
 

 

1 

 

FREIGHT TRANSPORT DEMAND MODELING: SPATIAL AND TEMPORAL 
ANALYSIS OF INTERNATIONAL FLOWS 

 
Rodrigo A. Garrido and  Patricia Isa 

Pontificia Universidad Católica de Chile, Department of Transport Engineering 
Tel: 56-2-686 4270, Fax: 56-2-553 0281 

rgarrido@ing.puc.cl 

 

Abstract 
This paper presents two approaches for modeling Chilean’s freight transportation 

demand in the international scope. The final aim is to compare both methodologies in 
base of the goodness of fit results, and the prediction ability of each approach. The first 
method proposes a pure dynamic multivariate representation, i.e., a VAR model. The 
second approach corresponds to a STARMA specification, which considers both spatial 
and temporal interaction among the series. Both approaches were applied separately to 
Chilean’s imports and exports demands. The VAR specification included external 
variables: the national or international GDP (for imports and exports respectively), and 
the real exchange rate. The results showed that the VAR specification was preferred to 
the STARMA model when the decision maker is interested in describing the 
phenomena taking place in each site. On the hand, if the aim is purely forecasting, the 
STARMA model should be preferred, due to smaller forecasting errors, and the fact 
that the STARMA model is more parsimonious. 

 
Topic Area: D2 Freight Transport Demand Modelling 

1. Introduction 

The freight transportation system is a complex structure that affects a significant 
part of the economy of a nation. Its organization involves various factors, where the 
freight transportation demand (FTD) is a key component.  

The literature shows different approaches to model the FTD according to an 
arbitrary classification scheme. Pendyala and Shankar (2000) mention that the 
modeling approaches differ in their level of complexity, geographic and temporal 
aggregation scale, and data requirements. Reagan and Garrido (2001) have classified 
models (on the basis of geographic field) into three groups; international, interurban 
and urban FTD models. 

The literature presents three families of models for freight transportation analysis. 
Firstly, the standard theory of international trade that covers from the absolute 
advantage philosophy to the spatial price equilibrium theory introduced by Samuelson 
(1952), considering also the ricardian or comparative advantage concept and the 
Heckscher-Ohlin model (Isa and Garrido, 2001). The second approach is the input-
output analysis introduced by Leontief (1973). The input-output tables describe 
transactions between producers and consumers in a certain region. This concept can be 
extended to a multiregional scenario, at different levels of geographical resolution. The 
third approach is based on time series analysis. There are several works that use this 
method to estimate and predict with FTD models. This type of methodology covers an 
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extensive group of models that range from univariate to multivariate time series models 
with different forms of specification. They have the advantage that need fewer data; 
they can be used to obtain short-medium term forecasts, and allow incorporating a 
spatial component and. Therefore, this approach is the one that is followed in this 
paper, and their applications will be explained further on. 

2. Theoretical Background 

2.1. The VAR Model  

The main advantages of modeling FTD with time series are: moderate data 
requirements, capability of making short/medium term forecasts and the possibility to 
incorporate a spatial component. Considering these advantages and after an exhaustive 
revision of the main specifications and applications of these models to FTD, the Vector 
Autorregression (VAR) models seem to be the most appropriate choice for a 
benchmark. Thus, the alternative specification is a Space-Time Autorregresive Moving 
Average (STARMA) model. 

A VAR process of order p (VAR(p)), describes the dynamic interactions between k 
random variables according to the following specification: 

tptpttt yyycy ε+Φ++Φ+Φ+= −−− K2211            ( 1) 

where yt is a ( )1k ×  random vector, Φi are fixed ( )k k×  autorregresive coefficient 

matrices, c is a fixed ( )1k ×  vector of intercept terms, and εt is a ( )1k ×  white noise 
process1.  Each component of the vector yt is regressed against its own lags, as well as 
other variables lags to the p-th order.  Another assumption implicit in these type of 
models is stationarity2. Unfortunately this assumption hardly holds in practice. The 
most common technique used to solve this problem in univariate cases, is the method 
of differentiation3. In multivariate cases this cannot be accomplished, because often the 
components of the vector yt are interrelated, and this relationships can be distorted 
when a differentiation is applied. When this occurs, the variables are cointegrated.  

