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Abstract 

Transit agencies often implement operations control strategies so as to mitigate the effects 
of transit vehicle bunching along transit routes. Typical control strategies include vehicle 
holding, expressing and short turning, which are usually implemented through manual means 
via field supervisors or central control centers. The objective of this study is to automate 
vehicle bunching control by means of multiple Reinforcement Learning (RL) agents that act 
on a series of successive signalized intersections. The multiple Reinforcement Learning 
agents developed in this study include the “bunch-splitting”, “holding” and “expressing” 
agents which work cooperatively to break up a vehicle bunch if one is detected and to build a 
reasonable headway between the paired vehicles. Various elements of the RL agents such as 
the action set, the reward and the state space are set up under a traffic signal control context.  
Simulation results indicated that these multiple Reinforcement Learning agents could split up 
a streetcar bunch and prevent it from forming again with a high success rate.   
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1. Background and objectives 

Bunching of transit vehicles is an undesirable operational problem that plagues many 
urban transit routes, particularly ones with high service frequencies (5-minute headways or 
less). It is usually caused by excessive delays experienced by a transit vehicle at a transit stop, 
with such delay increasing as the transit vehicle travels further downstream because of 
higher-than-average dwell times. At the same time, the next transit vehicle experiences less 
dwell times at such transit stops (due to less-than-average passengers waiting) and eventually 
it catches up with the previous transit vehicle, creating a “bunch” of the 2 vehicles which 
travel as such thereafter. Contributing factors that give rise to the bunching phenomenon 
include excessive traffic congestion, variable passenger demand, idiosyncratic driver 
behavior, transit vehicle failure, driver/passenger emergency, poor weather conditions, etc. 
Vehicle bunching causes excessive wait times for passengers, unreliable transit operations, 
uneven loading of transit vehicles, inefficient utilization of rolling stock, etc. As such, transit 
agencies often implement control strategies, usually through manual means via field 
supervisors or central control centers, in order to avoid the occurrence of vehicle bunching 
and/or to mitigate its effects if it occurs. Typical control strategies include bus holding and 
short turning (Abkowitz and Tozzi, 1987; Wilson et al., 1992). 

In a previous study, Ling and Shalaby (2003) developed an innovative approach to 
headway control of a high frequency transit route (30 streetcars per hour) by means of 
adaptive traffic signal control. A Reinforcement Learning agent was developed to modify in 
real time the traffic signal timing so as to minimize headway variability. For example, if a 
streetcar is detected upstream of an agent-controlled intersection and it is arriving earlier than 
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the schedule headway of 120 seconds from the previous transit vehicle, the agent determines 
the optimal signal time setting to “delay” the second transit vehicle at that intersection such 
that the schedule headway is restored. The single agent was shown to be effective in reducing 
headway variability and reducing the incidents of bunching. However, it cannot deal with a 
bunch if it already occurred. This paper presents an extension to this work to deal with this 
particular problem. The objective is to develop multiple Reinforcement Learning agents to 
act on a series of successive signalized intersections to break up a vehicle bunch if one is 
detected and to build a reasonable headway between the paired vehicles. 

 
2. Theory and methodology 

Ling and Shalaby (2003) provide an introductory exposition of the Reinforcement 
Learning method, which is repeated here for the benefit of the reader. Reinforcement 
Learning is one of the most active research areas in the Machine Learning and Artificial 
Intelligence community (Sutton, 1998). This method has been applied quite extensively in 
Psychology, Neuroscience, Optimal Control and Artificial Intelligence. Under this approach, 
the learner or decision maker is called the agent. The agent interacts with its environment at 
each of a sequence of discrete time steps, t = 0, 1,2, 3… (see Figure 1) At each time step t, the 
agent receives some representation of the environment state S(t). And according to the 
learned policy of the agent, a particular action A(t) is selected out of all actions available 
under that state. Roughly speaking, a policy is a mapping from perceived states of the 
environment to actions to be taken under those states. The policy is simply the “brain” of a 
Reinforcement Learning agent. One time step later, in part as a consequence of its action, the 
agent receives a numerical reward R(t) and finds itself in a new state S(t+1). The purpose or 
goal of the agent is formalized in terms of a special reward signal passing from the 
environment to the agent.  
 

