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Abstract 
In this paper, the possibility of applying simplified schemes, such as cordon pricing, as 

a second-best solution of the toll network design problem is investigated in the context of a 
multiclass equilibrium on multimodal networks with elastic demand. To this end a suitable 
equilibrium model is presented together with an efficient algorithm capable of solving it 
for large scale networks in quite reasonable computer time. This model represents an 
implementation of the theoretical framework proposed in a previous work on the toll 
optimization problem, where is stated the validity of marginal cost pricing for the context 
at hand. The application of the model to real cases shows, not only that through cordon 
pricing a relevant share of the maximum savings achievable with marginal cost pricing can 
be actually obtained, but also that in practice rationing is a valid alternative to road pricing 
which obviates to some of the relevant questions (technical, social, …) that the latter 
raises. As a result we developed a practical method for analyzing advanced pricing and 
rationing policies, which enables us to compare different operative solutions with an upper 
bound based on a solid theoretical background. 
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1 Introduction 
Road pricing is currently seen as one of the most powerful tool to manage transport 

demand in urban areas, in order to reduce traffic congestion and externalities. But, at 
present, there are very few examples of large scale applications world-wide and many 
uncertainties remain concerning features and conditions for successful implementation.  

On the other hand, rationing policies (i.e. access restriction to particular areas during 
certain hours of the day) have been applied for many years in a large number of cities, 
proving to be very effective in reducing traffic flows in the involved areas and in 
increasing the speed and reliability of public transport vehicles (Filippi, Persia et al., 
1996). Some counteracting effects can arise. Traffic congestion and lack of parking in the 
surrounding area can increase, thus inducing unauthorized vehicles to violate the access 
restriction. Moreover, in some Italian cities this measure led to a dramatic explosion of the 
number of mopeds accessing the area, with very negative impacts on environment and, 
particularly, safety. 

These questions and the need of financing the development and the maintenance of the 
transit system led the local authorities to investigate the introduction of advanced pricing 
policies, where different fare structures are imposed to different categories of users. The 
aim of our study is to present a methodology to simulate the impacts on the transport 
system of such policies, and evaluate their effectiveness in comparison with Marginal Cost 
Pricing (MCP) which acts as an upper bound. Other significant issues (e.g. fairness, 
acceptability, legal and institutional barriers, economic impacts) are not addressed in this 
paper. 
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The methodology is based on an implementation of the theoretical model developed in 
Bellei, Gentile and Papola (2002) and aims at making operative the great potentialities 
there expressed only in formal terms (multi-class traffic equilibrium model on multimodal 
networks with elastic demand and non-separable arc cost functions). The main result there 
obtained and here exploited is that, subject to the possibility of charging each arc of the 
network any real valued toll, a solution to the toll Network Design Problem (NDP) exists, 
coincides with a System Optimum (SO) where user travel choices can be prescriptively 
controlled, and can be determined by calculating a System Equilibrium (SE), which is 
defined by replacing in the User Equilibrium (UE) the cost function with the marginal 
social cost function. 

In the specific implementation of the above equilibrium model to an urban network we 
shall represent transit line vehicles sharing road links with private traffic that are affected 
by the same overall congestion. This yields an asymmetric arc cost function Jacobian, 
which may potentially lead to the non-uniqueness of the equilibrium. 

In Bellei, Gentile and Papola (2002) the concept of mode remains undeveloped as the 
main attention is devoted to the mathematical properties of the pricing optimization model. 
Here we develop that theoretical framework providing an operative specification of the 
supply model which can efficiently be applied to multi-class and multimodal large scale 
urban networks. 

The traffic equilibrium model is formalized as a fixed point problem and solved through 
Bather’s method (Bottom and Chabini, 2001), which is an accelerated averaging algorithm 
similar to the Method of Successive Averages (MSA). 

The paper is organized as follows. In section 2, we present a discussion about cordon 
pricing and rationing policies in the context of multimodal networks with elastic demand. 
In section 3, we propose a suitable equilibrium model capable of catching the relevant 
aspects in the context at hand and provide a solution for the corresponding toll 
optimization problem based on MCP. In section 4, we sketch a solution algorithm for the 
above model. In section 5, we present some numerical results referred to the case study of 
Rome and discuss them. 

