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Abstract 

In this paper we will use the flexibility of Data Envelopment Analysis (DEA) 
methodology to analyze the relative performance of each individual Spanish airport, and to 
fully rank both efficient, as well as inefficient airports. Most airports have previously 
compared their efficiency according to the results of some partial productivity ratios. 
However, this approach does not provide a good understanding of the overall performance 
of the airports. In this paper, we will use four different approaches of super-efficiency 
DEA in order to fully rank the performance of Spanish airports. The first approach 
involves the evaluation of a cross-efficiency matrix, in which each airport is evaluated 
according to its weights and their rivals' weights. The second and third approaches rank the 
airports' performance through the exclusion of the airport being analyzed. And finally the 
fourth approach is based in the analysis of the virtual airport and the comparison of the rest 
of the airports with this "champion performer". We will compare each approach, 
concluding that no one methodology can be prescribed here as the ideal solution to the 
question of ranking.  
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1. Introduction 

During the last years, a conceptual change in relation to the provision of transport 
infrastructure has been common in most parts of the world. In the transport sector, some 
liberalization measures have been accompanied by a process of partial or total privatization 
of services and infrastructures. This current has brought to the air industry, besides its 
relative youngness, huge panoply of packages of the aforementioned measures. Airports, 
air traffic control facilities, and government airlines were increasingly being put in a more 
commercial orientation, and in many cases they have been partially or fully privatized. 

The genesis of the reform was produced in 1978 when the United States deregulated 
its domestic market. Liberalization policies introduced in the air industry in the United 
States had an overall positive impact on the sector. Productive and allocative efficiency 
were improved, load factors raised and traffic grew substantially more than it would have 
done in the absence of the deregulation process (e.g. see Caves et al., 1987; Morrison and 
Winston, 1995;and Baltagi et al., 1995). 

The process initiated in the United States had some demonstration effect for the rest of 
the world. Thus, soon after the United States deregulation, new and more liberal bilateral 
agreements between the United States and some European countries (UK, Netherlands, 
Belgium, Ireland, Germany) were signed. Domestic markets were deregulated to some 
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degree in Canada and Mexico during the 80s and the European Union took three steps on a 
gradual process to liberalize its air industry1. 

The liberalization processes in the distinct parts of the world have provoked that 
productivity measures, used to compare the operational efficiency, effectiveness and the 
relative competitive position of airports and airlines, had become very popular since these 
days. Airports' performance has been usually assessed based on some financial efficiency 
or operational efficiency throughout a big number of partial indicators. Doganis and 
Graham (1987) found that most airports only use partial financial indicators to study their 
performance.  

The basic indicators that can be constructed are related to the following variables: 
inputs, outputs and outcomes (demand). These variables can be expressed as a physical 
quantity or monetary value. Usually, it is possible to construct an ample variety of 
performance ratios. Ratios of productive efficiency are related to links between outputs and 
inputs. Ratios between demand and inputs are usually referred as economical efficiency or 
social productivity. Finally, the ratios between outputs and demand are usually referred as 
service effectiveness. The basic unit of measure in airport studies is based around the 
definition of a work load unit (WLU): one passenger or 100 kg of freight serviced. This 
measure was adopted to provide a single measure of output for airport business. Some of 
the most common partial ratios studied are: total cost per WLU; operating cost per WLU; 
capital cost per WLU; labor cost per WLU; WLU per employee; WLU per unit asset value; 
total revenue per WLU and aeronautical revenue per WLU. 

However, these partial performance ratios that compare one or more basic variables 
have evident shortcomings because they can only be used to obtain a first glance, and 
robust consequences based on this comparability cannot be usually extracted. For example, 
some financial measures can be misleading indicators, as a consequence of the relative 
market power that can exist. Monopolistic airports might be able to make substantial 
profits even if they were inefficient. 

Efficiency has several dimensions, two of the most important that have been profusely 
quoted are economic efficiency and technological efficiency. Economic efficiency is 
achieved when an airport is using resources in such proportions that the total cost for some 
level of output is minimum. Technological efficiency means that the airport cannot obtain 
more level of output for some combination of inputs.  

However, under the new commercial context for airports, many airports have 
developed performance measures beyond the WLU ratios. Ultimately, the facilities of 
airports have very different demands and rewards for managers, reflecting new 
opportunities in retailing activities. As a result of this, airport managers are paying more 
attention to non-aeronautical activities as an optimal strategy to maximize its revenues. For 
this reason, indicators such as commercial income per square meter of concession space, 
concession income per passenger, non-aeronautical income per passenger, among others, 
have emerged. Francis et al. (2001) study a survey of the worlds 200 busiest passenger 
airports, and provide an insight into the prevalence and perceived usefulness of an ample 
set of performance measures. 

In the last years, research on airport performance has grown considerably due to the 
changes of the context in which airports operate that has been observed. There exist 
different methodologies that have been developed and applied. Excellent revisions on this 
topic exist (Francis et al., 2002; Humphreys and Francis, 2002; Oum et al., 2003). Some 
studies separate the activities of the multi-product nature of the airports, focusing on some 
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operations, e.g. Gillen and Lall (1997) and Pels et al. (2001) differentiate landside and 
airside operations, and evaluate the productive efficiency of both sides, respectively. 

Some quantitative methodologies such as data envelopment analysis (DEA), total 
factor productivity (TFP) and stochastic frontiers (SF) have been applied to airports in 
order to measure their performance, using different inputs and outputs that are usually 
constrained for the lack of the data. DEA has become increasingly popular to study 
productivity analysis in diverse industries, and airport industry is not an exception to this 
rule. Parker (1997) applied DEA to study airports with one runway. Parker (1999) used 
DEA to study the relative performance of British Airport Authority, before and after 
privatization. Sarkis (2000) employed DEA to examine the productivity of US airports. 
Adler and Berechman (2001) used DEA to measure the quality of airports from air 
carriers’ point of view, using principal component analysis to reduce the dimensionality of 
the space of inputs and outputs. Martin and Roman (2001) applied DEA to evaluate the 
performance of Spanish airports. Chin and Siong (2001) used DEA to compare the relative 
performance of Changi airport and four airports in the metropolitan area of New York. 
Abbott and Wu (2002) investigated the efficiency and productivity of 12 Australian 
airports using DEA. Bazargan and Vasigh (2003) studied the relationship between size and 
efficiency of some US airports using DEA. Pacheco and Fernandes (2003) used DEA to 
analyze the efficiency of Brazilian airports taking into consideration two different 
dimensions: financial and physical. 