A vector of series is cointegrated if each one of the series is integrated of first order, 
and exists a linear combination of them that follows a stationary process. The 
cointegration implies that even though each element of yt can experiment permanent 
changes, there exists a long term equilibrium relationship represented by the above 
mentioned linear combination. The parameters associated to this relationship form the 
vector of cointegration. In most cases, there exists more than one relationship of 
cointegration, such that the result is a cointegration matrix composed by each of the 

                                                 
1 A white noise process is a sequence of random variables that are not correlated, and have zero mean and 

constant variance.  
2 A stationary process assumes that the series remains in a certain equilibrium through time, with regard to 

a constant mean. In addition, the variance is also constant over time and the covariance between two time 
periods depends only on the lag between these periods.  

3 The method of differenciation creates a new random variable equivalent to the difference between the 
original series and itself, one lag apart. The new variable is known to be integrated of first order. An 
integration of greater order obviously implies differenciating more times, although the stationary is generally 
achieved with only one differenciation. 
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cointegration relationships. This matrix will be denoted hereafter by C, and its range is 
r, that corresponds to the number of cointegration relationships. 

To include the cointegration matrix in the specification of the VAR model, the 
Vector Error Correction (VEC) representation seems to be the most appropriate (Engle 
and Granger, 1987). Its form is as follows: 

tptpttt uyFyFHCyvy +∆++∆+−=∆ +−−−− 11111 K         ( 2) 

where ∆ represents the first order differentiation of the vector of variables yt, H is 
called loading matrix and contains the parameters associated to the cointegration matrix 
C, Fi corresponds to the parameter autorregresive matrix associated to the lag i, v is the 
fixed coefficients matrix, and ut denotes the random disturbances associated to the 
model, which follow a white noise process. The hypotheses sustained for this 
specification are the same of those of the VAR process. 

2.1.1. Applications to FTD 

There are several applications of VAR and VEC processes to estimate demand 
functions for exports and imports. Moguillansky and Titelman (1993), Bahmani-
Oskooee and Brooks (1999), Kulshreshtha, Nag and Kulshreshtha (1999), Veenstra and 
Haralambides (2000), Dutta and Ahmed (2001a, 2001b), Li, Luo and McCarthy (2002), 
are some examples. 

Some authors propose to estimate separate FTD models for each economic sector, 
this is the case of Moguillansky and Titelman (1993) and Li Luo and McCarthy (2002). 
Others instead propose to estimate a single FTD model between a region and its major 
commercial partners, like in Bahmani-Oskooee and Brooks (1999). Another alternative 
is to estimate the FTD of a certain region considering a particular mode of transport, to 
measure its relevance in the economy of a nation. An example of this case is presented 
in Kulshreshtha, Nag and Kulshreshtha (1999). Veenstra and Haralambides (2000) 
present a combination of the latter approach and the one that disaggregates the flows by 
economic sectors. 

2.2. The STARMA model 

The STARMA model (Pfeifer and Deutsch, 1980a, 1980b) is characterized by the 
presence of spatial and temporal dependence. The independent variable yi(t) for the i-th 
site (i=1,…,N) is a linear combination of its own past observations and disturbances as 
well as its neighbors. Its specification is as follows, 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 0 1

k kmp qN N
l l

i kl ij j kl ij j i
k l o j k l j

y t w y t k w t k t
λ

φ θ ε ε
= = = = = =

= − − − +∑∑ ∑ ∑∑ ∑     ( 3) 

where p denotes the autorregresive order, q is the moving average order, λk is the 
spatial order of the k-th autorregresive term, mk corresponds to the spatial order of the 
k-th moving average term, wij

(l) represents the spatial weight of order l4 (Anselin, 1988) 
between sites i and j, φkl and θkl are parameters to be estimated and εi(t) represents 
white noise random errors Normally distributed. 

