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Abstract 

Decision-making models provide highway agencies with a plan for optimal decisions 
regarding maintenance and repair activities. The objective of these models is to minimize 
the total expected social cost of maintaining a system of facilities incurred by an agency 
and the users over a given planning horizon. Recent models take into account 
measurement error in the inspection process and optimize the inspection schedule. Other 
state-of-the-art models account for uncertainty in performance forecasting. Our research 
develops a model that jointly determines when to inspect and what maintenance activity to 
perform, while taking into account both uncertainty in the measurements and feedback in 
the estimation of the deterioration model parameters. A computational implementation is 
performed in order to study empirically the relative significance of uncertainties in the 
deterioration rate and the state of the system. 
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Uncertainty; Adaptive Control 
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1. Introduction 

Infrastructure management is the process through which agencies collect and analyze 
data about the state of infrastructure systems and make decisions on maintenance, repair 
and reconstruction (MR&R) of the facilities comprised in their network over a given 
planning horizon. Bridge maintenance, road improvement, and highway rehabilitation are 
examples of MR&R activities. 

Every time period, commonly every year, agencies face two types of decisions for 
each facility in the network: whether to inspect or not, and which MR&R action to 
perform, if any. In this role, they are supported by Infrastructure Management Systems 
(IMS) that provide them with tools to help them in this three-step process: 

 data collection, 
 interpretation, 
 decision-making. 

The agencies base their MR&R decision on performance models that forecast the 
behavior of the infrastructure facility under the effect of MR&R action and deterioration. 
The agencies’ objective is to minimize the expected cost related to the facilities’ use and 
maintenance over the planning horizon. 

This problem has been extensively researched and is known in the literature as the 
Infrastructure Maintenance and Repair (IMR) problem. 
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The focus of this paper is on decision-making at a facility level. The methodology that 
we develop can be used for each facility an agency is responsible for, as long as it does not 
face any budget constraint. In reality, agencies operate under budget constraints and level-
of-service constraints, in the context of a network of facilities. 

The main motivation of this research is to examine the effect of relaxing the annual 
inspection constraint, in the case of infrastructure management under model uncertainty. 

We develop a formulation that builds upon recent developments in the application of 
adaptive control (AC) schemes, i.e. decision-making algorithms that explicitly account for 
uncertainty in the performance models (Durango and Madanat, 2002). Furthermore, we 
relax the constraint of annual inspection that is typically imposed in MR&R models. 
 
2. Literature review  

The first row of Table 1 summarizes the main steps of the Event Chain in IMS. In the 
first phase, traffic, weather, and ageing contribute to facility deterioration. Then the 
agency observes the new state of the facility. The observation may or may not be error-
free, depending on the inspection technology. Given the measured state of the system, the 
agency makes decisions concerning the actions to be taken at the end of the period. The 
decision rule in the state-of-the-art IMSs is to chose an action that will minimize the sum 
of expected future and present cost. The actions may include MR&R and inspection 
activities. 

A review of existing research on which this research is based shows that, so far, no 
model has been developed to take into account uncertainty in all stages of this event chain. 
Table 1 summarizes the main features of those models. The following subsection describes 
these models in more detail. 

 
 

Model Facility 
deterioration 

Observation Decision Action 

MDP Probabilistic True state MR&R Annual Inspection 
Joint decision Probabilistic True state MR&R 

Inspection 
Relaxation of the 
annual constraint 

Latent MDP Probabilistic Measured state MR&R 
Inspection 

Relaxation of the 
annual constraint 

AC Probabilistic True state MR&R Annual Inspection 
Proposed model Probabilistic Measured state MR&R 

Inspection 
Relaxation of the 
annual constraint 

Table 1. Features of IMR models 
 

MDP- based models take into account the uncertainty in facility deterioration 
forecasting. The state of the facility is discretized and the deterioration process is 
represented by the transition probabilities defined below: 

),|Pr()( 1 aaixjxa ttt
t

ij ==== +π    (1) 
where: 

 1+tx  is the state of the facility at the beginning of period t+1, 
 tx  is the state of the facility at the beginning of period t, 
 ta  is the action taken in period t. 