The primary objective of these studies is to find out the behavior of two different sets: 
those airports that are efficient and define the Pareto optimal frontier and those that are 
inefficient. All the studies employ DEA, a non-parametric multiple input-output efficiency 
technique that is able to handle this multidimensionality and eliminate the difficult task of 
weight estimation that exist in other multiple-criteria decision making (MCDM) methods, 
such as Analytical Hierarchic Process (AHP) or Total Factor Productivity (TFP). However, 
almost none of the studies have extended or adapted the DEA models in the field of 
ranking the activity of the airports2.  

This paper attempts to extend Bazargan and Vasigh approach using other theoretical 
models to rank the airports. In order to rank all the airports we will use four different 
methodologies. The first method involves the evaluation of a cross-efficiency matrix, in 
which each airport is evaluated according to its weights and their rivals' weights. The 
second and third methods rank the airports' performance through the exclusion of the 
airport being analyzed (super-efficiency). And finally the fourth approach is based in the 
analysis of the virtual airport and the comparison of the rest of the airports with this 
"champion performer" (Bazargan and Vasigh, 2003). We will compare each approach, 
trying to examine the main differences and similarities that exist.  

The paper is organized as follows: section 2 explains the theoretical framework. 
Section 3 analyzes the organization of Spanish Airport System and presents a brief 
summary of the sample of the airports employed in the empirical exercise. Section 4 shows 
the basic results obtained and section 5 concludes. 

 
2. Ranking methods and DEA 

Charnes et al. (1978), in their seminal paper, described the DEA methodology as a 
"mathematical programming model applied to observed data that provides a new way of 
obtaining empirical estimates of extremal relationships such as the production functions 
and/or efficiency production possibility surfaces that are the cornerstones of modern 
                                                 
2 To our knowledge there exists only one exception (Bazargan and Vasigh, 2003). In this paper, the authors achieve a full ranking of all 

airports considered in their sample, introducing a virtual super efficient airport with the rest of all airports. This method ensures that 
there is only one efficient airport with the rest being inefficien. 



 

4

economics". Since then, numerous applications employing the DEA methodology have 
been presented and involve a wide area of contexts: education, health care, banking, armed 
forces, sports, transportation, agriculture, retail stores and electricity suppliers. Originally 
designed to evaluate decision making units (DMUs), which use multiple inputs to produce 
multiple outputs, without a clear identification of the relation between them, DEA has 
progressed throughout a variety of formulations and uses to other kind of industries3. 
Seiford (1994) cited more than 400 articles in a comprehensive bibliography and stated 
that DEA methodology is an important analytical tool whose acceptance is no longer in 
doubt. Emorouznejad and Thanassolis (1997) provide a comprehensive list of more than 
1500 applications of DEA. 

We do not intend to cover the basic aspects of DEA models. A good introduction to 
DEA notation, formulation and geometric interpretation can be consulted in Charnes et al. 
(1994), Ali and Seiford (1993), Coelli et al. (1998) and Cooper et al. (2000). As discussed 
therein, a model can be described by the envelopment surface, orientation of the model, 
invariance of units, and efficiency measurement. There are three basic DEA models: 
variable returns to scale (VRS), constant returns to scale (CRS) and additive model. These 
can be used to seek which ones of the n DMUs determine the frontier of the envelopment 
surface, and are deemed efficient. The units that do not lie on the frontier are inefficient 
and the measurement of the grade of inefficiency is determined by the selection of the 
model. 

The choice of a DEA model depends on some assumptions regarding the data set to be 
employed and in some prior results about the industry to be studied. The data set has to 
describe the activities of the units in the better possible way. It is especially important to 
have some idea about the hypothetical returns to scale that exist in the industry. This 
knowledge is going to determine the envelopment surface –constant return to scale CRS or 
variable return to scale VRS4) of the model. 

Once that the selection of envelopment surface has been chosen, an orientation of the 
model to determine the measurement of the efficiency is needed. There are three basic 
orientations: input, output and equal. An input orientation focuses on proportional decrease 
of the input vector, the output orientation adjusts the proportional increase of the output 
vector and the equal orientation do not discriminate the importance or the possible increase 
of output or decrease of input. The units involved in the study determine the selection of 
the orientation. It is very important to have in mind what the real possibilities of the 
managers are, i.e. in Harvard tradition the investigator must try to establish what the 
conduct of agents and the structure of the market are in order to contemplate a possible 
orientation. 

In DEA analysis, it is generally assumed that there are n production units to be 
evaluated, using amounts of m different inputs to produce quantities of s different outputs. 
Specifically, the o'th production unit consumes xio  units of input i (i= 1 to m) and produces 
yro units of output r (r=1 to s). The o'th production unit can now be described more 
compactly with the vector (Xo,Yo), which denote, respectively, the vectors of input and 
output values for DMUo. 

Next, we consider the dominance comparisons for this production unit using the data 
set as a reference. DEA consider the dominance of the linear combinations of the n 

                                                 
3 DEA can be applied to scenarios where the data cannot be strictly interpreted as inputs or outputs or there is no direct functional 

relationship between the variables. In such situations, a general guideline to the classification of the variables is that variables for 
which lower levels are better are considered inputs, while outputs are those variables for which higher amounts are better. 

