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Abstract 

The objectives of this paper are to model the effect of providing different types and levels 
of ATIS on; (1) Drivers’ diversion from habitual route while information is provided, (2) 
Drivers’ compliance with a pre-trip advised route, and (3) Driver’s compliance with en-route 
short-term traffic information. A travel simulator was used as a dynamic data collection tool. 
The simulator uses realistic network, real historical volumes, and different weather 
conditions. It provides five different types and levels of traffic information/advice, one at a 
time, and collects dynamic pre-trip and en-route route choices. The Generalized Extreme 
Equations (GEE) technique was used to account for correlation between repeated choices 
made by the same subject. The modeling results showed that travel time and familiarity with 
the device that provides the information had significant effects in the three models. 
Expressway users are shown as the most travel-time savers who would divert if they are 
guided to less-travel-time alternative. Number of traffic signals on the normal route and 
advised route affect diversion from the normal route and compliance with pre-trip advised 
routes. The paper presents a detailed assessment of ATIS on travel decisions. 
 
Keywords: ATIS; Advised route; Normal route; Link choice; Repeated observations; GEE 
Topic Area: D6 Travel and Shipper Behaviour Research 
 
1. Introduction 

Advanced Traveler Information Systems (ATIS) have gained wide acceptance among 
researchers and practitioners as a promising technology for improving traffic performance. In 
order to evaluate the benefits of ATIS, drivers’ accessing and benefiting from traffic 
information/advice provided must be fully understood. The objective of this paper is to 
understand the effect of providing different types and levels of traffic information/advice to 
travelers on different route choice paradigms; (1) modeling drivers’ diversion from normal 
route, (2) modeling drivers’ compliance with pre-trip advised route, and (3) modeling 
driver’s compliance with en-route short-term (link) traffic information choice. 
 The simulator OTESP (Abdel-Aty and Abdalla, 2002) was used to collect dynamic 
route choices under ATIS. OTESP is an interactive windows-based computer simulation tool. 
It simulates commute home-to-work morning trips. A realistic 25-node and 40-link urban 
network from Orlando was used. The network has a fixed origin-destination pair and 
comprises different types of highways. It includes two toll expressways, 6-lane and 4-lane 
principle arterials, 4-lane and 2-lane minor arterials, and local collectors. OTESP’s code was 
fed with real historical traffic volumes. OTESP provides different levels of traffic 
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information to the subjects in five different scenarios (levels of information) including: no 
information (scenario #1), pre-trip information without and with advice (scenarios #2 and #3, 
respectively), and en-route information (in addition to the pre-trip information) without and 
with advice (scenarios #4 and #5, respectively). During the actual experiment, OTESP 
presents ten simulated days (two days for each scenario). The first 5 trial days of each subject 
are run under scenarios #1 to 5, respectively, and named “first-trial-days”. Similarly, the last 
5 trial days are run under scenarios #1 to 5, respectively, and named “last-trial-days”. There 
is no difference in the travel time computations across the scenarios. The differences between 
the five scenarios are only in the level of the information/advice provided to subjects and 
whether they are pre-trip or en-route. OTESP also provides three different weather conditions 
(clear sky, light rain, and heavy rain). The simulator accounts for delays caused by 
intersections, recurring congestion, non-recurring congestion (incident), queuing at toll 
plazas, and weather condition effects. The Moore’s shortest path algorithm (Pallottino et al., 
1998) has been employed in the code of OTESP to determine the travel-time-based shortest 
path, which is introduced as advice to the subjects in scenarios 3 and 5. A four-table database 
is created to capture all the information/advice provided and the traveler decisions. For 
detailed design and description of the simulator, the reader is referred to Abdel-Aty and 
Abdalla (2002).  
 In OTESP, which provides animation capabilities, the subject has the ability to move 
his/her vehicle on different segments of the network using the computer’s mouse. When 
approaching any node (intersection), the subject is required to make a decision on selecting 
the following link. At the beginning of each trial day, the subject is provided with the current 
travel-time for the two bus routes and that of the shortest-path on the network in case of 
driving. OTESP is unique in its ability to collect dynamic data for different route choice 
paradigms. First, before starting the actual experiment, OTESP presents a Normal-Route 
form in which the subject is required to provide his/her normal link-by-link route on a 
morning-week-day trip from the origin (assumed home) to the destination (assumed work) in 
normal conditions and with no information provided. This can be used to model drivers’ 
diversion from normal routes. Second, scenarios 3 and 5 of OTESP present an advised route 
from the origin to the destination, based on a shortest path algorithm. This can be used to 
model drivers’ compliance with an advised pre-trip route. Finally, scenarios 4 and 5 of 
OTESP provide en-route short-term (link) information which dynamically changes every 
time the subject reaches an intersection, the link information is provided in a quantitative and 
qualitative forms. This can be used to model drivers’ compliance with en-route short-term 
traffic information.  
 The statistical problem of repeated observations arose in this study because each 
subject made multiple choices. These choices are correlated. This correlation must be taken 
into account. Otherwise, the model would underestimate the standard errors of the modeling 
effects (Stokes et al., 2000). In this paper the correlation between repeated choices was taken 
care of by using the Generalized Extreme Equations with binary probit link function. 
 