The Transition Probabilities Matrix (TPM) can be derived from empirical data. Several 
approaches to estimate the TPMs are present in the literature. One method that uses 
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statistical estimation and time series data is found in Carnahan et al. (1987) and Olsonen 
(1988). Another is proposed by Madanat (1991) and is based on a performance model and 
the mathematical properties of Markov Chains. Madanat and Wan Ibrahim (1995) describe 
how Poisson regression and, more generally, negative binomial regression can be used to 
estimate the TPMs coefficient, which ensures more statistically sound estimation and 
recognizes the discrete nature of the condition state transitions. Finally, Mishalani and 
Madanat (2001) developed a stochastic duration-based methodology to estimate the 
transition probabilities that specifically takes into account the effect of causal variables, 
and recognizes the correlation between successive observations. 

If the deterioration process that governs the TPMs is the same during each period, then 
the rate is homogeneous with respect to time. In this case, the transition probabilities are 
constant over time. 

Then,      )()( aa ij
t
ij ππ =    (2) 

The MDP based formulation for the infrastructure maintenance and repair problem is 
solved by dynamic programming (DP) over a finite horizon. The objective function is the 
discounted cost-to-go until the end of the planning schedule. The cost incurred during each 
period includes the sum of the user costs and the cost of the MR&R activity chosen, which 
is incurred by the agency. The solution gives a set of actions to be performed at each time 
period for a given state of the facility.  

The primary assumptions of this model are:  
 the true state of the facility is observed during inspections, 
 the evolution of facility condition depends only on the previous 

state and the last action, 
 an inspection is performed every year. 

MDP formulations fail to : 
 include the possibility of flexible inspection schedule, 
 account for uncertainty in the inspection process, 
 incorporate information about the actual deterioration process2. 

The incorporation of joint decisions that includes inspection and MR&R activity is 
relatively straightforward. The DP objective function depends on three variables: time, 
state, length since last inspection was performed. This issue has been investigated by 
several researchers, such as Klein (1962) and Mine and Kawai (1982). Nevertheless these 
models and their variations fail to account for uncertainty in the measurement process.  

Research by Humplick (1992) has shown that there are significant measurement errors 
in existing infrastructure inspection technologies. This can lead to taking the wrong 
MR&R activity if the prescribed activities for the true condition and the measured 
condition are different. A second limitation of traditional MDP formulations is the lack of 
systematic methodology for inspection decision-making. Current methods for inspection 
scheduling are ad hoc and subjective (for example Shahin and Kohn, 1981). 

The purpose of the LMDP is to account for uncertainty in the inspection process and to 
allow MR&R decision making at each stage –not only when an inspection is performed. 
This entails the violation of a basic assumption of the MDP methodology: perfect 
information about the state. Therefore the technique of state augmentation for DP, whose 
theory is described in Bertsekas (1987), was used by Madanat and Ben Akiva (1994). This 
technique takes advantage of the fact that at any point in time, the decision-maker knows 
the history of the past actions taken and observed states. In the LMDP, the measured state 
is related to the true state of the facility by measurement probabilities. 

                                                 
2 In practice, agencies update their deterioration model by using the observed transitions. A failure to 
account for this updating in the DP formulation results in suboptimal policies. 
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State augmentation 
Under the state augmentation technique, the state of the system at stage t takes into 

account all the information available to the decision maker, since the beginning of the 
planning horizon, and that is relevant for decision-making. This is summarized into the 
information set It. This set includes at any point in time the information about previous 
actions and observations i.e. 
     { }tttt xaxaxaII ˆ,,ˆ,...,,ˆ,, 111000 −−= ,   (3) 
where I0 is the initial information available at the start of the planning horizon and tx̂  is 
the observed state during period t. 
 
By recursion, we have { }tttt xaII ˆ,, 11 −−= . This shows that the evolution of the information 
set follows a Markovian Process: 
   ( ) ( )1111111100 ,|Pr,,ˆ,...,,,ˆ,,|Pr −−−−− = ttttttt aIIIaxaIxaII   (4) 
 
Therefore, we can use a DP formulation over the space of the information sets. The 
objective function is generalized into the minimum discounted expected cost-to-go given 
the information available. The cost for each stage is generalized from ( )tt axg ,  to 
( ) ( )[ ]tttxtt IaxgEaIg

t

|,,~ = , which includes the following conditional probability 

distribution: ( )tt Ix |Pr  i.e. in vector notation tt IP | . 

tt IP | is known in the literature as the information vector. 
 