4 CCR and BCC acronyms are sometimes used in reference to CRS and VRS models. The acronyms come from the initial of the authors 
of the papers that employed these two different envelopment surfaces (Charnes et al., 1978 and Banker et al., 1984). 
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production units, i.e. ),( kk kkk k YX ∑∑ λλ , with the scalar restricted to be non-negative5. The 
production unit o is dominated, in terms of inputs, if at least one linear combination of 
production units shows that some input can be decreased without worsening off the rest of 
inputs and outputs. The production unit o is dominated in terms of outputs if at least one 
linear combination of production units shows that some output can be increased without 
worsening off the rest of inputs and outputs6.  

Thus, the method serves to partition a set of production units into two subsets: the 
efficient production units and the inefficient ones. The method also serves to calculate the 
level of inefficiency of a given inefficient production unit. 

Airport managers can affect the efficiency of their airport using their inputs, runways, 
terminal buildings, in different manners. In this paper, ranking methods are going to be 
based on output orientation. We think that once an airport has invested in the building of 
new runways or new facilities in the terminal buildings, it is difficult for the managers to 
initiate processes of disinvestment more close to an input orientation. In this sense, it is 
more credible to use the airport as much as it is demanded due to the fact that the factors of 
production usually do not change year to year. Of course, authors are well aware that some 
factors that affect airport performance are not directly under the control of airport manager, 
e.g. airline inefficiency (low load factors) appears to contribute significantly to airport 
inefficiency in terms of air passenger movements (Pels et al., 2003). 

Formally, the multiplier-DEA VRS output efficiency for the unit o is calculated 
through the following linear programming problem: 
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The set of constraints requires that the same weights, when applied to all the airports, 
do not provide any airport with efficiency lower than one. The solution to this 
minimization problem is not unique. It can be shown that if there exists a solution ( ),ν µ to 
the above problem, then there exist an infinite number of solutions because ( ( ), , 0φν φµ φ ≥ ) 
is also a solution to the problem (Coelli, 1996). Since, there are an infinite number of 
solutions for the dual variables (multipliers), it is necessary to formulate an equivalent 
linear programming program which avoids this problem. In this sense, the following 
problem is resolved for each airport: 

                                                 
5 The different assumptions about the scalar produce distinct envelopment surfaces: VRS, CRS or extensions of these basic models. 
6 This discussion is very close to the definition of Pareto-Koopmans efficiency. The unit o is considered fully efficient if and only if the 

performance of other DMUs does not provide evidence that some of the inputs or outputs of the unit o could have been improved 
without worsening off some of its other inputs or outputs. This definition of relative performance has its origin in Farrell (1957). 
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called virtual input and virtual output, respectively. See Seiford and Thrall (1990) for a 
detailed discussion of these models. The efficiency ratio ranges from 1 to infinity. Thus, 
each airport will choose weights so as to minimize self-efficiency, given the constraints. 

 

2.1. Cross-efficiency DEA model 
Sexton et al. (1986) were the first to develop the cross-efficiency evaluation matrix, 

initiating the subject of ranking in DEA. Doyle and Green (1994) validated this method, 
saying that decision makers do not always have a reasonable prior knowledge from which 
to estimate assurance regions for multipliers, and thus they recommended the cross-
efficiency evaluation matrix for ranking units. The cross-efficiency evaluation method 
simply calculates the efficient score for each airport n times, using the virtual multipliers 
obtained in each of the n linear programming programs resolved before. The results of all 
the DEA cross-efficiency scores can be summarized in a cross-efficiency matrix as 
following: 
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Thus, kkh  represents the score given to airport j in the DEA run of airport k, i.e. the 
performance of airport j is evaluated by the weights of airport k. Note that all the elements 
in the matrix are in the range one and infinity, and the elements in the diagonal, kkh , 
represent the standard DEA efficiency score (the elements in the diagonal equal 1 for 
efficient airports and greater than 1 for inefficient airports, accordingly to a conventional 
DEA methodology). Sexton et al. (1986) established a set of secondary goals for either 
aggressive or benevolent DMUs. In this context, a DMU could be considered aggressive if 
it minimizes self-efficiency and at a secondary level maximizes the other DMUs cross-
efficiency scores. The benevolent secondary objective would be to equally minimize all 
DMUs cross-efficiency scores. 

The cross-efficiency ranking method in this DEA context employs the results of the 
cross-efficiency matrix kjh  in order to rank all Spanish airports. There are different 
synthetic indexes that can be used in order to rank the performance of the airports. In this 
paper, we will use the average cross-efficiency score given to airport j defined as: 

1

1 n

j kj
k

h h
n =

= ∑ . However, averages are not the only possibility, as there are other standard 

univariate summaries, such as, median, variance or some other quantile point that could 
also be applied. It has been commented that any central measure of the cross-efficiency 
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matrix, such as the average, represents better the performance of airports than jjh , the 
standard DEA efficiency score. This is based on the fact that all the elements of the cross-
efficiency matrix have been considered, meanwhile jjh  only includes the elements of the 
diagonal. Furthermore, all the airports are evaluated with the same sets of weight vectors. 
The minimum value of cross-efficiency is 1, which occurs if airport j is efficient in all the 
runs, i.e. all the airports evaluate unit j as efficient. In order to rank the units, we can 
simply assign the airport with the lowest score a rank of one and the unit with the highest 
score a rank of n. While the DEA scores jjh  are non-comparable, since each element uses 
different weights, the jh  score is comparable because it utilizes the weights of all the units 
equally. However, this is also the drawback of the technique, since the evaluation 
subsequently loses its connection to the multiplier weights (Adler et al., 2002). 