2 Cordon pricing and rationing policies 

Cordon pricing and rationing policies generally have very similar aims: to reduce 
private traffic in specific areas of particular value (mostly in the city centre) mitigating 
their environmental impacts and allowing public transport to improve its performance 
(speed and reliability) and its attractivity. 

The principal difference between the two policies is that, while under rationing 
automobile access to a specific portion of the road network delimited by a cordon is 
allowed only to some categories of users with particular requirements (e.g. public utility, 
residence, work-related activities, walking problems) on the basis of a political evaluation 
by the Public Administration, under pricing the passage through the cordon is allowed only 
to users willing to pay. As a consequence, pricing also generates income for the Public 
Administration, revenue that in large part (a part is employed in the collection costs) can be 
reinvested to boost the supply of the transit system and, in general, of the most sustainable 
modes of transport.  

In both cases, there exist sizable obstacles to the real implementation of such policies, 
first among them those related to “fairness” and “acceptability” on the part of public 
opinion. 

Leaving aside deeper considerations of these aspects of the problem, it is relatively easy 
to note how the theme of equity and fairness is brought up mainly by the introduction of 
pricing policies. While, in fact, these determine a selection “by census” of those authorised 
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to have automobile access, in the case of rationing the possibility of access is granted only 
for conditions of local necessity (residents, particular economic activities) or for services 
of public utility. 

Equally complex is the theme of acceptability, which involves, in addition to the above 
considerations of fairness, a series of other factors, including economic (payment of the 
tariff, effects on local economic activities in the area) and behaviours (need to modify trip 
habits). All this implies that the reactions to the introduction of these two policies are 
different for different groups of users. 

In Figure 1 are illustrated the results of a survey conducted in the centre of Rome to 
evaluate how acceptable each policy was. In general, rationing enjoys better acceptance 
than pricing. The residents are more in favour of the system of restriction and control of 
access than are the merchants, while the merchants appreciate more than residents a pure 
road pricing scheme. 
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Figure 1. Acceptability of rationing and pricing in Rome’s Limited Traffic Zone. 

 
The difference in opinion on the part of the different user groups derives also from the 

difference in efficacy of the two approaches. Rationing policies bring about drastic 
reductions in vehicle congestion, with peaks very unlikely to be achieved with pricing 
policies (tariffs would need to be unacceptably high). That is, obviously, appreciated by the 
residents. Pricing policies, however, offer greater flexibility than rationing, having a lesser 
weight on the accessibility of the area, which makes the merchants happy. 

The two policies also differ in complexity of planning on the part of the decision 
makers. Leaving aside here the technical issues for both cases, the problems related to the 
introduction of rationing schemes are principally in the choice of the authorised user 
groups and in the identification of  “complementary measures” (e.g. improvement of the 
transit lines accessing the area) to avoid undesired effects (e.g. increase of the traffic in the 
surrounding area). Such issues are relatively simpler than those that accompany the 
introduction of pricing policies, which has been for years the subject of a technical and 
political debate over how to put them into practice. 

For some decades, the cardinal point of the debate on the taxation of road use has been 
the theory of MCP, starting from the welfare theories of Marshall and Pigou of the 
beginning of the twentieth century. But it has gone in and out of favour (Rothengatter, 
2003). According to this theory, the external costs (impact on environment and on other 
users) generated by the road user are to be “internalised”, levying on the user a tax equal to 
the external marginal cost, that is, the variable cost induced on the use of the infrastructure 
by one additional user. As a consequence the tariff imposed on the user would have to vary 
in function of the place, traffic, moment, vehicle type, etc. 

This idea was first applied to the traffic assignment problem by Beckmann, McGuire 
and Winsten (1959). Dafermos and Sparrow (1971) proved the optimality of MCP with 
respect to total costs in a mono-user monomodal deterministic context with fixed demand 
and separable arc cost functions. Dafermos (1973) extended this result to a multi-user 
context, while Smith (1979) generalized it to the case of elastic demand and asymmetric 
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arc cost function Jacobian. In Bellei, Gentile and Papola (2002) the validity of MCP is 
extended to any stochastic traffic assignment on multimodal networks based on random 
utility theory. 