Under these assumptions, the observed state is now only probabilistically related to its true 
state. The distribution of the measurement relative to the true state is known and depends 
on the technology used. Although only the observed state is available, forecasting models 
are still based on the true state.  
The model assumes the availability of the following measurement probabilities: 
    ( )rRjxkx ttt

r
jk ==== ,|ˆPrε    (5) 

where: 
 tx̂  and tx  are respectively the observed and true condition state of the facility, 
 j, k are discrete condition states, 
 Rt is the technology used for the measurement. 

Measurement probabilities can be derived empirically using measurement error 
models. Such models relate pavement performance to specified indicators. Commonly 
used indicators in the field of pavement management are the Pavement Condition Index 
(PCI) as detailed in Shahin and Kohn (1981) and the Present Serviceability Index (HRB 
1962). In the remainder of this paper we will only consider the PCI scale. Madanat (1991) 
derives a relationship between the true value of an indicator and its measured value using a 
given technology. It assumes normality in the error distribution and ignores bias in 
measurement error. Humplick (1989) shows that biases can be statistically estimated, so 
they are neglected in this model, since they can be corrected for. 

The DP formulation is implemented in the following manner: at the beginning of the 
planning horizon, the agency determines an initial information vector according to its 
beliefs about the state of the facility. The state vector is then updated forward in time, 
according to Bayes’ rules, taking into account: 

 the previous information vector, 
 the forecasting model, 
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 the observation made, 
 uncertainty in the inspection process. 

At each stage of the DP problem, the decision variables are now whether to inspect or 
not and what MR&R activity to perform. 

The DP solution is in the form of a policy *µ  i.e. ( ) ( ){ }1
*

10
*
0 ,..., −− TT II µµ , where T is the 

end of the planning horizon and [ ]Tt ,...,0∈∀ , ( ) ( )*** , tttt RaI =µ . 
LMDP models address the issue of uncertainty in the inspection process and include 

flexible joint inspection and MR&R decision making, but: 
 they do not allow for uncertainty in the choice of performance models, 
 they fail to take into account possible feedback from observations to improve the 

performance models. 
The models described in the preceding paragraphs all refer to a single set of TPM for 

performance forecasting. Yet Carnahan (1988) acknowledges that those models are subject 
to significant uncertainty particularly in the exogenous factors and are often updated in the 
course of operations by the agency. Hence the need to include intertemporal feedback and 
performance model updating in the original planning process. 

Current research on the application of AC schemes to the IMR problem has focused on 
the characterization of performance forecasting by deterioration rates (Durango and 
Madanat, 2002). As the information about the true deterioration rate is uncertain, it can be 
described by a discrete probability distribution { }D

tttt QQQQ ,...,, 21=  where D is the 
number of possible deterioration rates. More specifically, at the beginning of each stage, 
the decision maker has the following beliefs about the deterioration rate: 

   [ ] ( )tt
d
t IddQDd |~Pr,,..,1 ==∈∀     (6) 

where d~  is the true deterioration rate. 
To account for uncertainty in the deterioration rate in a DP formulation, the method of 

state-augmentation was used by Durango and Madanat (2002). The augmented state at the 
beginning of stage t is now defined by the true state of the system, which is revealed at the 
end of the previous stage, and the beliefs about the rate: { }

tt Qx , . The objective function is 
the discounted, expected (over the distribution of the deterioration rates) cost-to-go. The 
goal is to provide a set of policy functions that give the optimal MR&R activity at each 
stage, for any state of the system. The DP solution will 
give [ ] { } *,,1,..,1 ttt aQxTt ∀−∈∀ , the action that minimizes the discounted expected 
cost-to-go. 

Two AC schemes have been studied: the Closed Loop (CL) scheme that includes 
Bayesian updating in the argument of the objective function, and a suboptimal Open-Loop 
Feedback (OLF) scheme that takes into account the agency’s beliefs about the rate only in 
the expected cost. The major difference between CL and OLF is that the latter assumes 
that the current updating will be the only updating performed. 
The CL and OLF schemes implemented in former studies did not allow flexible inspection 
and did not account for uncertainty in the measurement process. In spite of the efficiency 
of DP, the computer implementation raises the issue of discretization and coarseness of the 
discrete grid.  
 