 
2.2.  Super-efficiency ranking methods 

Andersen and Petersen (1993) developed a new procedure for ranking efficient units. 
The methodology enables an extreme efficient unit o to achieve an efficiency score lower 
than one by removing the oth constraint in the primal formulation, as shown below 
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When a DMU under evaluation is not included in the reference set of the envelopment 
models, the resulting DEA models are called super-efficiency DEA models. Charnes et al. 
(1992) use a super-efficiency model to study the sensitivity of the efficiency classification. 
Zhu (1996) and Seiford and Zhu (1998) develop a number of super-efficiency models to 
determine the efficiency stability regions. Seiford and Zhu (1999) studied the problems 
associated with possible infeasibilities that may appear in some super-efficiency models. 
Wilson (1993) used the super-efficiency DEA models to detect influential observations. 
Looking at equation 4, we see that the difference between the super-efficiency and the 
envelopment models is that the DMUo under evaluation is excluded from the reference set 
in the super-efficiency models, i.e., the super-efficiency DEA models are based on a 
reference technology constructed from all other DMUs.  

However, some potential problems may appear with this methodology. First, it is 
necessary to have in mind that even if we use the DEA objective function value as a rank 
score for all units, each unit is evaluated according to different weights. This value in fact 
explains the proportion of the efficiency score that each unit o attained with its chosen 
weights in relation to a virtual unit closest to it on the frontier. Second, the super-efficiency 
methodology can give ‘‘specialized’’ DMUs an excessively high ranking. To avoid this 
biased problem, Sueyoshi (1999) introduced specific bounds on the weights in a super-
efficient ranking model. And third, sometimes the super-efficiency model is infeasible for 
some efficient DMUs. When this problem appears, this technique does not provide a 
complete ranking of all the DMUs. Zhu (1996) shows that the input-oriented CRS super-
efficiency model is infeasible if and only if a certain pattern of zero data occurs in the 
inputs and outputs elements. Despite these drawbacks, possibly because of the simplicity 
of the concept, many published papers have used these super-efficiency models. 
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2.3. Virtual super-efficiency model 
We have already discussed that basic DEA models classify the DMUs into two sets, 

those that are efficient and define the Pareto frontier and those that are inefficient. Many 
empirical papers have adapted the models to deal with problems that have occurred in 
practice. However, these models need a major adaptation in the field of ranking DMUs, 
because practitioners cannot compare the units that lie on the frontier. It is often quite 
common that decision-makers are interested in a complete ranking, beyond the 
dichotomized classification of efficient and inefficient units, in order to understand the 
overall performance of the units. One problem that has been frequently discussed in the 
literature has been the lack of discrimination in some DEA applications, in particular when 
there are insufficient DMUs or the number of inputs and outputs is too high relative to the 
number of units. According to Cooper et al. (2000) a good rule of thumb for the number of 
DMUs in applying DEA is ( )( )max ,3n m s m s≥ × + , where n is the number of DMUs, m is 
the number of inputs and s in the number of outputs. This is an additional reason for the 
growing interest in complete ranking techniques. Furthermore, fully ranking units is an 
established approach in the social sciences. 

To achieve a full ranking of all airports, a virtual super efficient airport is introduced 
and included with the rest of existing airports. This will ensures that there is only one 
efficient airport (efficiency value of 1) with all the real airports being inefficient. The 
efficient frontier, based on this model, therefore consists of only this virtual super-efficient 
airport. All other airports are inefficient and are penalized for not operating at the same 
scale of efficiency. This approach serves to rank all the airports, and has been employed in 
previous studies (Bazargan and Vasigh, 2003). This ranking is justified because the same 
virtual airport is used for all airports as the reference set. 

The input and output for this virtual super-efficient airport are: 
{ }
{ }

min ,

min ,

v jj

v jj

X X

Y Y

=

=
 

where vX  and vY  are the input and output vectors of the virtual super-efficient airport and 
jX  and jY  are the input–output vectors of the jth airport. In other words, the virtual airport 

has the lowest input and the highest output among the airports considered in the study. 
The DEA model is run with the inclusion of this new virtual airport and the efficiency 

scores are used to fully rank the airports because as expected, the virtual airport is the only 
efficient airport. 

 
3. The data and sample of the airports 

Our sample includes 34 Spanish airports that have different size and form part of 
AENA. We used data of the Spanish airports for the year 1997 to evaluate the efficiency of 
the airports estimating the DEA models described above. The performance of airports is 
going to be clearly linked with the selection of the outputs that an airport produces and the 
inputs airport use in producing these outputs. In the revision of the literature, the most 
commonly used output measure for airports is the number of passengers processed, as the 
most important function of an airport is to serve as an interface between land and air 
transport. Another important output for airports is air cargo. Air cargo can be served with 
passenger planes or with dedicated freighters. Some Spanish airports have expanded its 
facilities to accommodate new cargo terminals, because air cargo is becoming more 
important for some high-value goods. Passengers and cargo handling can be considered as 
final outputs of an airport, and these are associated with passenger and cargo terminal 
buildings that conform the landside operations of an airport. On the other hand, air traffic 
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movements are considered as an intermediate output that is associated with the airside 
operations of an airport, runways, taxiways, aprons and other elements. We measured 
output with three variables: the air traffic movements, the number of passengers and the 
number of tons of cargo transported in the airport. The input variables were introduced as 
expenditures and were divided according to the following classification: labor, capital and 
materials7.  

These variables have a clear meaning and the fact that the source of the data is AENA, 
clearly helps in reducing the problems of comparability. This is especially true in reference 
to the capital cost. Some differences in accounting practices usually difficult the 
comparison of these variables in the studies of airport with distinct nationalities or type of 
ownership. 

 
4. Empirical results 

As discussed earlier, we will use four different approaches to rank the overall 
performance of the Spanish airports for the year 1997. Table 1 shows four different super-
efficiency scores for the airports included in the sample. The first column expresses the 
cross-efficiency ratio measure, the second and third columns are the super-efficiency VRS 
and NIRS output orientation scores, respectively. And finally, the fourth column displays 
the virtual super-efficiency score8.  