2. Background 
2.1. Benefits of ATIS 

A considerable number of studies have examined the potential benefits of providing 
pre-trip and en-route real-time information to travelers. Researchers are interested in the 
effects of ATIS on all types of travel decisions. ATIS is empirically shown to result in 



 

3

reducing travel time, congestion delays, and incident clearance time (Wunderlich, 1996; 
Abdel-Aty et al., 1997; Sengupta and Hongola, 1998). There is empirical evidence 
supporting the hypothesis that travelers alter their behavior in response to ATIS (Bonsall et 
al., 1991; Zhao et al. 1996; Mahmassani and Hu, 1997; Vaughn et al., 1995). Reiss et al. 
(1991) have reported travel time savings ranged from 3% to 30% and reduction in incident 
and congestion delays of up to 80% for impacted vehicles. However, other studies argued 
that providing information might not necessarily reduce congestion (Arnott et al., 1990). 
  
2.2. Route choice and switching under ATIS 

Pre-trip and en-route route switching is a direct response to ATIS. Network 
conditions, travel time, travel time variability, delays associated with congestion and 
incidents, and traveler attributes are significant determinants of route choice (Spyridakis et al., 
1991; Adler et al., 1993; Mannering et al., 1994; Abdel-Aty et al., 1995a, b, 1997). Some 
studies proved that information provision induces greater switching in route choice behavior 
(Mahmassani et al., 1990; Conquest et al., 1993; Abdel-Aty et al., 1994a). For example, 
Conquest et al. (1993) reported that 75% of commuters change either departure time or route 
in response to information. Liu and Mahmassani (1998) concluded that travelers were more 
likely to change route when their current choice would cause them to arrive late. They also 
concluded that drivers exhibited some inertia in route choice, requiring travel time savings of 
at least one minute on the alternative route. 
 
2.3. Drivers’ familiarity with the network and diversion from habitual route 

Polydoropoulou et al. (1996) and Khattak et al. (1996) concluded that drivers exhibit 
some inertia for using their habitual route, especially for home-to-work trips. Polydoropoulou 
et al. (1996) found that drivers are more likely to divert to another route when they first learn 
of a delay before the trip. Drivers are less likely to divert during bad weather, as alternative 
routes might be equally slow. Prescriptive information greatly increases travelers’ diversion 
probabilities, although similar diversion rates are attainable by providing real-time 
quantitative or predictive information about travel times on usual and alternative routes. The 
authors suggested that drivers would prefer to receive travel time information and make their 
own decisions. Abdel-Aty et al. (1994b) showed that ATIS has a great potential in 
influencing commuters' route choice even when advising a route different from the usual one. 

It is also shown that traffic information should be provided with alternative route 
information as well. Streff and Wallace (1993) reported differences in information 
requirements between commuting, non-commuting trips, and trips in an unfamiliar area. 
Khattak et al. (1996) found that travelers who are unfamiliar with alternative routes are 
particularly unwilling to divert. This conforms with the study of Kim and Vandebona (2002), 
which concluded that drivers who are familiar with alternative routes have a high propensity 
to change their pre-selected routes. However, accurate quantitative information might be able 
to overcome this behavioral inertia. Further, the commuters were generally willing to comply 
with advice from a prescriptive ATIS (Khattak et al., 1996; Lotan, 1997). Adler and McNally 
(1994) found that travelers who are familiar with the network are less likely to consult 
information. Bonsall et al. (1991) found that user acceptance declined with decreasing quality 
of advice in an unfamiliar network. As familiarity with the network increased, drivers were 
less likely to accept advice from the system. However, Allen et al. (1991) found that 
familiarity does not affect route choice behavior.  
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2.4. Travelers’ characteristics and ATIS 
Recognizing the nature of ATIS information in dynamic environments, some analysts 

argued that trip choice decisions are based not only on objective information supplied by 
ATIS, but also on subjective information as perceived by travelers (Ben Akiva et al., 1991; 
Zhao et al., 1996). For example, Mehndiratta et al. (2000) proved that interest in travel 
information is a function of complex travel behavior, demographics, attitudinal 
characteristics, and technology interest related factors. Khattak et al. (1993) concluded that 
commuters’ diversion behavior varied with their personal characteristics and the 
characteristics of the trip they were making at the time when the choice arose. Mahmassani 
and Chen (1993) concluded that there is no clear measure of information effect on travelers 
that is independent of user choice behavior, prevailing traffic conditions, and network 
interactions. Conquest et al. (1993) noted that commuters provided with information from 
ATIS could be classified as route changers, route and time changers, non-changers, and pre-
trip changers. Polak and Jones (1995) found that traffic information use depends on a range 
of personal, travel related and contextual factors. 