 
Figure 1. Relationship between states, actions and rewards 

 
The goal of the agent can be achieved by maximizing the expected return, Rt, which is 

defined as some specific function of the reward sequence. For the simplest case, the return is 
the sum of the rewards: 

Ttttt rrrrR ++++= +++ L321  Eqn. (1)  
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Note that the magnitude of the future rewards depends on how the environment 
responds according to the future actions of the agent. Obviously, the magnitude of future 
rewards is fairly unpredictable and has a smaller relevance to the current action at. As such, it 
is more appropriate to have the agent focus more on the immediate reward than future 
rewards. A discount factor is introduced into the above equation to take this concept into 
account: 
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The discount rate, γ, is a parameter that ranges from 0 to 1. For instance, a reward 
received k time steps in the future is worth only γ k-1 times what it would be worth if it were 
received immediately. If γ equals 0, the agent will only be concerned about the immediate 
reward and totally ignores future rewards. In such a case, the agent is said to be “myopic”. 
And as γ approaches 1, the agent will give more weighting to the future rewards and becomes 
more “farsighted”. 

A state value function determines the long-term desirability of a specific state after 
taking into account the states that are likely to follow, and the rewards available in those 
states. Equation (3) expresses a recursive relationship between the value of a state, V(s) and 
the values of its successor states. 
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Solving a Reinforcement Learning problem means, roughly, finding a policy that 
achieves a lot of reward over the long run. A policy π is defined to be better than or equal to a 
policy π’ if its expected return is greater than or equal to that of π’ for all states. In other 
words, π ≥ π’ if and only if Vπ (s) ≥ Vπ’(s). The policy that is better than all other policies is 
defined as the optimal policy π*. So, the optimal state value function, V* is defined as: 
 

)s(Vmax)s(V * π

π
=  Eqn (4) 

 
Notice that in Eqn (3), the determination of state value requires a complete set of state 

transition probabilities and expected rewards. Under a deterministic environment, the 
transition probabilities and expected reward values are fixed and can be obtained through a 
perfect model of the environment. However, under a stochastic environment like a 
transportation system, these values are variable and cannot be estimated. Thus, instead of 
estimating the state value function directly, we adopt the approach of Q-learning, which is 
having the agent to learn the action value, Q(s,a) directly. The action value, Q(s,a) is the 
reward received immediately upon executing action a from state s, plus the value of 
following the optimal policy thereafter.  

)'s(V)a,s(r)a,s(Q *γ+=  Eqn (5) 
 

Now, the key problem is finding a reliable way to estimate values for Q, given only a 
sequence of immediate rewards r spread out over time. This can be accomplished through 
iterative approximation. Notice the close relationship between Q and V*,  
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Rewriting Eqn (5) gives rise to, 

)'a,'s(Qmax)a,s(r)a,s(Q
'a

γ+=  Eqn (7) 

 
The right hand side of the equation is a target presumed to indicate a desirable 

direction in which to move, though it may be noisy. The iterative approximation of Q(s, a) 
can be illustrated by the following equation, 

e]OldEstimatTarget[StepSizeeOldEstimateNewEstimat −+←  Eqn (8) 
 
Substituting Eqn (7) into the target of Eqn (8) gives,  

)]a,s(Q)'a,'s(Qmax)a,s(r[)a,s(Q)a,s(Q
'a
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The Q-value, or Q(s, a), is normally referred to as the action value function. The 

discount factor γ controls the relative contribution of future rewards (obtained from the next 
state) to immediate rewards. As γ approaches 1, the future rewards will be given greater 
emphasis and the agent is more farsighted. The difference between the target and old 
estimates is in fact an error term in the estimate. Adjustment of the old estimate is 
implemented by taking a step toward the “Target”. In fact, the value of step size, α is 
equivalent to the learning rate of the Q-learning agent. A large step size allows the agent to 
identify the action that happens to be the optimal one with a shorter training time. However, 
the tradeoff is that the state-action pair Q-values will fluctuate a lot and may encounter 
problems in reaching convergence.     