                                                 

4 The spatial weight is a measure of the interrelation between two sites.  
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The only applications of this model to FTD are the ones realized by Garrido (1998, 
2000). In Garrido (1998), the FTD generation rate is considered as a stochastic process 
with both spatial and temporal interaction, which follows a STARMA process. Garrido 
(1998) concluded that the STARMA representation outperformed a purely time 
dependent specification. 

Another application of the STARMA model is the one presented by Garrido (2000), 
where this process was used to model the truck flows trough the  Mexico-Texas border. 
The results were employed to carry out an elasticity analysis to estimate short-term 
impacts of changes in the system at the operative level. 

3. Model application 

3.1. Methodology 

In accordance with the different approaches to model FTD, this paper presents two 
approaches to model Chilean’s FTD process. The first one is a multivariate dynamic 
model, which can be represented through a VAR or a VEC structure. This method 
suggests modeling separately the imports and exports demand function. For imports, 
the vector of exogenous variables considers the flow (traded goods per unit of time in 
CIF value), the national GDP, and the real exchange rate (to represent the price 
competition between the imported commodities and its national substitutes). In the 
exports case, the variables considered are the flow in FOB value, the international 
GDP, and the real exchange rate; these three variables have an analogous interpretation 
to the former case. 

The second approach incorporates the spatial component, through a STARMA 
process (one for imports and another for exports). In both cases, the vector of variables 
only includes the flows of the different sites considered for each case, but there is no 
inclusion of exogenous variables. This representation assumes that the spatial 
interaction among the different locations account for a significant portion of the data 
variability. 

The ultimate objective is to compare both methodologies in terms of goodness of fit, 
and prediction error. 

3.2. Data Analysis 

The data was obtained from a internet provider that supplies very detailed 
information about international flows. The period considered covered from January, 
1997 to December, 2001, and the unit of time considered was the month.  

Three modes were considered in this paper: maritime, air and land (excluding 
railway). The election of the border crossings to be considered was realized on the base 
of cargo movement, measured in CIF or FOB value, depending on the case. For the 
imports, four ports, one airport and one border crossing were considered For exports, 
six ports, one airport and one border crossing were considered.  

3.3. Estimation 

Several specifications were tried for each border crossing. In this section, only the 
best of them, (in terms of statistical significance of the estimated parameters, goodness 
of fit, parsimony, and whiteness and normality of the residuals) are described. 

The first step was to estimate the vectors (or matrices) of cointegration. According 
to the results shown in Table 2, for most of the export models there was no evidence to 
reject the presence of cointegration. For these cases, different specifications were 
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estimated, with and without considering cointegration. In the case of imports, only for 
one border crossing, the cointegration hypothesis was rejected; in this instance a VAR 
model was estimated considering first differences.  For the rest of the export models, all 
of them had better results considering cointegration. The cointegration vectors are 
shown in Table 3 and 4 for exports and imports, respectively. 

To improve the specification of the models, some dummy variables were added. In 
the case of imports, the observed seasonality during January and March with dummy 
variables. In the case of exports, there were shocks during January and February which 
were captured by two dummy variables. To take into account the evident seasonality 
that occurs every year, eleven dummies were added to the specification of the main 
port (Valparaíso). This approach was preferred to the differenciation technique, to 
avoid reducing the number of observations. All the dummies included are defined in 
the same way: 

1    if the time index corresponds 
      to the month i        1, 2, ,11
0    in other case

iD i
⎧
⎪ =⎨
⎪
⎩

K             ( 4) 

The results of the final estimations are shown in Table 5 and 6, for export and 
import models, respectively. Graphically, some examples of the fitness of certain 
models to the real data can be seen in Figures 3 to 8, where the predictions for the out-
of sample are also reflected by dot lines. This topic will be discussed further on. 

The results of each estimation showed good results in terms of goodness of fit. Even 
though some parameters are not statistically significant at 90% of confidence, they 
were not excluded because, the overall statistics would worsen if removed.  