3. Formulation 

In the remainder of this paper, the following additional notation will be used: 
N number of possible states 
α  discount factor 
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The definition of the information set is similar to Equation (3) but includes information 

about past inspections i.e.  
    { }ttttt RxaxaRxaII ,ˆ,,ˆ,...,,,ˆ,, 1110000 −−=    (7) 

or in the recursive version, assuming I0 is known, 
     { }11 ,,ˆ, −−= ttttt IRxaI      (8) 
 

The elements of the set of beliefs about the deterioration rate that we introduced in 
equation (6) have to be modified to include this new information set. 
To simplify the notation, we replace ( )1111 ,,|,ˆ, −−−− tttttt

d
t aQIPxRQ  by d

tQ . 
 

Figure 1 summarizes the main decision-making steps that are accounted for in the DP 
formulation that we present later. The first event at the beginning of a time period t is the 
usage of the facility, which implies a user cost that is a function of the true state of the 
facility. Then an inspection can be made according to the decision made at the previous 
stage, which increments the information vector available to the agency by the observed 
state. Once the decision maker has this information, she can update her beliefs about the 
deterioration rate, and the state of the facility. The decision making involves the choice of 
action to perform during time period t, as well as whether to inspect or not at the 
beginning of the next period –note that stage t+1 inspection cost is incurred during this 
time period t. Before the start of the next stage, the true condition state of the facility 
experiences deterioration under the effect of weather, traffic and ageing. 

 

 
Figure 1. The decision-making framework 

 
Before presenting the recursive formula that is at the core of the DP algorithm, we will 

present the costs, performance models and measurement error formulations that constitute 
the model specification. 
 
Transition Probability Matrices 

The transition probability matrices that are used to forecast the effect of each action on 
the true state of the facility, depending on the true deterioration rate are the different 
performance forecasting models that we consider. Now the TPMs depend on the pair 
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initial true state/MR&R activity and on the deterioration rate, and they are therefore 
denoted by: 
   ( ) ( )tttt

d
ij aixddjxa ,,~|Pr 1 ==== +π    (9) 

 
Measurement error 

The notation for modeling measurement error is the same as the one presented for the 
LMDP model, but we need to be more specific about the choice of technology. The 
decision of whether to inspect or not can be modeled by a choice between two 
technologies: one that has the measurement precision of the actual inspection technology, 
as described above, and the other with a measurement error of infinite variance. The 
model therefore inherently allows for using a set of different technologies. However in our 
model we reduce this to a binary choice denoted here by Rt=1 for inspecting using the 
available technology or Rt=0 for not inspecting. 

The “no inspection” decision (Rt=0) refers to a technology where for any true state the 
measurement probability is uniformly distributed: 

  [ ] ( )
N

RjxkxNkj tttjk
10,|ˆPr,,...,1, 0 =====∈∀ ε   (10) 

This case, where every condition state is equally likely to be observed regardless of the 
true state, is shown to be equivalent to not inspecting in Madanat and Ben Akiva (1994). 
The cost associated with such an inspection technology will obviously be zero. 
 
Cost 

In the remainder of this section we will use the notation ( )1,, +ttt Raxg  for the generic 
stage cost incurred during period t for performing activity at on a facility in state xt and 
choosing to use inspection technology Rt+1 at the beginning of next period. The breakdown 
of this stage cost is: 
User cost: a function of the condition state of the facility; it cannot be easily 

quantified, it is often replaced by a minimum allowable standard; it is 
denoted by )( txuc . 

Inspection cost: a detailed study of how inspection cost is related to measurement 
error standard deviation can be found in Madanat (1991); we will 
denote it by m.  

MR&R cost: depends on both the activity performed and the true condition state of 
the facility; it is denoted by ( )tt axmrrc , . 