An examination of the table 1 reveals that, according to the cross-efficiency score, 
Lanzarote, Barcelona, Madrid, Tenerife norte, Ibiza, Gran Canaria and Tenerife sur are the 
most efficient airports in the Spanish System. It is interesting to remark that these airports 
are located in the main cities of Spain, Madrid and Barcelona, or in tourist island cities, the 
rest of the airports. Looking at the opposite direction, it can be observed that Jerez, 
Santander, San Sebastian, Vitoria, Girona, San Javier and Hierro are the less efficient 
airports in the Spanish System. In this respect, we would like to remark that only the 
airport in the island Hierro could be sustained by public service obligation, due to their 
insular characteristic of the population that use its facilities. However, the rest of the 
airports are not far from other airports in their respective regions. For example, San 
Sebastian, Santander and Vitoria are near the airport of Bilbao.  

Comparison between third and fourth columns of table 1 shows that there are no big 
differences between these two approaches to measure super-efficiency. In fact, only the 
airports operating in the area of increasing returns to scale show some difference. It can be 
seen that there is only one airport, Valladolid, which presents the unfeasibility problem. 
However, this problem is not present with the output-oriented NIRS super-efficiency 
model. If we rank the airport with the super-efficiency NIRS, it can be seen that Madrid, 
Lanzarote, Melilla, Vitoria, Barcelona and Mallorca are the most efficient airports. It is 
remarkable the position change that some airports exhibit, e.g. the airport of Vitoria 
changes from the group of less efficient to the group of most efficient. However some 
airports, like Madrid, Barcelona and Lanzarote, present a more stable ranking behavior. On 
the other hand, it can be seen that San Javier, Almeria, Hierro, Sevilla, Granada and Girona 
conform the group of the less efficient airports.  

 
 

                                                 
7 The authors are conscious that some other measures of input, such as, number of runways, number of gates, terminal area and number 

of employees would have made the experiment more realistic but lack of available data preclude us from using these kind of variables. 
Gillen and Lall (1997) applied DEA to the airport sector using real input variables and measuring the efficiency of two different 
productive processes: terminal services and movements. The envelopment surfaces are estimated according to variable returns to scale 
and constant returns to scale, respectively. 

8 We note here that all the cross-efficiency measures are greater than 1. The cross-efficiency evaluation matrix has been calculated 
according to the formulation of DEA-LP programs described by equation 3. 
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Table 1. Super Efficiency Measures of Spanish Airports during 1997 
Airport Cross_Eff. NIRS_Sup_Eff VRS_Sup_Eff Virt_Eff 

 Alicante  2.005 1.409 1.409 5.257 
 Almeria  3.693 2.924 2.924 32.107 
 Asturias  3.579 2.242 2.199 30.992 
 Barcelona  1.126 0.717 0.717 1.214 
 Bilbao  1.749 1.377 1.346 8.806 
 Coruña  3.960 2.392 2.316 43.710 
 Fuerteventura  1.839 1.316 1.162 9.476 
 Girona  7.416 3.862 3.632 45.606 
 Granada  4.512 3.299 3.160 43.373 
 Hierro  7.999 2.960 2.231 106.961 
 Ibiza  1.514 1.338 1.338 6.554 
 Jerez  4.797 2.624 2.558 41.904 
 Lanzarote  1.018 0.594 0.593 5.773 
 La Palma  2.673 1.925 1.895 23.792 
 Gran Canaria  1.576 1.193 1.193 2.917 
 Madrid 1.307 0.305 0.305 1.000 
 Malaga  2.148 1.384 1.384 3.216 
 Mallorca  1.709 0.768 0.768 1.406 
 Melilla  2.463 0.651 0.651 25.359 
 Menorca  1.686 1.494 1.494 9.739 
 Pamplona  3.314 1.270 1.212 29.877 
 Reus  3.775 2.310 1.426 44.637 
 Santander  5.233 2.104 2.040 53.143 
 Santiago  2.451 1.798 1.798 13.944 
 Sevilla  3.784 3.133 3.123 12.530 
 San Javier  7.974 2.629 2.461 90.185 
 San Sebastian  5.362 2.377 2.167 67.985 
 Tenerife norte  1.393 0.935 0.935 8.413 
 Tenerife sur  1.616 0.883 0.883 3.109 
 Valencia  2.008 1.551 1.551 7.466 
 Valladolid  3.846 1.133 infeasible 67.948 
 Vigo  2.952 1.949 1.863 32.071 
 Vitoria  6.061 0.678 0.678 8.446 
 Zaragoza  3.553 0.791 0.753 20.155 

 
Apparently, there are no noticeable differences in performance rankings between 

cross-efficiency scores and virtual-efficiency values. In this sense, Madrid, Barcelona, 
Mallorca, Gran Canaria, Tenerife sur and Malaga appear to be the higher performers. On 
the other hand, Girona, Santander, Valladolid, San Sebastian, San Javier and El Hierro 
appear to be the lower performers. This measure is highly affected by the size of the 
airport. 

It is remarkable that the ranking DEA performance measures introduced to treat the 
problem empirically often give conflicting indications of airport performance. Therefore 
we will also compute the Spearman rho rank correlation coefficients of the ranking DEA 
methods shown in table 1. The ranking DEA measures simply rank the overall 
performance of the airports, trying to make comparisons between the airports that lie on 
the frontier. Thus, we only need to pay attention to rank orderings according to the distinct 
methodologies. Spearman’s rho correlation coefficient is really related to Pearson’s 
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correlation coefficient, because it is simply a Pearson correlation coefficient computed on 
the same data after converting them to ranks. Table 2 shows that different approaches can 
be considered complements instead of substitutes, because they present a different ranking 
perspective of airport performance. In the trivial case, in which all the approaches had 
given the same ranking of the airports, we would have obtained a matrix of 1. Table 2 
shows that the cross-efficiency and virtual efficiency ranking methods are highly 
influenced by the size of the airports, in which we have used the number of passengers to 
approximate the concept of the size of airports. Other issues that we need to highlight are 
based on the strong relationship that exists between both super-efficiency methods. In fact, 
as we have already explained, only small differences are observed for airports operating in 
the area of increasing returns to scale. However, it is clear that the NIRS super-efficiency 
ranking method allows decision-makers to obtain a full ranking of all the airports, and 
VRS could present some infeasibilities that preclude DMUs from a full ranking. 