The examination of the residuals showed an adequate behavior in terms of 
accomplishment of the hypothesis associated to VAR processes. To check whiteness, 
the Portmanteau test (Lutkepohl, 1993) was applied, and the skewness and kurtosis test 
(Maddala, 1996) was used to verify normality. In conclusion, given these results, the 
best estimated models are statistically correct. These models correspond to the 
benchmark against which the alternative model will be compared. 

3.4. Estimation of the STARMA Model 

Two STARMA models were estimated to represent imports and exports. The series 
were analyzed to remove nonstationarities. In the case of imports, it was necessary to 
apply differentiation once, so the data used covered 59 observations. For the exports 
case, due to an evident associated to the port of Valparaíso, it was necessary to apply 
the following transformation: 

( )( )121 1t tz B B z= − −                  ( 5) 

where zt corresponds to the original series, and B denotes the backshift lag operator 
(Box and Jenkins, 1976). The above expression shows that the first differentiation of 
twelve lags applied to the original series is used to remove seasonality, and the second 
one, of first order, looks for the removal of nonstationarities.  

The W matrix was built taking into account the results from Garrido (1998) were the 
most suitable specification for W was the correlation between each pair of sites (i.e. the 
Pearson coefficient). The resulting W matrices in this research had dimension 8 and 6, 
for export and import models, respectively. 
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The estimation results for each model are shown in Table 7 and 8. The dummy 
variable that was added to the export model, took into consideration the high variations 
that were present in February, for most of the series. Some graphic results are shown 
Figures 3 to 8; in most of the cases the estimated series do not fit very well to the 
observed ones, as is reflected by the low values of goodness of fit (R2). 

The same hypotheses that were verified for the VAR models were checked for the 
estimated STARMA models. The Portmanteau test could not be applied in this case, 
because, the degrees of freedom associated to the statistic used to verify the hypothesis, 
were very large, such that their critical values were not tabulated. However, different 
LM tests were applied instead. The same normality tests associated to skewness and 
kurtosis were applied here. The results were very satisfactory, indicating that the 
models did fulfill the associated hypothesis. 

4. Model comparison 

To compare the two approaches studied in this paper, the goodness of fit results and 
the prediction ability were considered, as relevant indicators. 

The results show that the models estimated using VAR or VEC specifications attain 
better goodness of fit than their STARMA counterpart. The latter is depicted in Figures 
3 to 8. 

Before the estimation process, a hold-out sample was selected to be used later to 
measure the predictive ability of the two modeling approaches. 

The chosen forecasting method is based on the minimization of the mean squared 
error (MSE) (Maddala, 1996), equivalent to calculate the expected value of the series 
for the period of interest. In this case, this period covered from January, 2002, to May, 
2002. These predictions were compared to the observed values. 

Table 9 and 10 show the comparison results for exports and imports, respectively. 
The percentage of error was used as a term of comparison. Considering this indicator, 
there is no clear evidence of which method should be preferred. However, there is a 
small advantage of the STARMA models, over the others. 

In econometric terms, clearly the STARMA specification is preferred, because the 
model is more parsimonious, and easier to estimate. 

5. Conclusion 

If the aim of the decision maker is to represent the phenomenon at each location and 
study their contemporaneous relations, it would be preferable to use a VAR 
specification, because the results indicate a better goodness of fit for this specification. 
In addition, the significance of the cointegration parameters indicate the presence of a 
long term equilibrium relation between the traded goods and other economic variables, 
which can be very helpful from a descriptive perspective. 

On the other hand, if the objective is to use the estimated model for forecasting 
purposes, the STARMA model seems to be more suitable, because even though both 
specifications give similar predictions, the STARMA model is more parsimonious. 
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APPENDIX 1: Figures 

Export flows in FOB value
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Figure 1: Some examples of export series 

 

Import flows in CIF value
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Figure 2: Some examples of import series 
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Export flows in FOB value, Airport
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Figure 3: Graphic results of the application of both approaches to model the 

airport exports 

Export flows in FOB value, Los Libertadores
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Figure 4: Graphic results of the application of both approaches to model Los 
Libertadores border crossing exports 
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Export flows in FOB value, Valparaíso
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Figure 5: Graphic results of the application of both approaches to model 
Valparaíso exports 