Salvage value: at the end of the planning horizon, an infinite cost is assigned if the 
facility does not reach a minimum standard level. We will denote by 
( )txs  the salvage value corresponding to condition state tx  

 
The above list can be summarized by the generic definition of the stage cost: 

   ( )1,, +ttt Raxg = ( ) ( )tttt axmrrcRmxuc ,1 +⋅+ +   (11) 
 

The DP formulation of the facility infrastructure maintenance and repair problem 
under measurement error and uncertainty about the rate includes, like any DP, a recursive 
formula and boundary conditions. 

The arguments of the objective function can be found when asking “the consultant 
question”, as in Dreyfus and Law (1977). The procedure is the following: if we were to be 
hired as consultants and asked to minimize the expected discounted cost-to-go, what 
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information would we need? The answer is: tt IP |  and tQ . Madanat and ben Akiva 

(1994) emphasize that tt IP |  is a sufficient statistic for It. 
 
Recursive formula 

At each stage, the minimum expected cost-to-go ( )tttt QIPf ,|  can be expressed in 
terms of the stage cost and the expected cost-to-go in the next stage. 
 
( )=tttt QIPf ,|  

( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅⋅+⋅=∑ ∑ ∑ ∑

= = = =
+++++

+

+

N

i

D

d

N

j

N

k
tttt

R
jkt

d
ij

d
ttttttt

Ra
QIPfaQRaxgIix t

tt

Min
1 1 1 1

11111
,

,|,,)|(Pr 1

1

επα (12) 

 
Note that this formula presents a clear explanation of why the inspection decision 

about whether to inspect or not during period t+1 is made in period t: the inspection in t+1 
directly influences the information vector 11 | ++ tt IP , which is used for the recursive 

computation of the objective function in period t and the measurement probabilities 1+tR
jkε . 

The recursive formulation is obtained via successive probability conditioning of: 

( ) ( ) ( )[ ]11111|ˆ,|
,

,|,,,|
1

1

+++++ ⋅+=
+

+

tttttttIxIx
Ra

tttt QIPfRaxgEQIPf
tttt

tt

Min α   (13) 

 
Boundary condition 

The boundary condition is: 

( ) ( )[ ] ( ) ( )∑
=

⋅===
N

i
TTTTIxTTTT isIixxsEQIPf

TT
1

| |Pr,|     (14) 

 
Bayesian updating 

Our model specifies that the beliefs about the rate tQ  are updated before the beliefs 

about the facility condition state tt IP | . 
 
Updating the beliefs about the facility deterioration rate 
Updating the beliefs about the rate takes into account: 

 the current inspection decision Rt,  
 the observed state kxt =ˆ , 
 the past beliefs about the rate and the state, i.e. 11 | −− tt IP and 1−tQ , 

 the last action taken 1−ta . 
 
After the observation phase in period t, the beliefs about the rate are modified so that: 

d
tQ  ( ) ( )11 ,,,ˆ|~Pr|~Pr −−==== ttttt IRaxddIdd  

 
( ) ( )
( ) ( )∑

=
−−−−

−−−−

=⋅

=⋅
= D

d
ttttttt

ttttttt

IRaddIRadx

IRaddIRadx

1'
1111

1111

,,|'~Pr,,,~|ˆPr

,,|~Pr,,,~|ˆPr
 

As ( ) ( ) d
ttttt QIddIRadd 1111 |~Pr,,|~Pr −−−− ==== , we can write: 
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d
tQ  

( )
( )∑

=
−−−

−−−

⋅

⋅
= D

d

d
ttttt

d
ttttt

QIRadx

QIRadx

1'

'
111

111

,,,~|ˆPr

,,,~|ˆPr
 

If we observe that: 

( )11 ,,,~|ˆPr −−= tttt IRadkx  ( ) ( )∑
=

−−−− =⋅==
N

j
ttttttttt IRadjxIRadxkx

1
1111 ,,,~|Pr,,,~,|ˆPr  

    ( ) ( )∑∑
=

−−−−
=

=⋅==⋅=
N

i
ttttt

N

j

R
jk Iixaixdjxt

1
1111

1

|Pr,,~|Prε  

It follows that: 
( )11 ,,,~|ˆPr −−= tttt IRadkx  ( ) ( )∑ −−−− =⋅=

ji
tttt

d
ij

R
jk Iixat

,
1111 |Prπε    

 (15) 
As ( )111 |Pr −−− = ttt Ijx  is a component of the state vector from the previous stage, we 

have a recursive expression for d
tQ . 