 
Table 2. Spearman rank correlation coefficients of ranking DEA methods. 

 CE SE-NIRS SE-VRS V 
Cross-Efficiency 1    
Super-Efficiency 
NIRS 0.732 1   

Super-Efficiency 
VRS 0.703 0.985 1  

Virtual Efficiency 0.863 0.768 0.728 1 
Passengers -0.874 -0.492 -0.461 -0.872 

 
As it was explained in the methodological section, Sexton et al. (1986) were the first 

to study and introduce the concept of cross-efficiency methods, in which the airports in our 
case study, are both self and peer evaluated. Decision makers do not have obvious 
production functions to aggregate the data consistently, so relative efficiency of DEA 
ranking methods are a good substitute for this task. Now we are going to pay attention to 
the first of our methods: cross-efficiency evaluation matrix. Figure 1 shows the box-plot9 
of the input multipliers of the airports. It can be seen that input multipliers associated with 
labor and capital are zero for almost all the airports in the sample. In fact, there are 20 
airports for which the labor input multiplier is zero, and Hierro’s airport is the one that 
presents the highest labor input multiplier (1.93 510− ). If we focus our attention to the 
capital input multiplier, it can be seen that 18 airport present a value of zero, and San 
Javier’s airport is the one with the highest capital input multiplier (2.61 510− ). There are ten 
airports for which both input multipliers labor and capital are zero. For these airports, 
relative efficiency is almost determined by the free variable v of the linear programming 
problem (the constant of returns to scale in which the airport operates) and the materials 
input multiplier. It can be seen, that the median of this input multiplier is distinct from 
zero, and there are only seven airports for which the materials input multiplier is zero, and 
Girona is the airport with the highest materials input multiplier (3.24 510− ).  

 

                                                 
9 Box-plots are a extraordinary tool to summarize a great deal of information very clearly. First, it is very good at showing extremes 

and/or outliers values. Clearly, this is an interesting task for the exercise we are doing. We can highlight the outliers that are present in 
both, the input multipliers and output multipliers. Thus, airport regulators can obtain an overall picture of the different behavior of the 
airports included in the sample. Now we would explain briefly the basic characteristics of this tool: the vertical line inside the box 
shows the median of the distribution; the left and right sides of the box show two important quantiles, the 25 and 75 percentiles, 
respectively (i.e. it gives the location of the middle 50 percent of observations). The vertical marks joined to the box by the dashed line 
(they usually are known as whiskers) show observations of the data whose distance with the sides of the box is less than 1.5 times the 
interquartile range (difference between the third and first quartile). Points outside these vertical lines are outliers and are drawn as 
small circles. Box-plots not only show the location and spread of the data but also give a good indication of skewness with the sizes of 
the left and right parts of the box. 
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Figure 1. Box-Plot. Input Multipliers of Cross-Efficiency Ranking Method 

Figure 2 shows the box-plot of the output multipliers and the constants of returns to 
scale of the airports in the sample. It can be seen that output multipliers associated with 
passengers and cargo are zero for many airports in the sample. In fact, there are 18 airports 
for which the passengers output multiplier is zero, and Girona and Reus are the airports 
that present the highest passengers output multiplier (0.0019). Similarly, analyzing the 
behavior of cargo output multiplier, it can be concluded that 19 airports present a value of 
zero, and Santander is the airport that present the highest cargo output multiplier (0.0003). 
It is also interesting to remark that the median of the ATMs output multiplier is distinct 
from zero, and there are only five airports for which this output multiplier is zero. Hierro’s 
airport presents the highest value (0.0004) with respect to this multiplier. The values of 
these output multipliers are really consistent because air traffic movements are the primary 
output from airports’ perspective. Passengers and cargo are transported in planes and 
landings and takes-off are necessary to produce air passengers and cargo. Analyzing 
airlines perspective, the primary outputs are passengers and cargo units. Of course, ATMs 
are essential but they can be considered an intermediate output. There exists a vague 
relationship between ATMs, load factors and size of the airplanes. Pels et al. (2003) study 
the relationship between ATMs, passengers, runway efficiency and terminal efficiency. 
They consider that load factors may influence terminal efficiency, because there exists a 
positive relationship between load factors and terminal efficiency, e.g. if load factors are 
high, airport would move more passengers with a fixed number of ATMs. This would 
imply that airports would be relatively more efficient. So terminal efficiency is influenced 
by load factors of airlines and this strategic variable is not usually under the control of 
airport managers. 
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Table 3. Cross-efficiency evaluation matrix of good and low performers 
Airport Lanz Bar Mad Ten Ibi Gca Sant San S. Vits Gir San J. Hie 
Lanzarote 1.000 1.000 1.000 1.000 1.487 1.386 3.860 5.149 1.187 7.346 7.115 7.883 
Barcelona 1.011 1.000 1.000 1.000 1.501 1.393 3.854 5.150 1.177 7.491 7.103 7.875 
Madrid  1.000 1.000 1.000 1.688 1.477 1.371 6.933 6.033 4.094 7.121 9.124 7.704 
Tenerife 
norte 1.011 1.000 1.000 1.000 1.501 1.393 3.854 5.150 1.177 7.491 7.103 7.875 
Ibiza 1.000 1.000 1.399 1.267 1.338 1.503 4.502 5.410 2.971 6.895 7.317 8.343 
Gran 
Canaria 1.000 1.000 1.000 1.731 1.415 1.193 11.485 13.158 4.867 7.892 19.510 21.994 
Santander 1.000 1.686 1.320 1.024 1.951 1.874 2.040 2.287 1.000 4.889 3.937 3.167 
San 
Sebastian 1.000 1.000 1.356 1.297 1.400 1.656 2.642 2.167 2.875 5.870 3.410 2.241 
Vitoria 1.083 1.093 1.000 1.000 1.724 1.564 2.608 2.856 1.000 7.380 4.339 3.551 
Girona 1.000 2.716 3.013 2.064 1.825 2.642 3.712 2.820 30.157 3.632 5.274 4.181 
San Javier 1.000 1.145 1.702 1.333 1.506 1.753 3.588 2.713 2.315 10.584 2.461 3.337 
Hierro 1.025 1.000 1.365 1.309 1.426 1.682 2.649 2.172 2.832 6.085 3.410 2.231 
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Figure 2. Box-Plot. Output Multipliers of Cross-Efficiency Ranking Method 