 

Import flows in CIF value, Airport
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Figure 6: Graphic results of the application of both approaches to model the 
airport imports 
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Imports flows in CIF value, Los Libertadores
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Figure 7: Graphic results of the application of both approaches to model Los 
Libertadores border crossing imports 
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Figure 8: Graphic results of the application of both approaches to model 
Valparaíso imports 
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APPENDIX 2: Tables 

 

Table 1: Results of the application of the ADF test5 

trend no trend trend no trend Level Difference
Arturo Merino Benítez airport 

export flow (EXP_A1) -28.23899 -26.71226 -109.28708 -108.02659 I(0) I(0)

Los Libertadores border 
crossing export flow (EXP_F1) -38.14783 -11.71466 -129.65483 -126.45923 I(1) I(0)

Antofagasta port export flow 
(EXP_P1) -24.60812 -10.46318 -206.92331 -207.08909 I(1) I(0)

Arica port export flow (EXP_P2) -15.87395 -7.22367 -160.60351 -158.26132 I(1) I(0)

Caldera port export flow 
(EXP_P3) -59.05415 -56.32274 -149.46116 -149.53043 I(0) I(0)

San Antonio port export flow 
(EXP_P4) -13.6701 -6.6216 -179.08667 -177.86023 I(1) I(0)

Talcahuano port export flow 
(EXP_P5) -14.32746 -4.12408 -307.69101 -304.42295 I(1) I(0)

Valparaíso port export flow 
(EXP_P6) -65.33298 -64.0186 -72.05215 -71.99604 I(0) I(0)

Arturo Merino Benítez airport 
import flow (IMP_A1) -56.28124 -16.97616 -151.33792 -149.85568 I(0) I(0)

Los Libertadores border 
crossing import flow (IMP_F1) -12.18296 -10.17541 -118.23109 -118.37621 I(1) I(0)

Antofagasta port import flow 
(IMP_P1) -11.73866 -10.06939 -157.27058 -156.99721 I(1) I(0)

San Antonio port import flow 
(IMP_P2) -12.25038 -8.78135 -123.07275 -122.53818 I(1) I(0)

Talcahuano port import flow 
(IMP_P3) -26.28483 -19.76251 -180.47601 -180.37816 I(0) I(0)

Valparaíso port import flow 
(IMP_P4) -8.62102 -2.70931 -212.53462 -212.58708 I(1) I(0)

National GDP (PIB_N) -43.78593 -3.63892 -116.32999 -116.2051 I(1) I(0)

External GDP (PIB_E) -4.60436 -1.78856 -61.17224 -59.65121 I(1) I(0)

Real exchange rate (TC) -16.68815 -1.99294 -41.39577 -37.209 I(1) I(0)

VARIABLES Levels (p=3) Differences (p=2) Conclusion

 

                                                 

5 The 5% critical values of the ADF test correspond to –19.98 and-13.38, with and without 

trend, respectively. (Hamilton, 1994) 
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Table 2: Results of the application of the LR Johansen test 

Model (Abbreviation)
H0 r = 0 r ≤  1 r ≤  2 r = 0 r ≤  1 r ≤  2
H1 r = 1 r = 2 r=3 r = 1 r = 2 r = 3
Arturo Merino Benítez Airport (EA1) 11.79 6.53 2.74 21.06 9.27 2.74 r = 0
Los Libertadores Border crossing (EF1) 8.49 5.14 3.58 17.21 8.72 3.58 r = 0
Antofagasta Port (EP1) 8.23 3.42 3.05 14.71 6.47 3.05 r = 0
Arica Port (EP2) 25.68 3.76 1.87 31.31 5.63 1.87 r = 1
Caldera Port (EP3) 20.75 3.97 1.55 26.27 5.52 1.55 r = 0
San Antonio Port (EP4) 12.13 4.24 3.34 19.71 7.58 3.34 r = 0
Talcahuano Port (EP5) 16.46 5.66 2.07 24.2 7.73 2.07 r = 0
Valparaíso Port (EP6) 12.61 3.19 2.66 18.46 5.85 2.66 r = 0
Arturo Merino Benítez Airport (IA1) 24.76 14.61 0.02 39.39 14.63 0.02 r = 1 or 2
Los Libertadores Border crossing (IF1) 19.28 5.63 0.03 24.94 5.66 0.03 r = 0 or 1
Antofagasta Port (IP1) 19.55 5.66 0.03 25.64 5.69 0.03 r = 0 or 1
San Antonio Port (IP2) 17.38 4.63 0.07 22.08 4.7 0.07 r = 0
Talcahuano Port (IP3) 19.5 13.27 0.12 32.89 13.39 0.12 r = 1 or 2
Valparaíso Port (IP4) 17.51 2.86 0.15 20.52 3.01 0.15 r = 0
Critical value at 5% 21.28 14.6 8.08 31.26 17.84 8.08
Critical value at 10% 18.96 12.78 6.69 28.44 15.58 6.69