Though recommended by the European Commission as late as 1998 (in the White Paper 
“Fair and Efficient Pricing of the Transport Infrastructure”) as a rule of thumb for setting 
tariffs for the transport infrastructures, application of the theory of MCP shows gross 
limitations for different reasons (Verhoef, 2002a), for example: the tariff structure would 
be excessively complicated and extremely difficult for users to understand; the current 
technology, while greatly evolved in recent years, is not yet able to support so complex a 
tariff structure; it is almost never possible to impose road pricing on the entire network, 
and, at least in an initial phase, the pricing scheme should be introduced on a part of the 
network; the tariff level may not be politically acceptable. 

Such obstacles gave rise to the identification of different second-best solutions which 
take account of the limits imposed by the practical necessities of implementation (Verhoef, 
2002b; May and Milne, 2000), even if this means the process will become less efficient 
(Liu and McDonald, 1999). One of the most common second-best solutions is cordon 
pricing, where the access to a given portion of the road network is charged a toll. This 
coincides with a particular configuration of road pricing where all arcs whose tail and head 
are respectively out and in the Limited Traffic Zone (LTZ) are charged a same toll. 
Rationing can be regarded as a particular case of cordon pricing where the toll equals the 
fine for entering the LTZ multiplied by the probability of getting it. 

In the following we present some example of MCP, aimed at showing that referring to a 
multimodal context with elastic demand is necessary in order to grasp the actual 
potentiality of road pricing on real transport networks. Recall that MCP is proved to be the 
best solution of the network pricing optimization problem, where all arcs can be charged 
any toll, and thus is an upper bound for the toll NDP, where only a given set of arcs can be 
charged. 

Specifically, Figure 2 shows the improvement due to MCP (that is the relative 
increment of social surplus with respect to the case of no policy) obtained with reference to 
the multimodal version of the classical test network of Sioux Falls for different levels of 
demand (that is scaling the travel demand uniformly through a demand multiplier) in three 
different contexts: fixed demand, elastic demand (users can stay at home), multimodal 
demand (users must travel but can choose the transport mode). The ratio between toll 
revenues and total costs is depicted to give an idea of the social impact of MCP. In the case 
of elastic demand we report also the percentage of the original demand still making the 
trip. 

We can see that in the fixed demand context MCP is poorly effective and leads to very 
high tolls. On the contrary, it is very effective in the elastic demand context, although tolls 
are still high. In the multimodal demand context, which is the more realistic for cities 
during the peak hour, MCP is still very effective and the tolls are less high. 

As expected the real target of road pricing is mode choice and not only route choice. In 
this respect, the question of which arcs of the network should be charged, which is 
fundamental for directing route choice, becomes less crucial, so that simplified schemes, 
such as cordon pricing, can be investigated, and the classical road traffic assignment 
models with fixed demand become an improper tool for this investigation. 
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Figure 2. The effects of MCP in three different demand contexts: fixed, elastic, 
multimodal. 

3 Modelling methodology 
In this section we provide a specification of the multi-class equilibrium model on 

multimodal networks with elastic demand proposed in Bellei, Gentile and Papola (2002), 
preserving all the properties sufficient for the existence and the uniqueness of the solution. 

3.1 The demand model 
In modelling travel demand we follow the behavioural approach based on random 

utility theory (see, for instance, Ben Akiva and Lerman, 1985), where it is assumed that the 
user is a rational decision-maker who, when making his travel choice: considers a positive 
finite number of mutually exclusive travel alternatives constituting his choice set; 
associates with each travel alternative of his choice set a utility, not known with certainty 
and thus regarded as a random variable; selects a maximum utility travel alternative. On 
this basis, user’s behaviour is described in terms of the probability that each of his travel 
alternatives has maximum utility. 
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The users are grouped into demand components. The Ni > 0 users constituting the 
demand component i∈D, where D is the set of the demand components, are assumed to be 
identical to each other with respect to any characteristic influencing travel behaviour and 
externalities, and share the same choice set J(i) of travel alternatives. Specifically, these 
users travel between the origin o(i)∈C and the destination d(i)∈C, where the set of the 
centroids C is a subset of the node set NR of the base network, which will be introduced in 
the next subsection. 

