reward (in this case, a less negative number),
the actions which lead to the shortest travel time has the largest chance of being selected. By
the same token, the reward for the “holding” agent can almost be defined as the opposite of
the “expressing” agent. The reward is equivalent to the time required to travel the road
segment between the upstream and downstream detectors. Through maximizing the reward,
the “holding” agent is likely to select the actions which can effectively stop the 2nd streetcar
from catching up with the first one again.

 These agents will learn from interaction with the environment and find the best way
to accomplish the task. It is thus critical that the rewards be set up to indicate what we want to
accomplish.

The Q-values updating process

The Q-value updating process is shown in a flowchart (Figure 4). In this study, an ε-
greedy policy is employed to guide the behavior of the agent. Generally speaking, the agent
selects an action that has maximum estimated Q-values most of the time, but with a
probability ε it selects an action at random. Suppose ε is 0.15, then the agent will select an
action with the highest estimated Q-value (under the encountered state) with an 85% chance.
In other words, at around 15 % of the time, the agent will select an action randomly.

This ε-greedy policy is highly important during the training process of the Q-learning
agent. In the initial stages of training, we want the agent to explore the environment and try
out as many different actions as possible. Thus, the ε value should be given a higher value.
Throughout this kind of interaction with the environment, the agent slowly builds up the
knowledge required to differentiate between good and bad actions. After enough exploration
is carried out, the estimated Q-value matrix is expected to capture the long-term desirability
of each state-action pair (the true “Q-value”) fairly well. From that moment, the ε value will
be set to a smaller value aiming to have the agent exploits what it already knows in order to
obtain more rewards. However, the low ε value will still enable the agent to continue
exploring various actions occasionally, which is a useful process if the operating conditions
in the field (traffic levels, demand patterns, etc.) change over time.

10

Figure 4. The Q-values updating process

A unified view

As mentioned earlier, three consecutive signalized intersections were used to implement
the multiple Q-learning agents. Each intersection has an upstream detector located around
100 m upstream of the stop line and a downstream detector located just downstream of the
stop line. The roadway in between the upstream and downstream detectors is considered as a
detection zone. The zone can be in one of the following three states:

• Non-active: a situation when no streetcar is located within the zone
• Standby: a situation when one streetcar is located within the zone
• Active: a situation when two streetcars are located within the zone

A flowchart diagram outlining the general operation procedure of the multiple Q-
learning agents is shown in Figure 5. For instance, if the zone is active at the first signalized
intersection, the “bunch-splitting” agent will be activated. This “bunch-splitting” agent’s
major task is to split the bunch by modifying the signal timing accordingly. On the contrary,
if the detection zone’s state is “standby”, the “headway-control” agent defined in the previous
study (Ling & Shalaby, 2003) will be activated to minimize headway deviation for this
streetcar.

11

Figure 5. The operations of the multiple Q-learning agents

The zone status in the second signalized intersection provides an indication of

whether the first intersection’s agent is effective in splitting a streetcar bunch encountered on
that intersection. A check on the zone status will be carried out. If the zone switches from a
state of non-active to standby, it clearly indicates that the upstream agent was able to split the
bunch. In this situation, the agent of this intersection is supposed to further widen the gap
between this streetcar and the following one. Strictly speaking, this target is achieved by
making use of two agents with different objectives. One agent is used to “express” the current
streetcar and the other agent is used to “hold” the following streetcar. Through the
combination of expressing the first and delaying the second streetcar, the gap between this
pair of streetcars can be widened effectively.

Conversely, if the zone (of the 2nd intersection) switches from a state of inactive to
active, it illustrates that either the first agent failed to split the bunch or the bunch formed
again within the zone of the 2nd signalized intersection. This triggers the “bunch-splitting” Q-
learning agent at the 2nd signalized intersection. Similar to the first intersection, this agent
aims to split the bunch through modifying the signal-timing plan at the current intersection.

5. Results and discussion

The multiple Q-learning agents are designed exclusively to tackle the problem of
“bunching”. Only those streetcars that arrive in bunches can be considered for the learning

12

experience for the multiple Q-learning agents. To facilitate the training process of these
multiple Q-learning agents, the agents should be exposed to an environment with enough
cases of “bunching”. The problem here is how many cases are considered enough for the
purpose of training the agents? Suppose there are 120 distinct states and for each state the
agent has on average a choice of 9 valid actions, it results in 1080 state-action pairs. In other
words, a single visit to each state-action pair requires at least 1080 cases of bunching. It
requires an unacceptable large amount of training time if streetcar bunches occurs at a rate
equals to the existing field condition. To cope with this problem, streetcar bunches were
created artificially and released into the simulated network every 5 minutes. The frequent
occurrence of these artificially created streetcar bunches can speed up the training process for
these multiple agents significantly.

The training of these multiple Q-learning agents was started with an all-zero
initialized Q-value matrix with a discount factor of 0.1 and a learning rate of 0.3. The Q-
values od each agent were monitored throughout the training period. Training is considered
complete if these Q-values show signs of convergence. After around 15,000 iterations,
convergence for most Q(s,a) values had been reached and training was completed. Simulation
was run for the period from 6:30 am to 11:30 am using the King Street network in Paramics.
Gap time within the streetcar bunch
The performance of the multi Q-learning agents in dealing with the problem of “streetcar
bunching” can be measured by tracking the gap time within the streetcar bunch over those
agent-controlled signalized intersections. During the simulation period, each occurrence of
bunching will trigger the Q-learning agents to split the bunch. At the same time, the time-
based headway will be calculated at the detector located just downstream of the stop line after
the modified signal plan is carried out.