I
M
P
O
R
T
S

λ-Max Trace
Conclusion

E
X
P
O
R
T
S

 

 

Table 3: Cointegration vectors estimated for each model of exports 
 

EXP_Frontier 
Post PIB_E TC 

1 -6.504 -8.841 -1.999
2 -3.111 4.599 7.979 

Los Libertadores (Border Crossing) 1 -2.512 -25.622 18.979
Antofagasta (Port) 1 -8.291 5.385 -11.352

1 7.691 -44.088 10.083
2 -0.183 -20.64 7.066 
1 -6.105 3.143 -5.57 
2 0.163 23.073 -9.705

San Antonio (Port) 1 8.597 -23.306 1.628 
1 -8.698 12.763 11.777
2 0.996 23.443 -14.693
1 -11.685 -28.571 22.371
2 1.601 -6.637 -9.733

VARIABLES 
MODEL COINTEGRATION 

VECTORS

Valparaíso (Port) 

Talcahuano (Port) 

Arica (Port) 

Caldera (Port) 

Arturo Merino Benítez (Airport) 
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Table 4:Cointegration vectors estimated for each model of imports 

IMP_Frontier 
Post PIB_E TC

Arturo Merino Benítez (Airport) 1 -19.459 -2.537 -14.028
Los Libertadores (Border crossing) - - - -

1 0.772 26.072 -22.689
2 2.834 1.845 1.84
1 0.728 -24.591 22.778
2 -5.688 -3.7 -1.415
1 2.9 14.775 -18.756
2 -3.608 22.099 -10.778
1 0.858 26.112 -22.374
2 6.595 10.533 3.661

MODEL COINTEGRATION 
VECTORS

VARIABLES

Valparaíso (Port)

Antofagasta (Port)

San Antonio (Port)

Talcahuano (Port)
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Table 5: Estimated models for exports 

 EA1 EF1 EP1 EP2 EP3 EP4 EP5 EP6

∆EXP_Frontier_Postt-1
-0.117    

(-0.801)
-0.886    

(-6.641)
-0.560    

(-3.390)
0.243   

(1.257)
-0.063    

(-0.327)
-0.356    

(-2.170)
-0.446    

(-2.504)
-0.478    

(-2.622)

∆EXP_Frontier_Postt-2
-0.087    

(-0.684)
-0.401    

(-3.389)
-0.283    

(-2.134)
0.067  

(0.467)
-0.101    

(-0.712)
-0.153    

(-1.179)
-0.308    

(-2.535)
-0.195    

(-1.252)

∆PIB_Et-1
-1.439    

(-0.709)
-2.168    

(-1.139)
0.623   

(0.323)
-4.301    

(-1.239)
-6.256    

(-1.773)
-1.008    

(-0.493)
-3.383    

(-1.440)
4.000   

(2.301)

∆PIB_Et-2
-2.404    

(-1.216)
0.164   

(0.086)
1.315   

(0.690)
-5.627    

(-1.667)
5.037   

(1.407)
-2.095    

(-1.036)
0.306   

(0.126)
-0.010    

(-0.006)