The demand components are grouped into user classes. All the demand components 
belonging to a same user class u∈U, where U is the set of the user classes, share the same 
set of individual attributes characterizing the user as a trip consumer (e.g. age, value of 
time, and purpose of trip) and the same set of attributes specifying the production of trip 
externalities such as congestion and pollution (e.g. vehicle type and occupancy rate). 
Moreover, they have available the same subset M(u) ⊆ M of modes, where M is the set of 
the transport modes. 

It turns useful in practical applications that only the following subset of the demand 
components is active in the sense that it is actually considered in the computation of the 
equilibrium: {i∈D: DMu(i) ≥ 0, ACTo(i) ≥ 1, ACTd(i) = 1}, where ACTc∈{0, 1, 2} is a label 
referred to centroid c, DMu is the demand multiplier of the user calss u, u(i) is the user 
class of the demand component i. 

In the following we refer to the generic demand component i∈D. The utility Uj
i of the 

generic travel alternative j∈J(i) is given by the sum of a finite systematic utility term Vj
i, 

and a zero mean random residual εj
i. The choice model is assumed to satisfy the following 

properties which permit to derive uniqueness conditions for the equilibrium (see 
Cantarella, 1997; Gentile, 2003): the random residuals have finite variance and their joint 
probability density function is independent of the systematic utilities, continuous, and 
strictly positive; the systematic utility of the generic travel alternative is given by 
subtracting the generalized cost Cj

i of the associated route on the transport network to a 
constant utility term Xj

i independent of congestion: 

Vj
i = Xj

i-Cj
i.  (1) 

The choice probability Pj
i of the generic travel alternative is by definition the 

probability of j being a maximum utility travel alternative among the choice set J(i):  

Pj
i = Pr[Vj

i+εj
i ≥ Vk

i+εk
i: k∈J(i)].    

The above equation expresses the choice probability of the generic travel alternative as a 
function of the systematic utilities of all the travel alternatives of the choice set: 

Pj
i = Pj

i(Vk
i: k∈J(i)). (2) 

The flow Fj
i of the travel alternative is given by multiplying its choice probability by the 

number of users of the demand component: 

Fj
i = Pj

i ⋅ Ni ⋅ DMu(i) ; (3) 

then, by definition, we have: 

∑ j∈J(i) Fj
i = Ni ⋅ DMu(i) . 

On the basis of (2) and (1), equation (3) defines the demand function, expressing the travel 
alternative flows in terms of the travel alternative generalized costs: 

Fj
i = Ni ⋅ DMu(i) ⋅ Pj

i(Xj
i-Cj

i: k∈J(i)), in compact form: F = F(C), (4) 

where F and C are the (n × 1) vectors of the travel alternative flows and costs, 
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with n = ∑i∈D |J(i)|.  
The satisfaction Wi is by definition the mean value of the maximum utility: 

Wi = E[max{Vj
i + εj

i: j∈J(i)}]. 

On the basis of (1), the above equation defines the satisfaction function, expressing the 
satisfaction of the demand component in terms of the travel alternative generalized costs: 

Wi = Wi(Cj
i: j∈J(i)), in compact form: W = W(C). 

where W is the (|D| × 1) vector of satisfactions.  
As usual, we assume that the travel choice process can be decomposed into a sequence 

of mobility choices (in our case: to travel or not to travel, by which mode and following 
which route) represented by a choice tree (Oppenheim, 1995). A travel alternative is then a 
path on the user choice tree, specifying the choice made at each level (in our case: trip 
generation, modal split and route assignment), and its utility is the sum of the utilities 
associated with each arc of this path. In particular, each travel alternative (except for the 
“not-to-travel” alternative, when present) is associated with a single route connecting on a 
specific mode the origin of the trip to its destination.  

The hierarchic structure of the choice model (i.e. the correlations between the utilities of 
the travel alternatives) is implicit in the form of the joint probability density function of the 
travel alternative random residuals. However, in practice the choice made at each level is 
described by means of a sub-model where the utility due to the choices made at lower 
levels is synthetically taken into account through a satisfaction variable. Specifically, the 
utility associated with each alternative of a sub-model is given by summing up a specific 
systematic utility term, a specific random error term, and the maximum utility obtainable 
from lower level, whose mean value is the satisfaction. 