These observations reinforced the need to model judgment processes of travelers 
under ATIS. Abdel-Aty et al. (1994a) mentioned that women tend to listen to pre-trip 
information, while more men receive en-route information. Freeway users who perceive 
heavy congestion on their route are more likely to receive pre-trip information. Only 15 
percent of the commuters use more than one route to work; these people tend to have high 
income. The authors estimated a negative correlation between pre-trip information users and 
use of multiple routes. The correlation between en-route information users and use of 
multiple routes was insignificant. Pre-trip and en-route information usage have a positive 
influence on the number of route changes. Those who use pre-trip information are likely to 
make more route changes. Khattak et al. (1995) concluded that males or wealthier drivers are 
more likely to switch from the usual route if congested. Vaughn et al. (1995) found that male 
and less experienced drivers are more likely to agree with traffic advice. Viswanathan et al. 
(2000) showed that technology use influences travel decision-making in different ways for 
three analyzed stages of travel; before leaving home, en-route, and returning home. They 
concluded that the stated action taken by travelers is also influenced by personal and 
household factors. Viswanathan et al. (2000) used information technology use as predictors 
for traveler decision-making behavior but did not explore factors affecting information 
access and use. Some researchers indicated that drivers personal characteristics do not affect 
route choice process. For example, Abdel-Aty et al. (1997) found that gender was the only 
significant socioeconomic factor in the route choice process. Mahmassani et al. (2000) 
indicated that gender, age (greater than 40), level of education (with college degree) and high 
income (greater than $50,000) are not statistically significant in explaining route switching.  
 Based on the above review, it is clear that research directed at investigating decision 
processes underlying route choice paradigms is not sufficiently understood. The literature is 
in need to a study that provides most of the previously discussed factors in one analysis and 
collects different route choices from the same subjects. The analysis presented in this paper 
studies how routes choices are affected by travelers’ socioeconomics, driving experience, 
driver’s familiarity with pre-trip/en-route traffic information, the existence of five different 
levels of ATIS, different weather conditions, familiarity with the network, familiarity with 
the device that provides the information (the learning effect), number of traffic signals, the 
travel time, and routes characteristics.  
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 Moreover, most related analyses, with few exceptions, ignored the correlation 
between repeated decisions made by the same traveler. It has been concluded also that there 
is a need for more efficient and statistically approved methodologies to handle this problem, 
which may bias the results. Gopinath (1995) demonstrated that different model forecasts 
result when heterogeneity of travelers is considered. Delvert (1997) argued that models of 
travel behavior in response to ATIS must address heterogeneity in behavior. If correlation is 
ignored by using a model that is too simple, the model would underestimate the standard 
errors of the modeling effects (Stokes et al., 2000). In this paper, GEE is used and different 
correlation structures are tried to account for correlation between repeated choices.  
 
3. Methodology: Generalized estimating equations 

Generalized Estimating Equations (GEEs) provide a practical method with reasonable 
statistical efficiency to analyze discrete and correlated data. GEEs were introduced by Liang 
and Zeger (1986) as an extension of the Generalized Linear Models (GLM), which are 
extension of traditional linear models (Nelder and Wedderburn, 1972). The GEE 
methodology models a known function of the marginal expectation of the dependent variable 
as a linear function of the explanatory variables. With GEE, the analyst describes the random 
component of the model for each marginal response with a common link and variance 
function, similar to what happens with a GLM model. However, Unlike GLMs, GEEs 
account for the covariance structure of the repeated measures. This covariance structure 
across repeated observations is managed as a nuisance parameter. 
 The GEE methodology provides consistent estimators of the regression coefficient 
and their variances under weak assumptions about the actual correlation among a subject’s 
choices. The GEE method relies on the independence across subjects to consistently estimate 
the variance of the proposed estimators even when the assumed working correlation structure 
is incorrect. In GEEs, the analyst has to specify and feed the model with a correlation 
structure (in the form of a symmetric matrix) for every subject in estimating the covariance 
of the parameter estimates. For simplicity, one form for the correlation matrix is specified for 
all subjects. Different structures for the correlation matrix can be used. Liang and Zeger 
(1986), Zeger et al. (1988) and Liang et al. (1992) provide further details on the GEE 
methodology.  
 
3.1. Modeling correlation in GEEs 

Suppose a number of ni choices are made by subject i, total number of subjects is K, 
and yij denotes the jth response from subject i. There are 

1

K

i
i

n
=
∑ total choices (measurements). 