∆TCt-1
-0.707    

(-0.524)
-2.633    

(-2.100)
-0.109    

(-0.085)
2.965   

(1.424)
1.951   

(0.817)
1.029   

(0.761)
0.006   

(0.004)
-0.630    

(-0.560)

∆TCt-2
2.200     

(1.528)
-2.035    

(-1.563)
-0.606    

(-0.474)
-0.690    

(-0.326)
2.523   

(1.056)
-3.075    

(-2.325)
-3.373    

(-2.071)
0.269   

(0.220)

EC1
0.063   

(3.078)
-0.015    

(-0.756)
0.053   

(2.652)
-0.153    

(-4.737)
0.123   

(3.350)
-0.071    

(-3.399)
0.092   

(3.815)
0.036   

(2.330)

EC2
0.010   

(0.481) - - 0.002   
(0.051)

-0.019    
(-0.505) - 0.011   

(0.455)
-0.009    

(-0.563)

Constant 19.315   
(2.908)

-7.058    
(-0.750)

5.382   
(2.640)

-109.277  
(-4.130)

16.457   
(1.024)

-21.793   
(-3.396)

-18.500   
(-1.671)

23.843   
(2.165)

D1
-0.112    

(-1.298)
-0.314    

(-3.929) - - - - - 0.170   
(1.842)

D2
-0.288    

(-3.324)
-0.324    

(-3.745) - - - - - 0.342   
(3.312)

D3 - - - - - - - 0.738   
(6.538)

D4 - - - - - - - 0.349   
(2.167)

D5 - - - - - - - -0.152    
(-1.009)

D6 - - - - - - - -0.241    
(-1.818)

D7 - - - - - - - -0.192    
(-1.826)

D8 - - - - - - - -0.038    
(-0.456)

D9 - - - - - - - -0.064    
(-0.733)

D10 - - - - - - - 0.043   
(0.543)

D11 - - - - - - - -0.176    
(-1.988)

goodness of fit (R2 value) 0.458 0.618 0.544 0.486 0.488 0.534 0.711 0.851

Durbin-Watson statistic 1.841 2.021 2.072 1.828 2.102 1.914 2.007 1.965

MODEL (t-test in parenthesis)
Regresors
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Table 6: Estimated models for imports 

IA1 IF1 IP1 IP2 IP3 IP4

∆IMP_Frontier_Postt-1
0.134 

(0.531)
-0.343   

(-2.283)
-0.222   

(-1.442)
-0.180   

(-1.233)
-0.254   

(-1.514)
-0.680   

(-4.433)

∆IMP_Frontier_Postt-2
0.144 

(0.731)
-0.242   

(-1.635)
-0.206   

(-1.464)
-0.143   

(-0.979)
-0.064   

(-0.458)
-0.356   

(-2.549)

∆IMP_Frontier_Postt-3 - 0.100 
(0.688) - - - -

∆PIB_Nt-1
-0.441   

(-0.855)
-1.870   

(-3.334)
-1.533   

(-1.135)
-1.406   

(-2.296)
-1.590   

(-1.267)
-0.870   

(-1.447)

∆PIB_Nt-2
0.620 

(1.225)
-1.558   

(-2.559)
-2.679   

(-2.308)
-1.455   

(-2.773)
-2.577   

(-2.412)
-0.740   

(-1.467)

∆PIB_Nt-3 - -1.193   
(-2.283) - - - -

∆TCt-1
-0.151   

(-0.143)
-1.417   

(-1.151)
-0.519   

(-0.177)
-0.620   

(-0.477)
-0.993   

(-0.385)
0.795 

(0.645)

∆TCt-2
-1.552   

(-1.614)
-0.057   

(-0.044)
2.207 

(0.759)
-0.178   

(-0.137)
-7.851   

(-3.036)
-0.509   

(-0.417)

∆TCt-3 - -0.427   
(-0.361) - - - -

EC1
0.067 

(4.817) - 0.014 
(0.296)

-0.012   
(-0.586)

-0.090   
(-2.228)

0.015 
(0.779)