Initially, the Reinforcement Learning agent has no knowledge on what actions to 
perform under different situations that help to achieve the goal. There is no teacher or 
supervisor to guide the behavior of the autonomous agent. When the agent is placed in a 
particular situation, it must carry out the best action according to its own experience.  

The environment then responds to the agent’s action by returning a reward or penalty 
and brings the agent to a new state. Through out this kind of interaction with the 
environment, the agent gradually learns how to differentiate between “good” and “bad” 
actions under different situations. The repetitive process of carrying out expected good 
actions and achieving positive feedback under a particular situation acts like a “positive 
reinforcement”. The agent can use its experience to improve its performance over time.  

A major feature of Reinforcement Learning is the trade-off between exploration and 
exploitation. In order to accumulate a lot of rewards in the long run, the agent must select an 
action that is estimated to have the highest “value” among the possible actions. In this sense, 
the agent exploits what it already knows in order to obtain more rewards. Note that the 
“value” of the selected action may not actually be the highest one since it is only an 
estimation made by the agent based on its current knowledge. Therefore, it is beneficial for 
the agent to try occasionally other possible actions so that previously missed out actions 
which might be good ones are explored. In other words, the agent is exploring in the hope of 
making a better action selection in the future.   
 
3. The testbed 

The 504 King streetcar route corridor in Downtown Toronto was selected as the testbed 
for this study. This is one of the most heavily used public transit routes in Toronto (nearly 
50,000 passengers per day). The route is operated with a very high frequency of 30 streetcars 
per hour and consists of a total of 114 streetcar stops. About 100 of these stops are located 
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10-15 meters before the signalized intersection (i.e. near-sided transit stops). The end-to-end 
trip time is approximately 60 minutes. 

Currently, unconditional priority for streetcars is implemented at most signalized 
intersections along the King Streetcar Route. Once detected by an upstream detector, each 
streetcar is granted signal priority (green extension or red truncation) until it clears the 
intersection (i.e. passes a downstream detector) or a maximum extension is reached. Because 
most transit stops are near-sided, streetcars have to stop for loading/unloading passengers 
before clearing the intersection. The streetcars travel along the left lane of King St., and when 
stopped for loading/unloading passengers, traffic in the right lane is required to stop by law. 

Although transit speed has improved following implementation of the above priority 
scheme, the high frequency route (30 streetcars per hour) has been experiencing poor 
reliability in terms of deviation from the planned headway. In addition, the magnitude of 
headway deviation tends to increase as streetcars travel further downstream. Thus, the 
problem of “streetcar bunching” still exists.    

The microscopic traffic simulation software Paramics (Quadstone, 2000) was used to 
model the entire King St. corridor including its crossroads (Lee, 2001). The geometric layout 
of the road network was built according to the Toronto Centerline data. The traffic demand 
volumes were encoded into the network using data from the Transportation Tomorrow 
Survey conducted in 1996 in the Greater Toronto Area. The developed network has been 
tested in a previous research project (Shalaby et al., 2003) and results indicate its high 
accuracy in replicating the real traffic and transit operations taking into account the 
interaction between traffic signals, streetcars and the general traffic. A plug-in program that 
contains the source code of the Reinforcement Learning algorithm was imported into 
Paramics as an Application Programming Interface (API) to test the performance of the 
proposed algorithm. 
 
4. Application of multiple q-learning agents 

In a previous study (Ling & Shalaby, 2003) the single Q-learning agent demonstrated 
its capability of reducing streetcar’s headway deviation. The improvement in the streetcar’s 
reliability performance is most obvious for cases with mild degree of headway deviation. 
However, streetcars with extremely high headway deviation cannot be handled properly by 
implementing the agent on one single signalized intersection. Consider, for example, two 
streetcars with headway of 10-20 seconds between them arriving together at the Q-agent 
controlled intersection. Ideally, the agent should build up the gap between these two 
“bunching” streetcars and recover to the scheduled headway. Unfortunately, this can hardly 
be done properly by making use of only one Q-learning agent controlled intersection, because 
the phase length is under constraints of certain practical maximum and minimum values.  