Each travel alternative j∈J(i) is identified by a mode m(j)∈M(u(i)) and a route 
r(j)∈R(o(i), d(i), m(j)), that is j = (m(j), r(j)), where R(o, d, m) is the set of routes available 
on mode m∈M for travelling between the centroids o∈C and d∈C. In order to model trip 
generation, the choice set J(i) is given as: J(i) = ∪g∈G(u(i))×{0}∪{1} J(i, g), where G(u) is 1 if the 
user class u∈U can choose whether to make the trip or not, and 0, otherwise. The set J(i, 1) is 
the set of the actual travel alternatives: J(i,1) = {(m,r): m∈M(u(i)) , r∈R(o(i), d(i), m)}, while 
the set J(i,0) is the “not-to-travel” alternative (0,0). 

 

 
 
Figure 3. The choice tree. 
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The choice model has then the following structure: 

Pj
i = P1/i ⋅ Pm(j)/i1 ⋅ Pr(j)

o(i)d(i)m(j)    j∈J(i, 1)  ,  Pj
i = (1 - P1/i)    j∈J(i, 0), 

P1/i = P1/i(V1/i), Wi = Wi(V1/i), V1/i = X1/i + W1/i , 

Pm/i1 = Pm/i1(Vm/i1: m∈M(u(i))), W1/i = W1/i(Vm/i1: m∈M(u(i))), Vm/i1 = Xm/i1 + Wo(i)
d(i)m,  

Pr
odm = Pr

odm(Cr
odm: r∈R(o, d, m)), Wo

dm = Wo
dm(Cr

odm: r∈R(o, d, m)), 

where the satisfactions are denoted W, the specific systematic utilities X, the systematic 
utilities V, and the probabilities P. For j∈J(i, 1), it is: Xj

i = X1/i + Xm(j)/i1 and Cj
i = Cr(j)

o(i)d(i)m(j) . 
Specifically, a Logit model is utilised for trip generation and modal split; thus we have: 
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where ϑu and θu are, respectively, the trip generation and the modal split Logit parameter 
of the user class u∈U. A Probit model, where the variance-covariance matrix results from 
the assumption that the correlation among routes derives from their overlapping in terms of 
arcs, has been adopted for the route assignment (see, for instance, Cascetta, 2001). This is 
not presented here as, actually, the variables of the route choice sub-model are never 
handled explicitly; in fact, as it will be seen, the equilibrium problem is solved through an 
implicit route enumeration algorithm. 

The following definition of the specific systematic utilities completes the specification 
of the demand model: 

X1/i = TUu(i) ,  

Xm/i1 = -DUu(i)
m -(NETm-2)⋅RDCu(i)⋅(RDo(i) +RDd(i)) -(NETm-1)⋅TDCu(i)⋅(TDo(i) + TDd(i)) , 

where TUu is the travel utility for the user class u∈U, and DUu
m is the ASA disutility term 

of mode m∈M(u). When m is a road mode (NETm = 1, see the next subsection), a disutility 
term is added in order to take into account the accessibility by private vehicles of the trip 
terminals, for example in terms of parking costs, where RDCu is the road disutility 
coefficient of the user class u∈U and RDc is the road disutility of the centroid c∈C. When 
m is a transit mode (NETm = 2), a disutility term is added in order to take into account the 
lack of accessibility of high performance transit systems from the trip terminals, where TDu 
is the transit disutility coefficient of the user class u∈U and TDCc is the transit disutility of 
the centroid c∈C. More in general, this terms are added to simulate any effect on the mode 
specific systematic utility that depends on the location of the trip terminals. 

3.2 The supply model 
The multimodal network of infrastructures and services which constitutes the transport 

supply is modelled here through an oriented hyper-graph G = (N, A), where N is the set of 
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the nodes, each node representing a spatial location and possibly a trip state (e.g. arriving 
at a road intersection, start or end waiting at a transit stop), and A is the set of the hyper-
arcs, each hyper-arc representing a specific trip phase (e.g. driving throughout a road link, 
waiting at a transit stop). The generic hyper-arc a∈A is identified by one initial node 
TL(a)∈N, referred to as tail, and by a set of ending nodes HD(a)⊆N, referred to as head:   
a = (TL(a), HD(a)). An arc is an hyper-arc a whose head is a singleton, that is: |HD(a)| = 1.  