EC2 - - -0.100   
(-2.166)

0.040 
(1.948)

0.110 
(2.710)

-0.029   
(-1.512)

Constant 30.419 
(4.814)

0.054 
(2.073)

4.440 
(0.310)

3.859 
(0.614)

-7.124   
(-0.605)

4.176 
(0.502)

D1
0.103 

(1.748)
-0.011   

(-0.136) - - - -

D2
-0.094   

(-1.576)
-0.202   

(-2.668) - - - -

D3
0.091 

(1.346)
-0.071   

(-0.785) - - - -

goodness of fit (R2 value) 0.701 0.430 0.350 0.344 0.587 0.526

Durbin-Watson statistic 2.217 1.960 1.993 1.797 1.984 2.078

Regresors
MODEL (t-test in parenthesis)
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Table 7: Results of the estimation of the STARMA model for exports 

Parameters Estimated value Test-t value
Autorregresive (AR) -0.166321795 -3.247287048
Moving Average (MA) 0.226345941 5.522520927
Dummy -0.106629341 -2.832402704
goodness of fit (R2) 0.256387516  

 

Table 8: Results of the estimation of the STARMA model for imports 

Parameters Estimated value Test-t value
Autorregresive (AR) -0.125355419 -1.259069501
Moving Average (MA) 0.253749379 3.847765336
goodness of fit (R2) 0.262718275  

 

Table 9: Forecasting percentage errors for VAR and STARMA exports 
predictions 

VAR STARMA VAR STARMA VAR STARMA VAR STARMA
2002:01 -320.92% -329.46% -32.29% -18.82% 27.79% 35.95% -89.84% -34.04%
2002:02 -248.61% -332.74% -61.34% -52.90% 17.04% 28.65% -78.06% 19.88%
2002:03 -294.44% -306.36% -82.01% -23.45% 10.82% 34.34% -88.59% -4.57%
2002:04 -96.05% -92.44% -57.71% -17.99% 1.82% 40.14% -0.69% 39.78%
2002:05 -123.76% -114.35% -57.86% -10.71% -21.33% 38.67% -3.90% 36.93%

VAR STARMA VAR STARMA VAR STARMA VAR STARMA
2002:01 12.46% -5.83% -45.59% -15.45% 64.80% -6.84% -28.42% -8.47%
2002:02 -12.09% -45.78% -51.50% -16.69% 49.12% -19.65% -95.01% -20.88%
2002:03 8.06% -9.87% -31.43% -1.49% 52.76% -19.71% -64.16% 32.63%
2002:04 0.34% -7.12% -1.98% 24.34% 65.77% 7.16% 16.22% 56.12%
2002:05 13.92% 2.06% -10.21% 10.56% 59.77% -6.39% 11.66% 34.51%

EP5 EP6

EA1 EF1 EP1 EP2Prediction horizon

Prediction horizon EP3 EP4
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Table 10: Forecasting percentage errors for VAR and STARMA imports 
predictions 

VAR STARMA VAR STARMA VAR STARMA
2002:01 59.69% 63.15% 8.51% 1.09% 16.65% 2.83%
2002:02 56.14% 56.00% -47.23% -66.44% -51.10% -57.92%
2002:03 54.70% 62.19% -72.79% -66.85% 27.05% 1.06%
2002:04 57.33% 58.98% -50.23% -57.85% 34.73% 21.91%
2002:05 56.63% 60.83% 3.29% -1.21% 31.72% 19.99%

VAR STARMA VAR STARMA VAR STARMA
2002:01 14.61% -3.04% -80.39% -17.06% 28.87% 16.55%
2002:02 -41.16% -52.85% -102.64% -25.60% -17.66% -40.42%
2002:03 -1.00% -19.47% -73.18% -20.34% 27.77% 11.16%
2002:04 -9.67% -25.75% -206.36% -102.72% 21.34% 7.80%
2002:05 16.00% 4.04% -28.51% 10.58% 28.28% 13.19%

IP1

Prediction horizon IP2 IP3 IP4

Prediction horizon IA1 IF1

 