Let the vector of choices made by the ith subject be Yi = (yi1,…, yini)’ and let Vi be an estimate 
of the covariance matrix of yi. Let the vector of explanatory variables for the jth choice on the 
ith subject be Xij = (xij1. .. , xijp)’. 
 The GEEs for estimating the (1 x p), where p is the number of regression parameters, 
vector of regression parameters β is an extension of the independence estimating equation to 
correlated data and is given by 
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Since g(µij) = xij’ β, the p x ni matrix of partial derivatives of the mean with respect to 
the regression parameters for the ith subject is given by 
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3.2. Working correlation matrix 

Let Ri(α) be an ni x ni "working" correlation matrix that is fully specified by the vector 
of parameters α (the correlation between any two choices). The (j, k) element of Ri(α) is the 
known, hypothesized, or estimated correlation between yij and yik. The covariance matrix of Yi 
is modeled as  

( )
1 1
2 2

i i iV A R Aφ α=  (4)

Where: 
Ai is an ni x ni diagonal matrix with v(µij ) as the jth diagonal element.  
φ  is a dispersion parameter and is estimated by  

2

1 1

1 inK

ij
i j

e
N p

φ
= =

=
− ∑∑

)
,  

1

K

i
i

N n
=

=∑  (5)

 
R is the working correlation matrix. It is the same for all subjects, is not usually known and 
must be estimated. It is estimated in the iterative fitting process using the current value of the 

parameter matrix β to compute appropriate functions of the Pearson residual 
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If Ri(α) is the true correlation matrix of Yi, then Vi is the true covariance matrix of Yi. If the 
working correlation is specified as R=I, which is the identity matrix, the GEE reduces to the 
independence estimating equation. Four different structures for the working correlation 
matrix are used:  
 
1- Independent R, it assumes independence between the repeated choices within a subject 

1
( , )

0ij ik
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j k
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2- Exchangeable R, it makes constant the correlations between any two choices within a 

subject.  
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3- Auto-regressive R (AR-1), it weighs the correlation within two choices by their separated 

distance (order of choice). As the distance increases the correlation decreases. 
)
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4- Unstructured R, it has ( 1) / 2i in n − parameters to be estimated. It assumes different 

correlation between any two choices within a subject. 
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It is worth mentioning that the criteria for assessing goodness of fit do not apply to 

the GEE (SAS/STAT, 2003). In this paper, comparing the expected vs. the actual results was 
used to compare the four correlation structures.  
 
4. Subjects recruitment  

Subjects were recruited based on an experiment to guarantee the inclusion of groups 
of drivers that represent different income (2 levels), age (3 levels), gender, level of 
familiarity with the network (2 levels), and level of education (2 levels). Subjects were 
instructed that their main task is to minimize the overall trip travel time by deciding when 
and when not to follow the information and/or advice provided. Subjects have been asked not 
to go through the simulation unless they had at least 30 minutes of spare time (the average 
simulation time was found to be 23.77 minutes) and were willing to concentrate and do their 
best in their choices. Moreover, during the simulation, the subjects’ response time was 
measured without notifying them, to insure that they are serious. A total of 65 subjects had 
run the simulation, 10 trial days each. Two subjects out of the 65 have been excluded from 
this study because their response time were found outliers in the normal distribution plotting 
of subjects’ response time (Z=3.21 and 3.78, Zcr = 2.57). 
 
5. Long-term route choice analyses 

A total of 630 trial days (trips) have been completed by the 63 qualified subjects. Out 
of these 630 trial days, 539 were in the drive mode and 91 were in the transit (bus) mode. 
This paper focuses only on the drive mode. The 539 chosen routes that were chosen in the 
drive mode were identified and categorized by the sequence of links that were traversed on a 
given trial day. Then, they were ranked and numbered by the frequency of use. These 
numbers were used as routes’ IDs. Using the same way of identification, both the shortest-
path/advised routes (calculated by the program in all 5 scenarios, and provided to the subjects 
in scenarios 3 and 5 as advice) and the subjects’ normal routes (provided by subjects before 
they started the actual experiment) were handled. The results showed that there were 44 
distinct routes that have been chosen during the 539 experimental trial days. The shortest-
path/advised routes’ classification showed that there were 11 distinct routes representing the 
539 trips. Similarly, the results showed that there were 17 distinct routes representing the 63 
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subjects’ normal routes. To compare between the chosen route and the normal route or the 
pre-trip advised route, a subject’s chosen route is considered matching with his/her normal 
route if all subsequent origin-to-destination links of the two routes are identical. The same 
criterion applies to match a chosen route with a pre-trip shortest-path/advised route. It was 
noticed that there are correlations between the subjects’ chosen and normal routes and 
between the chosen and the advised routes.  This was expected because some drivers follow 
the advised routes while others have inertia towards their normal routes. In order to relate this 
correlation to the traffic information/advice availability and other effects, Model #1 and 
Model #2 were developed and discussed hereinafter. 
 