The multi Q-learning agents have been trained under the simulated environment with
over 5000 incidents of streetcar bunching. Note that the simulation time required for the
training of the multi-agent is much more than that of the single-agent. The main reason is that
the multi-agent only performs the updating process of Q-values whenever a bunch is
encountered. This is in contrast to the single agent case where the updating process is carried
out whenever any streetcar is detected.

The gap time within the streetcar bunch measured at various locations with multiple
Q-learning agents implemented are plotted in Figure 6. The bar chart shows clearly that the
gap time within the streetcar bunch increases substantially after the activation of the first
agent responsible for splitting the bunch. The gap time continues to increase slowly with the
cooperation of the “expressing” agent and “holding” agent at the 2nd and 3rd signalized
intersection. However, the headway increases only up to about 65 sec at the 3rd downstream
intersection, which is still relatively far from the desired 120-sec line headway. This is mainly
due to the agent settings and constraints imposed in this study. For example, if the number of
agent-controlled intersections is increased beyond 3, it is expected that the headway can be
restored to a value close to the line headway. The number of additional agent-controlled
intersections can be minimized if the constraints on the green time length of the “holding”
and “expressing” agents are relaxed.

13

Figure 6 -- Variation of gap time within the streetcar bunch

Bunching reduction

In addition to measuring the gap time within the streetcar bunch along the three
signalized intersections, another way of evaluating the performance of the multi Q-learning is
to calculate the reduction in the cases of bunching. In this study, whenever two streetcars
occupied the same detection zone at the same time, we define that a bunch is formed. On a
time-based headway basis, any streetcar with less than 20 seconds of headway is also defined
as a “bunch”. By recording the total number of bunching cases before and after the activation
of the 1st, 2nd and 3rd Q-learning agents, a bar chart like Figure 7 can be plotted. From the bar
chart, the total number of streetcar bunching drops dramatically from 27 to 10 after the
activation of the first agent. As the streetcars proceed further downstream, the 2nd agent and
the 3rd agent can prevent the bunch from forming again. Moreover, these agents can further
lower the cases of bunching down to only 3 cases. Overall, this is equivalent to an 88.9 %
reduction of the total number of bunching occurred.

14

27

10

5
3

0

5

10

15

20

25

30

Before the Q-
learning agent

After the 1st
agent

After the 2nd
agent

After the 3rd
agent

Locations

C
as

es
 o

f B
un

ch
in

g

Figure 7 -- Cases of streetcar bunching observed at various signalized intersections

6. Conclusions and recommendations

The concept of Reinforcement Learning (an Artificial Intelligence approach) was
successfully applied to control transit vehicle bunching through the adaptive modification of
signal timing plan. Different elements under the context of Reinforcement Learning were
defined and set up with respect to traffic signal control operation. The “bunch-splitting” agent
was highly effective in splitting a streetcar bunch by modifying the signal-timing plan
appropriately. The gap time of the two closely spaced streetcars was widened further through
the cooperation of the “expressing” and “holding” agents. Upon the detection of a streetcar
bunch, the multiple Q-learning agents were shown to be able to split up the bunch and slowly
build up a gap between the closely spaced streetcars. The cases of bunching were reduced by
88.9 % with the aid of multiple Q-learning agents implemented over three consecutive
signalized intersections.

Although the approach and the results of this study are very promising and
encouraging, several limitations need to be addressed. In particular, further research is
required to determine the optimal number of Reinforcement Learning agents and the best
settings and constraints of each agent. Moreover, an expansion of state space information to
capture general vehicular traffic conditions on the major and minor road may further improve
the performance of the agents. It is also recommended to further investigate the optimal
location of the agent-controlled intersections along the transit corridor in order to achieve
optimal transit performance.

Ackowledgements

This research was funded by GEOIDE (Geomatics for Informed Decisions) and CITO
(Communications and Information Technology Ontario)

15

References

Abkowitz, M., Tozzi, J., 1987. Research contributions to managing transit service
reliability. Journal of Advanced Transportation, vol. 21, Spring.

Lee, J., 2001. Microsimulation Modeling and Advancement of Transit Priority Options at

Major Arterials. M.A.Sc. Thesis, Department of Civil Engineering, University of Toronto.

Ling, K., Shalaby, A., 2003. Automated Transit Headway Control via Adaptive Signal

Priority, in press, Special Issue on Modelling for Transit Operations and Service Planning,
Journal of Advanced Transportation..

Quadstone, 2000. Paramics Modeler ver 3.0 User Guide and Reference Manual.

Quadstone, 2000. Paramics Programmer ver 3.0 User Guide and Reference Manual.

Rossetti, M.D., Turitto, T., 1998. Comparing static and dynamic threshold based control

strategies. Transportation Research, part A, 32(8), 607-620.

Shalaby, A., Abdulhai, B. and Lee, J., 2003. Assessment of Streetcar Transit Priority

Options Using Microsimulation Modelling, in press, Special Issue on Innovations in
Transportation Engineering, Canadian Journal of Civil Engineering, 30(6), 1-10.

Strathman, J.G., Hopper, J.R., 1993. Empirical analysis of bus transit on-time

performance. Transportation Research, Part A, 27A(2), 93-100.

Sutton, R.S., Barto, A.G., 1998. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA.

Wilson, N.H.M., Macchi, R.A., Fellows, R.E. and Deckoff, A.A., 1992. Improving

service on the MBTA Green Line through better operations control. Transportation Research
Record 1361, 296-304.