On the other hand, if the Q-learning agent can be implemented over several 
consecutive signalized intersections, we can expect that the gap between the “streetcars 
bunch” builds up slowly as it travels through these intersections until a reasonable headway 
can be achieved. This study develops three different types of Q-learning agents, namely the 
“bunch-splitting” agent, the “holding” agent and the “expressing” agent. Each agent has its 
own state space, action scheme, action domain, reward scheme and local level objective. 
Despite the fact that these multiple agents have slightly different objectives, the 
combinatorial effect of those actions carried out by the multiple agents ensures the ultimate 
goal of mitigating the bunching problem. 
Selection of location 

Previous literature [Rossetti et al.,1998; Strathman et al.,1993]  has pointed out that the 
fluctuating demand at transit stops is one of the major factors that contribute to the 
deterioration of performance and reliability for a transit route. It also implies that the smaller 
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the number of transit stops in between consecutive Q-learning agent controlled signalized 
intersections, the smaller the uncertainties (randomness factor) being introduced into the 
problem. Therefore, multiple consecutive signalized intersections with a minimum number of 
transit stops in between them is more suitable to be selected as a testbed for the multiple Q-
learning agents.   In this study, the number of signalized intersections required for the multi 
Q-learning agent is arbitrarily set to three. The optimal number of signalized intersection to 
implement the algorithms will be of great interest in future research.  

According to the simulated King St route, the following three signalized intersections 
were found to match the above selection criteria: 

 King & Bay 
 King & Yonge 
 King & Church 

Therefore, the above intersections were selected as the testbed for the multiple Q-
learning agents of this study. Since the agents applied to these signalized intersections work 
together to achieve a common goal, the intersections of Bay, Yonge and Church will 
henceforth be named as the 1st, 2nd and 3rd intersection, respectively.  
The state space 

It is crucial for the state variables to capture all the necessary information relevant to the 
situation and be useful in aiding the agents to make the best decision. In developing he single 
Q-Learning agent (Ling and Shalaby, 2003), it was found that a state space based on the 
following pieces of information was quite effective: the current status of the signal phase and 
the transit vehicle’s current headway. As such, the same state space definition was used for 
each of the three agents of this study. 

It is noteworthy that the training time of the agent increases exponentially with the 
increase in the total number of states. For the agent to learn at an acceptable rate, a discrete 
state space is adopted as opposed to a continuous one. The number of data types fed to the 
agent determines the dimensions of the state space matrix. For the “bunch-splitting” agent, 
the signal cycle is divided into 20 intervals and the gap time among the bunch is categorized 
into 6 ranges. A two-dimensional matrix (a total of 120 states) is formed as shown in Table 1.  

 

Table 1. State space scheme of the “Bunch-Splitting" agent 

 
For example, if the signal is running at 17 seconds into the East-West Green phase 

and the gap time among the bunch is 15 seconds at the moment when the streetcar bunch is 
detected within the zone of detection, the algorithm will inform the agent a state number of 
34. A flowchart that clearly shows the flow of information in the state number determination 



 

7

process is depicted in Figure 2. For the “holding” agent and the “expressing” agent, the state 
space numbering scheme also utilize the elapsed time of the current signal phase and the 
headway of the current streetcar. The only difference is that the headway information is 
categorized into increments of 7 seconds (from 0-63+ seconds) and 12 seconds (from 0-120+ 
seconds) for the “holding” and “expressing” agents, respectively.  

These agents have the capability of learning the passenger service time at the near-
sided transit stop located within the detection zone. Under such a high frequency transit route, 
passengers are assumed to arrive at the transit stop randomly and uniformly. For instance, a 
streetcar with a long headway (late run) can expect to have a longer service time at the stop 
and vice versa. After an adequate number of revisits under a certain state, the agent starts to 
learn the expected service time at the stop under a particular headway. Even if there is a 
change in passenger demand profile, the agent is still able to capture its effect and readjust 
itself because of the life-time updating process of Q-values.    
 