   d
tQ  

( ) ( )

( ) ( )∑∑

∑

=
−−−−−

−−−−−

⋅=⋅

⋅=⋅
= D

d

d
t

ji
tttt

d
ij

R
jk

d
t

ji
tttt

d
ij

R
jk

QIixa

QIixa

t

t

1'

'
1

,
1111

'

1
,

1111

|Pr

|Pr

πε

πε
  (16) 

where k tx̂= . 
Note that when the “no inspection” decision has been made, the beliefs about the rate 

are not updated. Indeed, no additional information is available to the decision-maker. 
 
Updating of the beliefs about the facility condition state 

Given the updated beliefs about the deterioration rate, the decision-maker then revises 
her beliefs about the new state of the facility condition, taking into account: 

 the current inspection decision tR and observed state kxt =ˆ , 
 the new beliefs about the deterioration rate tQ , 

 the past beliefs about the facility condition state 11 | −− tt IP ,  

 the last action taken 1−ta . 
 

The beliefs about the facility state are defined by the state vector tt IP | : 

( )ttt Ijx |Pr =  ( ) ( )∑
=

=⋅===
D

d
ttt IdDIdDjx

1

|~Pr,~|Pr  

  
( )
( )∑ ∑ ⋅==

⋅==
=

−−

−−

d
j

R
kjtttt

R
jkttttd

t
t

t

IRadDjx

IRadDjx
Q

'
'11

11

,,,~|'Pr

,,,~|Pr

ε

ε
 

 
In the same fashion as earlier, we write: 

( )11 ,,,~|Pr −−== tttt IRadDjx  ( ) ( )11111
1

|Pr,,,~,|Pr −−−−−
=

=⋅====∑ ttttttt

N

i
IixIRadDixjx  

    ( ) ( )∑
=

−−−− ==
N

i
tttt

d
ij Iixa

1
1111 |Prπ    (17) 
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Again, we notice that ( )111 |Pr −−− = ttt Ijx  has already been determined, so: 
 

  ( )ttt Ijx |Pr =  
( ) ( )

( ) ( )∑ ∑
∑

⋅=

⋅=
=

−−−−

−−−−

d
ij

R
kjtttt

d
ij

R
jktttt

d
ij

id
t t

t

Iixa

Iixa
Q

,'
'1111'

1111

|Pr

|Pr

επ

επ
 (18) 

 
One should notice that if the agency’s beliefs about the deterioration rate are such that 

an observation is considered impossible, the beliefs are not updated; i.e. if the observation 
is inconsistent with the available performance forecasting models, the agency does not 
take it into account for the next decision. 

In the case where no inspection has been performed at the beginning of the time 
period, the state vector is updated such that the new probabilities are the weighted 
transition probabilities. Although no new information is available, the decision-maker 
updates her beliefs using the performance forecasting models. 
 
Expected cost 

In the computational study and for simulation purposes, we will be interested not in the 
minimum total expected cost as defined in the objective function, since it does not 
describe properly the costs actually incurred by the agency. Our focus will be on the 
expected cost given that we perform the optimal policy and that the true rate is actually d̂ . 

This expected cost can be defined recursively as the expected cost-to-go after the 
observation phase of stage t, given that the actual deterioration rate is d̂  and we perform 
the optimal policy given by the DP formulation: ( )dQIPE tttt

ˆ,,| . 

( )dQIPE tttt
ˆ,,|  

( ) ( ) ( ) ( )∑ ∑ ∑
= = =

++++ ⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅⋅+⋅== +

N

i

N

j

N

k
tttt

R
jkt

d
ijtttttt dQIPEaRaxgIix t

1 1 1
1111

*ˆ** ˆ,,|,,|Pr
*

1επα   (19) 

where: 
 ( ) ( )ttttt QIPRa ,|, *** µ=  is the optimal policy given by the DP algorithm, 

 ( )111 ,| +++ ttt QIP  are updated according to the Bayesian rules given above. 
 

The actual cost incurred at each stage is not available to the decision maker during the 
planning phase and not used in the optimization process; therefore we did not include it in 
our computational studies. Nevertheless, this information becomes available in the 
implementation phase, and thus should be accounted for during that process. However, we 
did not address this issue in our research. 
 