6. Modeling diversion from habitual route (Model 1) 

Data collected from the 539 trial days completed in the drive mode were used. The 
GEE was the statistical methodology used. The four correlation structures were also tried. 
The response variable was the subject’s diversion from his/her normal route. This response 
variable is binary with the value of “1” if the subject has diverted and “0” otherwise. The 
analysis of this model did not distinguish between pre-trip and en-route diversion from 
normal route. Therefore, the diversion may happen before or while driving. Table 1 shows 
parameter estimates of the main effects and one interaction effect and comparisons between 
the four structures of the correlation matrix (independent, exchangeable, auto-regressive, 
unstructured). The maximum number of repeated observations for the same subject was 
found 10. Therefore, the correlation matrix is a 10*10 symmetric matrix with 1’s as diagonal 
elements. The model correctly expected the response variable for 406, 407, 414, and 438 
observations out of the 539, for the independent, exchangeable, auto-regressive, and 
unstructured, respectively. This means that the last three correlation structures were favored 
over the independent case (similar to the above model). Again, the unstructured correlation 
was also favored over the exchangeable and autoregressive structures (81.26% classification).  
The results (Table 1) showed that ten main effects and one two-level interaction term were 
significantly correlated with the dependent variable. The travel time of the normal route 
(positively) and that of the diverted route (negatively) are correlated with the likelihood of 
diversion from the normal route. High-educated drivers were less likely to divert from their 
normal routes. The model estimates also showed that drivers who usually use the expressway 
system are more likely to divert. This indicates that expressway users may divert from the 
expressway if they are guided to a temporarily less-travel-time surface-street alternative.  
Drivers were found more likely to divert in the last-trial-days when compared with the first-
trial-days of the experiment. This shows a learning effect. The number of traffic lights in the 
normal route has a positive influence on diversion, which indicates that drivers try to 
minimize their stops and interruptions by diverting to other routes. Drivers were less likely to 
divert in scenario 1 where no information was provided. Drivers were more likely to divert in 
any scenario of the four scenarios with information/advice. This was concluded because the 
coefficient parameters of the four dummies representing scenarios 2 to 5 compared to the 
base scenario 1 were found positive. Moreover, adding advice to pre-trip and/or en-route 
advice-free information increases the diversion probability (compare coefficients 0.89 vs. 
0.66 and 1.61 vs. 0.83). In addition, providing en-route information in addition to the pre-trip 
only information increases the diversion probability (compare coefficients 0.83 vs. 0.66 and 
1.61 vs. 0.89).  
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Table 1. Diversion from Habitual Route Model 
 

 Correlation Structure 
 Indep. Exch. Autoreg. Unstruc. 

Parameter coeff. t-
stat coeff. t-stat coeff. t-

stat coeff. t-stat

Intercept -
2.714

-
4.47

-
2.612 -4.19 -

2.549 
-

4.26 -2.236 -3.85

Education; 1 if graduate school or 
higher, 0 otherwise 

-
0.343

-
1.89

-
0.349 -1.90 -

0.323 
-

1.76 -0.381 -2.00

Expressway freq.; 1 if subject uses pre-
trip and/or en-route traffic information 
usually or everyday, “0 otherwise 

0.763 2.21 0.770 2.14 0.793 2.24 0.767 2.21

Travel time of the normal route 0.087 6.14 0.082 5.90 0.080 6.01 0.075 5.74

Travel time of the diverted route -
0.039

-
2.83

-
0.036 -2.87 -

0.035 
-

2.86 -0.034 -2.89

Pre-trip information; 1 for scenario 2, “0 
otherwise 0.697 4.05 0.693 4.11 0.688 4.15 0.655 3.92

Pre-trip information/advice; 1 for 
scenario 3, “0 otherwise 0.931 5.11 0.939 5.22 0.920 5.25 0.887 5.06

En-route information; 1 for scenario 4, 
“0 otherwise 0.848 4.69 0.862 4.89 0.857 5.01 0.827 4.85

En-route information/advice; 1 for 
scenario 5, “0 otherwise 1.691 5.83 1.670 5.91 1.662 5.48 1.608 5.31

System learning: 1 for the last-trial-days 
of the experiment, 0 for the first-trial-
days 

0.370 2.47 0.370 2.49 0.339 2.25 0.314 2.10

Number of traffic signals on the normal 
route 0.136 2.22 0.853 2.70 0.130 2.20 0.115 1.92

Number of traffic signals on the normal 
route * En-route information/advice 0.834 2.55 -

2.612 -4.19 0.819 2.41 0.762 2.22

Model evaluation; number of correctly 
expected observations divided by the 
total number of observations 

406/539 =
75.32% 

407/539 =
75.51% 

414/539 = 
76.81% 

438/539 = 
81.26% 

 
 