 

 
Figure 2. State space information flow diagram 
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The actions 
Under the context of Reinforcement Learning, the agent is supposed to be trained 

until it can select consistently the best action among all available ones under a specific state 
most of the time. The actions performed should be able to alter the state of the environment 
and a reward is granted after the action is carried out.  

A signal cycle can roughly be separated into the transit corridor split (EW-bound) and 
the crossroad split (NS-bound). Each split can further be divided into two portions, which are 
displayed green time and clearance time (amber & all-red). The agent is allowed to modify 
the displayed green time portion of any split but not the clearance time. The clearance time 
will remain fixed at the existing value for traffic safety reasons. 

In this study, the agent will only be activated whenever a streetcar is detected within 
the detection zone. Once the agent is activated, it is expected to modify the current signal 
timing accordingly. If the agent is activated while at the displayed green time portion of the 
cycle, the choice of action under different states is simply a duration period (in units of 
seconds) applied to the currently running phase from this moment on (Figure 3). On the other 
hand, if it is activated while at the clearance time portion, the duration period determined will 
be applied to the following phase.  
 

 
Figure 3. Action set of the reinforcement learning agent 

 
Practical signal plan constraints & action domain 

Although the Q-learning agent can learn the optimal policy to minimize the headway 
deviation, it may run into the risk of giving a too long or too short green time & red time for 
the transit corridor. Therefore, we have to impose some constraints on the choices of actions 
by specifying the maximum and minimum green time.  Specifically, the domain of actions 
should be different under different elapsed times of the current signal phase running. 
Although each agent has a slightly different action domain, the basic idea is the same.  The 
agent is set up in such a way that the proposed action will always check against the actions 
domain table before a final decision is made. For instance, the “tick” or “cross” mark besides 
each action in Figure 3 informs the agent whether the action selected is valid or not at that 
instant.    
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The rewards 
As mentioned earlier, the agent always attempts to maximize its reward. If the agent is 

desired to perform some operation, a corresponding reward has to be provided in such a way 
that in maximizing it the agent will achieve the desired goal. The reward of the “bunch-
splitting” agent is defined as the gap time between this pair of bunching streetcars measured 
at the downstream detector of the corresponding signalized intersection. As mentioned 
earlier, the agent achieves its goal by accumulating a lot of rewards in the long run. Thus, if 
the agent can continuously select those actions which lead to a large gap time within the 
streetcar bunch after the modified signal plan is carried out, the objective of splitting the 
bunch is achieved. 

The reward of the “expressing” agent is the negative of the time required to travel 
through the road section between the upstream and downstream detectors. Since the agent 
always favors actions that give rise to a good reward (in this case, a less negative number), 
the actions which lead to the shortest travel time has the largest chance of being selected. By 
the same token, the reward for the “holding” agent can almost be defined as the opposite of 
the “expressing” agent. The reward is equivalent to the time required to travel the road 
segment between the upstream and downstream detectors. Through maximizing the reward, 
the “holding” agent is likely to select the actions which can effectively stop the 2nd streetcar 
from catching up with the first one again. 

 These agents will learn from interaction with the environment and find the best way 
to accomplish the task. It is thus critical that the rewards be set up to indicate what we want to 
accomplish.  

 
The Q-values updating process 

The Q-value updating process is shown in a flowchart (Figure 4). In this study, an ε-
greedy policy is employed to guide the behavior of the agent. Generally speaking, the agent 
selects an action that has maximum estimated Q-values most of the time, but with a 
probability ε it selects an action at random. Suppose ε is 0.15, then the agent will select an 
action with the highest estimated Q-value (under the encountered state) with an 85% chance. 
In other words, at around 15 % of the time, the agent will select an action randomly.  