Computational complexity 

If we use the notation GRS, and GRD, for the number of points used to discretize the 
beliefs about the state, and the rate respectively; the computational complexity associated 
with the calculation of the optimal policy is in the order of 

( )( )DNDNAGRDGRST DN ⋅+⋅⋅⋅⋅⋅Ο −− 2311 . As this is exponential in both GRS  and 
GRD , we have subsequently limited our computational implementation to relatively small 
values for those parameters. 
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4. Computational study 
We considered a finite horizon IMR problem, where the planning horizon is 15 years, 

the discount rate being 
d−

=
1

1α  where d is 5%. 

The condition state of the facility is discretized into 8 states, each representing 12 PCI 
points on a scale of 100, as described by Carnahan (1987). State 8 indicates that the 
facility is in excellent condition. The agency has 7 possible MR&R activities ranging from 
no action (1), routine maintenance (2) to overlays of different depths (3-4-5-6) and 
reconstruction (7). 

Three possible deterioration rates are considered, slow medium and fast. With each 
deterioration rate is associated a set of 7 of Transition Probability Matrices, each 
corresponding to a possible activity. The TPMs are taken from Durango and Madanat 
(2002). The deterioration process is assumed to exhibit a normal distribution, and 
common-sense rules the overall process in the following way: 

 Each MR&R action has a mean effect on the transition from a given state, 
 As the deterioration rate increases, these mean effects are negatively impacted, 
 Faster deterioration rates have higher variance in forecasting. 

 
In our computational studies, the measurement error is assumed to be zero i.e. 11 =jkε  

if k=j, 0 otherwise. If an inspection is performed, the agency has perfect information. This 
assumption was made to reduce the number of parameters and simplify the interpretation 
of the results. 

As mentioned earlier, the stage cost depends on the cost of inspection, the user cost 
and the cost of the MR&R activity. The values used for these costs were taken from 
Durango and Madanat (2002). As in Madanat and Ben Akiva (1994), the inspection cost is 
assumed to be 0.065$/sq yard. Although this does not reflect the actual cost of the 
assumed error-free process, it is only used for comparison purposes. 

Figures 2 and 3 show a comparison of the expected cost when the true rate is either 
Slow or Fast. For these figures, the initial beliefs about the state are 00 | IP  = (0, 0.1, 0.1, 

0.2, 0.4, 0.2, 0, 0); “slow” indicates that the initial set of beliefs about the rate is 0Q =(0.8, 

0.1, 0.1), “fast” indicates that it is 0Q = (0.1, 0.1, 0.8), whereas “no” stands for non-

informative initial beliefs i.e. 0Q = (0.3, 0.4, 0.3). 
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Figure 2. Expected cost: True Rate = Slow 
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Figure 3. Expected cost: True Rate = Fast 

 
As expected, in both instances –whether the true rate is Slow or Fast, when the initial 

beliefs match the actual rate, the expected cost is the lowest. Furthermore when the true 
rate is actually fast, all the expected costs are higher. What is surprising on the other hand 
is that the non-informative case is the worst case in both instances: it seems counter 
intuitive to have a lower expected cost when the initial beliefs are wrong. Similar 
qualitative observations can be found in Durango and Madanat (2002). 

An explanation can be found in Figure 4., which presents the result of a simulation 
performed according to the optimal policy given by our model. As above, the initial 
beliefs about the state are 00 | IP  = (0, 0.1, 0.1, 0.2, 0.4, 0.2, 0, 0) and the actual initial 
state is assumed to be 5. The actual rate is assumed to be fast. The beliefs about the rate 
are averaged over the 1,000 simulations. We plot the trajectory of the average 

3
tQ =Pr(Actual Rate = Fast | information), where average stands for mean across instances 

of the experiment. 
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Figure 4. Trajectories of 3

tQ  - True Rate = Fast 
 

As 3
tQ  converges much faster when the initial beliefs are “slow”, i.e. wrong, than 

when they are non-informative, the actions taken in the non-informative case cannot be as 
close to optimality as those taken when the initial beliefs are wrong. Hence the higher 
expected cost when the initial beliefs about the rate are more spread out.  
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The faster convergence of the beliefs in the wrong case compared to the non-
informative case can be explained qualitatively by the contrast between the observations 
and the expectations. This contrast is augmented by the action taken in both cases: when 
the initial beliefs are wrong, i.e. “slow” the MR&R actions are expected to be mild 
compared to the “no” case. Therefore, low condition states are more likely to be observed 
than when a severe action is taken. Such unexpected outcomes provide feedback that leads 
to drastic revision of the beliefs in the “slow” case. Quantitatively, this contrast is 
expressed by the weight of the Slow deterioration rate in the denominator of the Bayesian 
updating formula being equal zero. 