Only one two-level interaction term was found significant and indicated the positive 

joint effect of the number of traffic signals on the drivers’ normal route and providing en-
route information/advice on the en-route diversion decision. Other variables including; age, 
gender, income, driving experience represented by the number of years a subject had a 
driver’s license, different weather conditions, and familiarity with the network were tested 
and found uncorrelated with drivers’ diversion from the normal route decision. 
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7. Modeling compliance with pre-trip advised route (Model 2) 
The 63 subjects have chosen 218 routes in scenarios 3 and 5, where pre-trip advised 

route is provided, and in the drive mode. These 218 chosen routes were the data for the GEE 
model. As in the above two models, a binomial probit link function and four correlation 
structures were tried. The response variable was the subject’s compliance with the pre-trip 
advised route. This response variable is binary with the value of “1” if the subject complied 
with the pre-trip advised route until the destination and “0” otherwise. Table 2 shows 
parameter estimates with comparisons between the three structures of the correlation matrix. 
The maximum number of repeated observations for the same subject was found four. 
Therefore, the correlation matrix is a 4*4 symmetric matrix with 1’s as diagonal elements. 
The model correctly expected the response variable for 137, 138, 139, and 139 observations 
out of the 218, for the independent, exchangeable, auto-regressive, and unstructured, 
respectively. This indicates that no significant difference was found between the four 
different correlation structures. A reason for that might be because the number of subjects 
was relatively greater than the maximum number of repeated observations per subject (63 vs. 
4). This led to lesser role to the correlation in the model.  
 The modeling estimates show that highly educated drivers (graduate school or higher) 
are less likely to comply with the pre-trip advised route. Drivers who usually receive traffic 
information have a high propensity to comply. Non-familiars with the network are more 
likely to comply. The travel time of the advised route (negatively) and that of the chosen 
route (positively) affect the likelihood of compliance with the advised route. Drivers were 
found more likely to comply in the last-trial-days than the first-trial-days of the experiment. 
This means that, familiarizing drivers with an information-device have a positive effect on 
their compliance. In heavy rain conditions (vs. light rain or clear sky), drivers are more likely 
to comply with the advice. High number of traffic lights in the advised route has a negative 
influence on compliance. No interaction term between the main effects was found significant 
in this model. Other variables including; age, gender, income, driving experience represented 
by the number of years a subject has a driver’s license, and frequency usage of expressways 
were tested and found uncorrelated with the response variable. 
 
8. En-route short-term route (link) choice analysis (Model 3) 

In OTESP, at each node, the subject is required to make a decision and choose 
between the two coming links. This choice is considered, in this model, positive if the subject 
chose the link that had a better level of congestion (its delay is less than the other’s; delay of 
a link is equal to the difference between its actual travel time at a specific movement and its 
free flow travel time). While, the choice is considered negative if the subject made a bad 
short-term decision by choosing the link with a worse level of congestion. The delay on a 
link at a certain movement was considered instead of its travel time because the links are 
different in length. Only in scenarios #4 and #5, en-route short-term information is provided 
to the subjects in two forms; first, giving each link a color that represents its congestion 
(green, yellow, or red for free, moderate, or congested flows, respectively). Second, the travel 
time of every link is given. These two forms represent qualitative and quantitative 
information, respectively. Scenario 5 also provides a long-term advised route from the 
driver’s location to the destination.  
 Throughout this study, 5572 movements (decisions) have been done through the 40 
links of the network. Out of them, 4753 decisions (en-route short-term choices) were made in  
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Table 2. Compliance with Pre-trip Advised Route Model 
 

 Correlation Structure 
 Indep. Exch. Autoreg. Unstruc. 

Parameter coeff. t-stat coeff. t-stat coeff. t-stat coeff. t-
stat

Intercept 1.080 1.42 1.172 1.57 1.086 1.44 1.486 2.10

Education; 1 if graduate school or higher, 
0 otherwise 

-
0.585

-
2.77

-
0.618 -2.96 -0.591 -2.81 -

0.524
-

2.73
Info familiarity; 1 if subject uses pre-trip 
and/or en-route information everyday or 
usually, “0 otherwise 

0.284 1.78 0.279 1.78 0.289 1.82 0.258 1.78

Network familiarity; 1 if subject is familiar 
with the network, 0 otherwise 

-
0.966

-
3.72

-
0.959 -3.71 -0.968 -3.73 -

1.059
-

3.96

Travel time of the advised route -
0.036

-
2.04

-
0.040 -2.26 -0.038 -2.18 -

0.040
-

2.30

Travel time of the chosen route 0.034 1.70 0.034 1.73 0.034 1.74 0.027 1.52

System learning: 1 for the last-trial-days of 
the experiment, 0 for the first-trial-days 0.482 2.37 0.475 2.34 0.475 2.35 0.377 1.84

Heavy rain: 1 for heavy rain condition; 0 
for light rain or clear sky 0.445 2.01 0.454 2.10 0.454 2.07 0.379 1.92