This ε-greedy policy is highly important during the training process of the Q-learning 
agent. In the initial stages of training, we want the agent to explore the environment and try 
out as many different actions as possible. Thus, the ε value should be given a higher value. 
Throughout this kind of interaction with the environment, the agent slowly builds up the 
knowledge required to differentiate between good and bad actions. After enough exploration 
is carried out, the estimated Q-value matrix is expected to capture the long-term desirability 
of each state-action pair (the true “Q-value”) fairly well. From that moment, the ε value will 
be set to a smaller value aiming to have the agent exploits what it already knows in order to 
obtain more rewards. However, the low ε value will still enable the agent to continue 
exploring various actions occasionally, which is a useful process if the operating conditions 
in the field (traffic levels, demand patterns, etc.) change over time. 
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Figure 4. The Q-values updating process 

 
A unified view 

As mentioned earlier, three consecutive signalized intersections were used to implement 
the multiple Q-learning agents. Each intersection has an upstream detector located around 
100 m upstream of the stop line and a downstream detector located just downstream of the 
stop line. The roadway in between the upstream and downstream detectors is considered as a 
detection zone. The zone can be in one of the following three states: 

• Non-active: a situation when no streetcar is located within the zone 
• Standby: a situation when one streetcar is located within the zone 
• Active: a situation when two streetcars are located within the zone 

A flowchart diagram outlining the general operation procedure of the multiple Q-
learning agents is shown in Figure 5. For instance, if the zone is active at the first signalized 
intersection, the “bunch-splitting” agent will be activated. This “bunch-splitting” agent’s 
major task is to split the bunch by modifying the signal timing accordingly. On the contrary, 
if the detection zone’s state is “standby”, the “headway-control” agent defined in the previous 
study (Ling & Shalaby, 2003) will be activated to minimize headway deviation for this 
streetcar. 
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Figure 5. The operations of the multiple Q-learning agents 

 
The zone status in the second signalized intersection provides an indication of 

whether the first intersection’s agent is effective in splitting a streetcar bunch encountered on 
that intersection. A check on the zone status will be carried out. If the zone switches from a 
state of non-active to standby, it clearly indicates that the upstream agent was able to split the 
bunch. In this situation, the agent of this intersection is supposed to further widen the gap 
between this streetcar and the following one. Strictly speaking, this target is achieved by 
making use of two agents with different objectives. One agent is used to “express” the current 
streetcar and the other agent is used to “hold” the following streetcar. Through the 
combination of expressing the first and delaying the second streetcar, the gap between this 
pair of streetcars can be widened effectively.  

Conversely, if the zone (of the 2nd intersection) switches from a state of inactive to 
active, it illustrates that either the first agent failed to split the bunch or the bunch formed 
again within the zone of the 2nd signalized intersection. This triggers the “bunch-splitting” Q-
learning agent at the 2nd signalized intersection. Similar to the first intersection, this agent 
aims to split the bunch through modifying the signal-timing plan at the current intersection.  
 
5. Results and discussion 

The multiple Q-learning agents are designed exclusively to tackle the problem of 
“bunching”. Only those streetcars that arrive in bunches can be considered for the learning 
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experience for the multiple Q-learning agents. To facilitate the training process of these 
multiple Q-learning agents, the agents should be exposed to an environment with enough 
cases of “bunching”. The problem here is how many cases are considered enough for the 
purpose of training the agents? Suppose there are 120 distinct states and for each state the 
agent has on average a choice of 9 valid actions, it results in 1080 state-action pairs. In other 
words, a single visit to each state-action pair requires at least 1080 cases of bunching. It 
requires an unacceptable large amount of training time if streetcar bunches occurs at a rate 
equals to the existing field condition. To cope with this problem, streetcar bunches were 
created artificially and released into the simulated network every 5 minutes. The frequent 
occurrence of these artificially created streetcar bunches can speed up the training process for 
these multiple agents significantly.  

The training of these multiple Q-learning agents was started with an all-zero 
initialized Q-value matrix with a discount factor of 0.1 and a learning rate of 0.3. The Q-
values od each agent were monitored throughout the training period. Training is considered 
complete if these Q-values show signs of convergence.   After around 15,000 iterations, 
convergence for most Q(s,a) values had been reached and training was completed. Simulation 
was run for the period from 6:30 am to 11:30 am using the King Street network in Paramics.  
Gap time within the streetcar bunch  
The performance of the multi Q-learning agents in dealing with the problem of “streetcar 
bunching” can be measured by tracking the gap time within the streetcar bunch over those 
agent-controlled signalized intersections. During the simulation period, each occurrence of 
bunching will trigger the Q-learning agents to split the bunch. At the same time, the time-
based headway will be calculated at the detector located just downstream of the stop line after 
the modified signal plan is carried out.  