A primary objective of this research is to understand the relative role of uncertainties 
in deterioration rate and condition state of the facility. In order to investigate the effect of 
variance in the initial set of beliefs 0Q  and P0|I0, we conducted a case study where 00 | IP  

can have a low or high variance around an initial state 5, i.e. 00 | IP  = (0, 0, 0, 0, 1, 0, 0, 0) 

and 00 | IP  = (0, 0.1, 0.1, 0.2, 0.4, 0.2, 0, 0). The initial uncertainty about the rate can be 

high, in other words 0Q =(0.3, 0.4, 0.3), or low. We only considered the effect of 

decreasing uncertainty about the deterioration rate in the correct direction, i.e. 0Q =(0.8, 

0.1, 0.1) when the actual deterioration rate is Slow, and 0Q =(0.1, 0.1, 0.8) when it is 
actually Fast. 

Figures 5 and 6 present the expected costs in the Slow and Fast deterioration rates 
respectively. The ∆ s represent the expected benefit in moving in the direction of the 
arrows. The double-lined arrows indicate the largest expected benefit in each case, if we 
start from the upper right corner of the figure, i.e. when both types of uncertainty are 
initially high. 

Figure 5. Relationship between expected cost and sources of initial uncertainty: 
True Rate = Slow 
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Figure 6. Relationship between expected cost and sources of initial uncertainty: 
True Rate = Fast 

 
We can observe that a reduction in initial uncertainty always results in a decrease in 

the expected cost. If the rate is actually fast, there is more value in first decreasing the 
uncertainty about the state , as can be seen in Figure 6. This is because the beliefs about 
the rate converge faster when the actual rate is fast. 

Assuming that the agency is initially in a situation where it has high uncertainty about 
both the rate and the state, Figure 5 shows that when the actual rate is Slow, reducing first 
uncertainty about the rate brings more value, whereas Figure 6 recommends a reduction in 
state uncertainty as the first step, since it achieves higher benefits. If we consider that the 
true deterioration rate is a variable revealed only at the end of the planning process, a 
cautious (Maximin) strategy vis-à-vis the value of information consists of reducing the 
uncertainty about the state first.  

In practice, agencies have fairly advanced measurement technologies whereas they 
rarely have accurate and precise sets of performance forecasting models in their IMR 
planning decisions. It can be concluded from the above figures that the incorporation of 
improved performance forecasting models, that reduces the uncertainty about 
deterioration, in the planning process always provides value. 
 
5. Conclusions 

This paper has presented an IMS model that explicitly allows a flexible inspection 
schedule, takes into account measurement error, and includes feedback from 
measurements to improve the characterization of the deterioration rate. 

The results show that the least expected cost is observed when the initial beliefs about 
the deterioration rate are correct, which is an intuitive result. However, the case of non-
informative initial belief leads to the highest expected costs. The computational study 
clarified the role of the convergence of the beliefs about the deterioration rate in the 
expected cost. We therefore recommend that an agency should not initialize the 
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implementation phase with the probability of all the performance models being equal. 
Even a wrong initialization would lead to smaller expected cost. 

Finally, as the proposed model accounts for both state and performance model 
uncertainties, it was possible to determine the relative value of decreasing each source of 
uncertainty. Results showed that, if an agency is assumed to have high variance in both 
initial beliefs about the rate and the state, a cautious recommendation is to decrease 
uncertainty about the state first. 

The scope of this research was intentionally limited to the facility-level of the IMR 
problem. An immediate extension is to see how the problem translates to the network-
level, with budget constraints. The issue of implementation and “real-time” control can 
also be investigated in this context. 
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