Number of traffic signals on the advised 
route 

-
0.190

-
2.47

-
0.183 -2.43 -0.183 -2.40 -

0.204
-

2.88
Model evaluation; number of correctly 
expected observations divided by the total 
number of observations 

137/218 =
62.84% 

138/218 =
63.30% 

139/218 = 
63.76% 

139/218 =
63.76% 

 
the drive mode and 819 movements in the bus mode. Out of the 4753 drive decisions, 1667 
movements were excluded from the analysis because the driver had no choice but to proceed 
on to the unique coming link. This happens at the most east, west, and north nodes of the 
network. Out of the remaining 3086, 1650 decisions were found to be positive while 1436 
decisions were negative.  
 The 3086 link choices were the data used. The GEE was employed. The response 
variable is binary with the value of “1” for positive choices and ‘0’ for negative choices. 
Table 3 shows the parameter estimates with a comparison between exchangeable and 
autoregressive correlation structures. The maximum number of repeated observations was 71. 
Therefore, the correlation matrix dimensions are (71 * 71). The unstructured correlation 
matrix is not appropriate for this case because the number of response pairs for estimating 
correlation was less than the number of correlation parameters to be estimated (2485 = 71 * 
70/2). The model correctly expected the response variable for 2128, 2365, and 2139 
observations out of the 3068, for the independent, exchangeable, and autoregressive 
correlation matrices, respectively. This indicates that the last two correlation matrices were 
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favored over the independent case. Also, the exchangeable correlation structure was favored 
over the autoregressive structure (76.64% classification). In the autoregressive correlation 
structure, the correlation between two repeated choices is not fixed and depends on the time-
gap between them. For example the correlation between observations #1 and #5 was found 
almost zero. On the other hand, the exchangeable correlation structure assumes equal and 
fixed correlation between any repeated choices. This might lead to the reason why the 
exchangeable correlation structure was favored over the autoregressive structure for this 
model.   
 

Table 3. Results of Modeling En-route Short-term (Link) Choice 
 Correlation structure 

 Indep. Exch. Autoreg. 

Parameter Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Intercept -
2.191

-
23.77 -2.282 -23.97 -

2.022 -23.75

Info-familiarity; 1 if subject uses pre-trip and/or 
en-route traffic information usually or everyday, 0 
otherwise 

0.246 10.12 0.244 10.30 0.247 10.45

Info-provision: 1 for scenario 4 where en-route 
information is provided without advice, 0 
otherwise 

0.150 2.23 0.166 2.19 0.139 2.14

Same color: 1 if the two coming links were with 
the same color (qualitative congestion level), 0 
otherwise 

-
0.267 -4.03 -0.282 -3.96 -

0.246 -3.87

System learning: 1 for the second 5 trial days of 
the experiment, 0 for the first 5 trial days 2.057 17.61 2.141 17.64 1.894 17.18

Heavy rain: 1 for heavy rain condition; 0 for light 
rain or clear-sky 0.236 3.19 0.241 3.26 0.250 3.50

Number of movements since the origin 0.368 10.30 0.365 10.50 0.323 9.65

Interaction terms 
      

Heavy rain * Same color 0.269 2.23 0.280 2.33 0.286 2.45
Number of movements since the origin * System-
learning 0.241 6.35 0.238 6.44 0.206 5.74

Model evaluation; number of correctly expected 
observations divided by the total number of 
observations  

2128/3086 =
68.96% 

2365/3086 = 
76.64% 

2139/3086 =
69.31% 
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 The modeling results showed that, in general, the provision of en-route information 
increases the likelihood of making a positive link choice. This means that the en-route short-
term information has a good chance to be used and followed. When the two coming links had 
the same qualitative level of congestion, drivers were less likely to make a positive choice. 
Then, the qualitative information is more likely to be used than the quantitative information. 
The following effects/interactions increase the likelihood of obeying the en-route short-term 
information:  
• Being familiar with traffic information 
• Learning and being familiar with the system that provides the information 
• Heavy rain condition 
• Being away from the origin, i.e. close to the destination  (presented by the number of 

movements since the origin) 
• Providing qualitative information in heavy rain conditions 
• Being away from the origin and being familiar with the device that provides the 

information 
 
9. Summary and conclusions 

This paper presented models of 3 route choices under different types and levels of 
ATIS. A real network/conditions travel simulator was used to collect dynamic data for the 3 
models using same subjects and same experiment. The paper presented the following models; 
(1) Drivers’ diversion from habitual route given information is provided, (2) Drivers’ 
compliance with a pre-trip advised route, and (3) Driver’s compliance with en-route short-
term (link) traffic information. Binomial Generalized Extreme Equations were used to 
account for correlation between repeated choices made by same subject. The correlation was 
found significant in two models out of three. This depicts the importance of understanding 
the nature of correlation between mode/route choices in the transportation field.  
 Table 4 summarizes the modeling results for the above 3 models. In Table 4, effects 2 
through 5 are subject-related variables. Effects 6 through 12 are related to level of 
information/advice provided, familiarity with the system that provides the information, 
network conditions, or weather conditions (both network and weather conditions are 
provided by the information system).  Effects 13 through 18 measure the effect of travel time 
on all 3 models of this paper. Effects 19 through 21 are two-level interaction terms. By 
comparing the first group of effects over the 3 models, the following findings are concluded: 
1. Highly educated drivers are more likely to divert from habitual route and/or comply with 

pre-trip advised route. Education level does not affect en-route compliance. 
2. Expressway users are more likely to divert (they do not affect other paradigms though).  
3. Traffic information users are more likely to follow the pre-trip and en-route traffic 

information provided. 
4. Drivers familiar with the network are less likely to comply with pre-trip information. 