 
Figure 2 shows the box-plot of the output multipliers and the constants of returns to 

scale of the airports in the sample. It can be seen that output multipliers associated with 
passengers and cargo are zero for many airports in the sample. In fact, there are 18 airports 
for which the passengers output multiplier is zero, and Girona and Reus are the airports 
that present the highest passengers output multiplier (0.0019). Similarly, analyzing the 
behavior of cargo output multiplier, it can be concluded that 19 airports present a value of 
zero, and Santander is the airport that present the highest cargo output multiplier (0.0003). 
It is also interesting to remark that the median of the ATMs output multiplier is distinct 
from zero, and there are only five airports for which this output multiplier is zero. Hierro’s 
airport presents the highest value (0.0004) with respect to this multiplier. The values of 
these output multipliers are really consistent because air traffic movements are the primary 
output from airports’ perspective. Passengers and cargo are transported in planes and 
landings and takes-off are necessary to produce air passengers and cargo. Analyzing 
airlines perspective, the primary outputs are passengers and cargo units. Of course, ATMs 
are essential but they can be considered an intermediate output. There exists a vague 
relationship between ATMs, load factors and size of the airplanes. Pels et al. (2003) study 
the relationship between ATMs, passengers, runway efficiency and terminal efficiency. 
They consider that load factors may influence terminal efficiency, because there exists a 
positive relationship between load factors and terminal efficiency, e.g. if load factors are 
high, airport would move more passengers with a fixed number of ATMs. This would 
imply that airports would be relatively more efficient. So terminal efficiency is influenced 
by load factors of airlines and this strategic variable is not usually under the control of 
airport managers. 
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The last box-plot shows the distribution of the constant associated to the economies of 
scale. It can be seen that the median of this variables is less than zero. This fact means that 
most of the airports in Spain are operating in the area of increasing returns to scale.  

Finally, we would like to study the relationship between the cross-efficiency of the 
airports for the groups of low and high performers. We would analyze the impact that 
different objectives of the airports may produce on the self or peer evaluation, i.e. we 
would like to show the differences that can potentially exist between the scores obtained 
when an airport is evaluated according to the multipliers of its group (self evaluation) or 
the multipliers of the other group (peer evaluation). This exercise tries to shed some light 
in the controversial issue of the comparability of the airports. It is frequent for some airport 
managers to defend their poor performance, saying that airports in different regions have 
different objectives.  

First, we have chosen twelve airports (6 good performers that will be denoted by G, 
and six low performers that will be denoted by L). Table 3 shows the cross-efficiency 
evaluation matrix for these twelve airports. They are ordered according to the first ranking 
method of table 1. Thus, the good performers appear in the six first rows and columns; and 
the low performers in the last six rows and columns. Once, this sub-matrix has been 
extracted we proceed to create the following associated factor GG, if the score analyzes the 
behavior of a good performer with the weights or multipliers of a good performer, e.g. the 
element of the matrix ( )15a is associated with GG because it is the evaluation of a good 
performer (Ibiza) peered by other good performer (Lanzarote). Similarly, we create factors 
associated with the rest of the values of the matrix as GL, LG or LL according to whether 
the airport is self or peered evaluated. Thus, we create the following factor-matrix: 

( )
1 , 6
1 6 7 12
7 12 1 6
7 , 12

ij

GG i j
GL i j

B b
LG i j
LL i j

≤ ≤⎧
⎪ ≤ ≤ ≤ ≤⎪= = ⎨ ≤ ≤ ≤ ≤⎪
⎪ ≤ ≤⎩

 (5) 

 
Second, we use one-way analysis of variance to test if the cross-efficiency score 

differs significantly across the factors that were created. The interest of the experiment is 
to show if there is any difference in cross-efficiency score between the different groups 
created according to equation 5. Results from anova10 show that there is a statistical 
significant difference across the factor group. Table 4 shows the results of this anova, and 
it can be seen that the null hypothesis, i.e. the average performance of the airports is equal 
whether the airport is self or peered evaluated, may be rejected. The p-value, shown in the 
sixth column, casts doubt on the null hypothesis and suggests that at least the performance 
of one group of airports is significantly different than the other groups. The grand and 
factor means can be observed in table 4.  

 
 
 

                                                 
10 Table 4 shows the standard anova table, which divides the variability of the airport cross-efficiency evaluation into two parts: 

variability due to the differences among the factor groups means (variability between groups); and variability due to the differences 
between the airport performance in each group and the group mean (variability within groups). The ANOVA table has seven columns: 
The first shows the source of the variability; the second shows the Sum of Squares (SS) due to each source; the third shows the degrees 
of freedom (df) associated with each source; the fourth shows the Mean Squares (MS) for each source, which is the ratio SS/df; the 
fifth shows the F statistic, which is the ratio of the MSs.; the sixth shows the p-value, which is derived from the cumulative distribution 
function of F. As F increases, the p-value decreases; and finally the seventh shows the significant code associated to the p-value. The 
choice of a critical p-value to determine whether the result is judged "statistically significant" is left to the researcher. It is common to 
declare a result significant if the p-value is less than 0.05 or 0.01. 
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Table 4. One-way analysis of variance. Cross-Efficiency Evaluation Matrix 
 Df SumSq MeanSq Fvalue Pr(>F)  
Case 3 805.41 268.47 25.978 2.021e-13 *** 
Residuals 140 1446.82 10.33    

Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 

Tables of means 
Grand mean: 3.487153  

Factor means 
GG GL LG LL 

1.196 7.032 1.487 4.234 
Tukey multiple comparisons of means 

95% family-wise confidence level 
 diff lwr upr 
GL-GG 5.8355556 3.8653743 7.8057369 
LG-GG 0.2905556 -1.6796257 2.2607369 
LL-GG 3.0380556 1.0678743 5.0082369 
LG-GL -5.5450000 -7.5151813 -3.5748187 
LL-GL -2.7975000 -4.7676813 -0.8273187 
LL-LG 2.7475000 0.7773187 4.7176813 

 
In the previous anova, we have compared the performance of the groups of the airports 

and tested the hypothesis that the average cross-efficiency scores are all the same, against 
the general alternative that they are not all the same. However, as we have accepted the 
alternative hypothesis and it is too general, we would like to obtain more general 
information about which pairs of means are significantly different, and which are not. For 
this reason, we have also studied pair wise mean differences to assess in what sense a 
group can be characterized by its better or lower performance. To do this, we need to 
employ some multiple comparison procedure. In our case, we have decided to employ the 
Tukey-Kramer test in order to determine if average cross-efficiency evaluation of airport 
performance differences between distinct groups are statistically different from zero. As 
we want to compare all the four groups to one another, one can form 6 unique pairs of 
groups to obtain their mean differences (GL-GG, LG-GG, LL-GG, LG-GL, LL-GL and 
LL-LG). Differences and 95% confidence interval for these differences appear in table 4. 
For example, it can be seen that the difference between the groups GL and GG is 5.83 and 
a 95% confidence interval for the true mean is [3.86, 7.80]. In this example the confidence 
interval does not contain 0, so the difference is significant at the 0.05 level, and we can 
conclude that the performance of `lower performers’ is worse than `good performers` when 
each group of airports is evaluated according to the multipliers of the group of `good 
performers`. If the confidence interval would have contained 0, the difference would not 
have been significant at the 0.05 level. (see for example the second row in the Tukey 
confidence intervals). In this case, we can conclude that the performance of the airports 
considered `good performers` is the same, independently of whether they have been self or 
peered evaluated. So we can conclude, that the performance of the group of `good 
performers` is quite robust to the peered evaluation. However, the fifth row shows that 
focusing on the performance of the group of `low performers`, it can be seen that the 
behavior of the airports is lower if they are peered evaluated. Another interesting result that 
can be extracted from table 4 is that `lower performers airports` are always dominated by 
the performance of the ‘good performers airports’, no matter what multipliers are used. In 
this sense, we obtain results that can be considered highly robust. Figure 3 shows the 
confidence intervals that appear in table 4. 



 

17

-5 0 5

LL
-L

G
LL

-G
L

LG
-G

L
LL

-G
G

LG
-G

G
G

L-
G

G

95% family-wise confidence level

Differences in mean levels of caso  
Figure 3. 95 % Confidence Intervals for means differences according to performance 
 

5. Remarks and conclusions 
The liberalization processes in the aviation sector have made popular the use of 

productivity measures, to compare the operational efficiency, effectiveness and the relative 
competitive position of airports and airlines. Airports' performance has been usually 
assessed based on some financial efficiency or operational efficiency throughout a big 
number of partial indicators. In this paper we present four different approaches, based on 
the flexibility of DEA, in order to fully rank the performance of Spanish airports. The first 
approach has involved the evaluation of a cross-efficiency matrix, in which each airport 
has been evaluated according to its weights and their rivals' weights. The second and third 
approaches have ranked the airports' performance through the exclusion of the airport 
being analyzed. And finally the fourth approach has been based in the analysis of the 
virtual airport and the comparison of the rest of the airports with this "champion 
performer". We have compared each approach, concluding that no one methodology can 
be prescribed here as the ideal solution to the question of ranking. 

The cross-efficiency method has been recommended by some authors in order to 
adjust a reasonable mechanism from which to choose input and output multipliers to 
compare airport performance. In our case, this method reveals that some of the most 
efficient airports in Spain are located in the main cities and in tourist or island cities. 
However, the less efficient airports are located not far from other airports in their 
respective regions. For example, San Sebastian, Santander and Vitoria are near the airport 
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of Bilbao, and some efficiency gains in the system can be plausibly obtained with some 
traffic diversion.  

We also show that there are no big differences between the super-efficiency 
approaches. In fact, there are only some differences if the airports operate in the area of 
increasing returns to scale. We only obtained an airport with problems of unfeasibility with 
the output-oriented VRS super-efficiency model. In this case, the method cannot be used to 
fully rank the airports. For this reason, we also calculate the output-oriented NIRS super-
efficiency model.  

We have seen more similarities between the rankings obtained through the cross-
efficiency and virtual-efficiency methods. However, we have also shown that the ranking 
DEA performance measures introduced to treat the problem empirically have produced 
conflicting indications of airport performance. Thus, we conclude that different approaches 
can be considered complements instead of substitutes, because they present a different 
ranking perspective of airport performance. To our knowledge, this is the first time that 
cross-efficiency has been applied to the airport industry, and whilst each method may be 
useful in explaining the overall performance of airports, none of the methods can be 
prescribed here as the best option to full rank the airports activity. 

Finally, we have shown the relationship between the cross-efficiency of the airports 
for the groups of low and good performers, analyzing the potential differences that can 
exist according to the different objectives of the airports on the self or peer evaluation, i.e. 
the existing differences that exist between the scores obtained when an airport is evaluated 
according to the multipliers of its group (self evaluation) or the multipliers of the other 
group (peer evaluation). This exercise sheds some light in the controversial issue of the 
comparability of the airports, and defeats the defense that some airport managers use to 
justify their poor performance. We have concluded, that the performance of the group of 
`good performers` is quite robust to the peered evaluation and `lower performers airports` 
are always dominated by the performance of the ‘good performers airports’, no matter 
what multipliers are used. 
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