In this framework, the route, if any, associated with a given travel alternative (no route 
is associated with the “not-to-travel” alternative) is represented through a hyper-path 
connecting on G the origin of the trip to its destination. An hyper-path on G with initial 
node o∈N and final node d∈N, is a hyper-graph r = (Nr , Ar) having the following 
properties: 1) r is an acyclic sub hyper-graph of G; 2) o has no entering hyper-arcs in Ar 
and d has no exiting hyper-arcs in Ar ; 3) each node i∈Nr\{d} has exactly one exiting 
hyper-arc in Ar ; 4) for every node i∈Nr\{o, d} there is at least one path on r from o to d 
traversing it.  

In the following we assume that G is constituted by a road graph GR = (NR , AR) and by a 
transit hyper-graph GT = (NT , AT). Conversely, each arc a∈A is associated with a hyper-
graph net(a)∈{GR , GT}. The road graph represents the base graph. In general, only the 
subset {a∈AR: GRa ≥ 0} of the base graph is active, in the sense that it is actually 
considered in the computation of the equilibrium; GRa is simply a free integer label 
referred to arc a∈AR which turns useful to identify arc groups in the database. The transit 
hyper-graph includes a copy of the road graph which acts as the pedestrian network. The 
generic line l∈L, where L is the set of the transit lines, is constructed starting from its line 
route LR(l) ⊆ AR , expressed in terms of a connected sequence of support arcs of the base 
graph, consistently with the scheme depicted in Figure 4. An access arc representing a 
transit stop is introduced for each arc of the base graph which acts as support arc for at 
least one line. In general, only the subset {l∈L: GRl ≥ 0} of the transit lines is active, in the 
sense that it is actually considered in the computation of the equilibrium; again, GRl is 
simply a free integer label referred to line l∈L which turns useful to identify line groups in 
the database. 

 
Figure 4. The transit hyper-graph. 
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Specifically, we define the following types of arcs: AC road connectors, AS street arcs, 
AP pedestrian arcs, AX access arcs, AW waiting hyper-arcs, AB boarding arcs, AL line arcs, 
AA alighting arcs. Thus we have: AR = AC ∪ AS  ,  AT = AP ∪ AX ∪ AL ∪ AA ∪ AW ∪ AB.  

Note that the generic hyper-arc is defined as a one-to-many relationship between nodes. 
However, all the hyper-arcs here introduced are ordinary one-to-one relationships, that is 
simple arcs, except for the transit waiting hyper-arcs AW, where the tail is a waiting node 
and the head is a set of boarding nodes (Nguyen, Pallottino and Gendreau, 1998). The 
hyper-arcs are a useful tool to represent the adaptive choice occurring during a transit trip 
when the user waiting at a stop boards each line with a certain probability. Specifically, the 
generic hyper-arc a∈AW identifies a set of lines on which the passenger is willing to board 
and a probability is associated with each boarding node belonging to the head of the hyper-
arc. For example, if the passengers’ behaviour is to board the first arriving carrier of a 
given set of lines, the probability associated with each line node is the probability that the 
line is served as first among the set of lines identified by the hyper-arc at hand. The 
presence of many hyper-arcs at the same stop (as in Figure 4) represents the possibility of 
choosing the most convenient set of lines on which the passenger is disposable to board, 
which is usually referred to as the attractive set. In theory, a waiting hyper-arc should be 
introduced for any disposition of the boarding arcs at a given stop. Fortunately, there is no 
need to enumerate the hyper-arcs, as they are regarded implicitly at the algorithm level, 
where the network is implemented through a standard graph by eliminating from the 
hyper-graph described in Figure 4 all waiting hyper-arcs and boarding nodes and then 
connecting the boarding arcs directly to the corresponding waiting node. 

Starting from the road graph and the transit hyper-graph, several mode-specific networks 
can be constructed in order to simulate: different pricing policies for specified categories of 
users; different performances characterizing the various transport modes and vehicle classes; 
different behaviours in terms of cost perception. In general, the network associated to the 
generic mode m∈M represents trips of users who perceive and produce costs and congestion 
in the same way and thus share the same route choice conditional probabilities. 

This approach implies an extension of the concept of mode, which embodies elements 
of both the supply and the demand models and consists in an aggregation process aimed at 
optimizing the algorithm. Indeed, this permits, in the context of a multi-class and 
multimodal equilibrium, to accomplish in practice a thick segmentation of users on the 
demand side, as this is not expensive in terms of computational effort, while reducing to a 
minimum the segmentation on the supply side, which requires specific shortest paths and 
network loading procedures. 