Network familiarity does not affect drivers’ en-route compliance. 
 
By comparing the second group of effects over the 3 models, the following findings are 

concluded: 
5. Providing pre-trip and/or en-route traffic information/advice assists drivers and drivers in 

their route decisions. As the level of information/advice increases the benefits increase. 
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6. Qualitative is more beneficial than quantitative information in assisting drivers’ en-route 
short-term (link) choices. 

7. Severe weather conditions increase the compliance with pre-trip and en-route traffic 
information while they do not affect drivers’ diversion from habitual route. 

8. Being away from the origin or close to the destination increases drivers’ compliance with 
the en-route information provided. 

9. As drivers get more familiar with the device that provides the information their 
compliance with traffic information before and while driving increases, also, diversion 
from habitual route increases. 

10. Less number of traffic signals on an advised pre-trip route increases the probability of 
compliance. 

11. High number of traffic signals on a habitual route increases the probability of diversion. 
12. The information provision increases the probability of diversion from a habitual route. In 

particular, adding advice to pre-trip and/or en-route advice-free information increases this 
diversion probability. Providing en-route information in addition to the pre-trip 
information, also, increases the diversion probability.  

 
By comparing the third group of effects over the 5 models, the following main finding is 

concluded: 
13. Travel time was shown in all models as significant effect in travelers/drivers choices. 
 

A methodological conclusion is the need to account for the repeated observations in 
the route choice modeling. Otherwise, the results will be biased. All the three correlation 
structures presented in this paper were favored over the independence case especially when 
the number of repeated choices is relatively high compared to the number of subjects or the 
total number of observations. The best correlation structure was not fixed to the three models. 
Choosing the best correlation structure depends on the nature of the correlation, total number 
of subjects, maximum number of repeated choices per subject, and available degrees of 
freedom in the modeling process. Modeling the unstructured correlation type needs high 
number of degrees of freedom. The autoregressive structure may not be favored for cases 
with relatively high number of repeated choices. Exchangeable structure relaxes the need for 
extra degrees of freedom but it has the restriction of equaling correlation between any pair of 
choices made by the same subject, which might be reasonable in many cases. 
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Table 4. Summary Modeling Results for all 5 Models 
 

# Effect M1 M2 M3
1 Intercept -2.24 1.49 -
2 Education; 1 if graduate school or higher -0.38 -0.52  
3 Expressway freq.; 1 if uses expressway usually or everyday 0.77   
4 Info familiarity; 1 if uses information usually or everyday  0.26 0.24
5 Network familiarity; 1 if subject is familiar with the 

k
 -1.06  

6 Pre-trip information; 1 for scenario 2 0.66   
7 Pre-trip information/advice; 1 for scenario 3 0.89   
8 En-route information; 1 for scenario 4 0.83  0.17
9 En-route information/advice; 1 for scenario 5 1.61   

10 Same color: 1 if two coming links were with same 
i l l

  -
11 System learning: 1 for the last-trial-days, 0 for the first-

i l d
0.31 0.38 2.14

12 Heavy rain: 1 for heavy rain condition; 0 for light rain or 
l k

 0.38 0.24
13 Number of traffic signals on the normal route 0.12   
14 Number of traffic signals on the advised route  -0.20  
15 Number of movements since the origin   0.37
16 Travel time of the normal route 0.08   
17 Travel time of the advised route  -0.04  
18 Travel time of the chosen route -0.03 0.03  

 Interaction terms:    
19 Number of traffic signals on the normal route * En-route 

i f i i f i / d i
0.76   

20 Heavy rain * Same color   0.28
21 Number of movements since the origin * System-learning   0.24

Model 1 (M1): modeling diversion from normal route (1=diverts vs. 0=uses normal 
route) 
Model 2 (M2): modeling compliance with pre-trip advised route (1=comply vs. 0=not 
complies) 
Model 3 (M3): modeling compliance with en-route short-term (link) information 
(1=complies vs. 0=not complies) 
Effects 2-12 are binary and take the value “1” as specified in the table and take the value 
“0” if otherwise. 
An empty cell in the table means that either the effect is not applicable to the 
corresponding model or it is insignificant. 
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