The multi Q-learning agents have been trained under the simulated environment with 
over 5000 incidents of streetcar bunching. Note that the simulation time required for the 
training of the multi-agent is much more than that of the single-agent. The main reason is that 
the multi-agent only performs the updating process of Q-values whenever a bunch is 
encountered. This is in contrast to the single agent case where the updating process is carried 
out whenever any streetcar is detected.  

The gap time within the streetcar bunch measured at various locations with multiple 
Q-learning agents implemented are plotted in Figure 6. The bar chart shows clearly that the 
gap time within the streetcar bunch increases substantially after the activation of the first 
agent responsible for splitting the bunch. The gap time continues to increase slowly with the 
cooperation of the “expressing” agent and “holding” agent at the 2nd and 3rd signalized 
intersection.   However, the headway increases only up to about 65 sec at the 3rd downstream 
intersection, which is still relatively far from the desired 120-sec line headway. This is mainly 
due to the agent settings and constraints imposed in this study. For example, if the number of 
agent-controlled intersections is increased beyond 3, it is expected that the headway can be 
restored to a value close to the line headway. The number of additional agent-controlled 
intersections can be minimized if the constraints on the green time length of the “holding” 
and “expressing” agents are relaxed. 
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Figure 6 -- Variation of gap time within the streetcar bunch 

 
Bunching reduction 

In addition to measuring the gap time within the streetcar bunch along the three 
signalized intersections, another way of evaluating the performance of the multi Q-learning is 
to calculate the reduction in the cases of bunching. In this study, whenever two streetcars 
occupied the same detection zone at the same time, we define that a bunch is formed. On a 
time-based headway basis, any streetcar with less than 20 seconds of headway is also defined 
as a “bunch”.  By recording the total number of bunching cases before and after the activation 
of the 1st, 2nd and 3rd Q-learning agents, a bar chart like Figure 7 can be plotted. From the bar 
chart, the total number of streetcar bunching drops dramatically from 27 to 10 after the 
activation of the first agent. As the streetcars proceed further downstream, the 2nd agent and 
the 3rd agent can prevent the bunch from forming again. Moreover, these agents can further 
lower the cases of bunching down to only 3 cases. Overall, this is equivalent to an 88.9 % 
reduction of the total number of bunching occurred.        
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Figure 7 -- Cases of streetcar bunching observed at various signalized intersections 

 
6. Conclusions and recommendations 

The concept of Reinforcement Learning (an Artificial Intelligence approach) was 
successfully applied to control transit vehicle bunching through the adaptive modification of 
signal timing plan. Different elements under the context of Reinforcement Learning were 
defined and set up with respect to traffic signal control operation. The “bunch-splitting” agent 
was highly effective in splitting a streetcar bunch by modifying the signal-timing plan 
appropriately. The gap time of the two closely spaced streetcars was widened further through 
the cooperation of the “expressing” and “holding” agents. Upon the detection of a streetcar 
bunch, the multiple Q-learning agents were shown to be able to split up the bunch and slowly 
build up a gap between the closely spaced streetcars. The cases of bunching were reduced by 
88.9 % with the aid of multiple Q-learning agents implemented over three consecutive 
signalized intersections.  

Although the approach and the results of this study are very promising and 
encouraging, several limitations need to be addressed. In particular, further research is 
required to determine the optimal number of Reinforcement Learning agents and the best 
settings and constraints of each agent. Moreover, an expansion of state space information to 
capture general vehicular traffic conditions on the major and minor road may further improve 
the performance of the agents. It is also recommended to further investigate the optimal 
location of the agent-controlled intersections along the transit corridor in order to achieve 
optimal transit performance. 
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