The generic mode m∈M is referred to a specific hyper-graph G(m) = (N(m), A(m)), which 
coincides with GR or GT depending on the variable NETm that equals 1 if m is a road mode, 2 
if m is a transit mode, and 0 if it is not active; in the following we will denote by M(R) = 
{m∈M: NETm = 1} and M(T) = {m∈M: NETm = 2} the subsets of the modes referred to the 
road graph and the transit hyper-graph respectively. Let ca

m and fam denote, respectively, the 
arc cost and the arc flow on the generic arc a∈A(m). The following relations hold: 

Cj
i = ∑ a∈A(m(j)) ca

m(j)⋅πam(j)
ij    , in compact form: C = Π T⋅c , (5) 

fa
m = ∑ i∈D, j∈J(i) Fj

i⋅πam
ij    , in compact form: f = Π ⋅F  , (6) 

where: πam
ij is the arc-alternative probability that the arc a∈A(m), with m = m(j), is utilized 

by the users belonging to the demand component i∈D as an element of the hyper-path 
associated with the travel alternative j∈J(i, 1), otherwise πam

ij is equal to zero; Π is the      
(ν × n) matrix, with ν = ∑ m∈M |A(m)|, whose elements are πam

ij; c and f are the (ν × 1) 
vectors whose generic component is respectively ca

m and fa
m. 
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The main advantage of using this hyper-graph based network representation is the 
possibility of expressing in a purely additive form the travel alternative generalized costs in 
terms of the arc costs through (5) and the arc flows in terms of the travel alternative flows 
through (6), also when taking into consideration the adaptive choices taking place at the 
stops of the transit network, thus avoiding the introduction of non-additive alternative costs 
as in Cascetta (2001). It is to be noted that, where no on-line information is available at the 
stops, Π is fixed as it depends exclusively on the line headway distributions (Gentile, 
Nguyen and Pallottino, 2003) which can be considered here an exogenous variable of the 
model (in Bellei, Gentile and Papola, 2000, this assumption is removed in order to analyze 
the case where the number of carriers operating each line is considered fixed, so that the 
frequencies become dependent variables), while if there is no need to represent adaptive 
choices, Π becomes a classical arc-path incidence matrix. 

3.3 Specification of the arc cost function 
A desirable feature of the proposed equilibrium model is the possibility of simulating 

the simultaneous effect on traffic flows of applying different toll patterns on different 
modes. To this end it is convenient to separate the tolls r from the performances ĉ, so that 
the arc costs are defined as follows: 

c = ĉ + r ,  (7) 

where the vectors r and ĉ have both the same structure as c. The congestion phenomenon is 
then represented formally through the arc performance function: 

ĉ = ĉ(f) . (8) 

In Gentile and Papola (2003) we provide a specification of (8) representing the main 
congestion phenomena affecting urban multimodal networks (including: transit vehicles 
sharing road arcs with private traffic and thus affected by the same overall congestion, the 
effect of line capacity on the waiting time, line carriers slowed down by each line stop 
where commuters’ boarding and alighting time is taken into account) which is based on the 
concept of equivalent flow (Daganzo, 1983), where the function s = s(v), assumed 
continuous and monotone non-decreasing, expresses the arc standard time (|A| × 1) vector s 
in terms of the equivalent flows v. The proposed specification of the arc cost function 
holds the following property which is essential to establish the uniqueness of the 
equilibrium: the equivalent flows are linear functions with positive mode-specific and non 
arc-specific coefficients of the mode-specific arc flows; the mode-specific arc costs are 
linear functions with positive mode-specific and non arc-specific coefficients of the 
congested standard times.  

va = ∑ m∈M ξm ⋅fa
m + cost   a∈A  , 

ca
m = ra

m + ηm ⋅ sa + cost    m∈M , a∈A  , 

where cost is any non-negative arc-specific and mode-specific term independent of flows. 
This condition defines the so called undifferentiated congestion: 

3.4 User equilibrium, system equilibrium and toll optimization problem 
The UE and the SE are formalized here as fixed point problems. On this basis, we 

address the problem of determining an optimal arc toll vector m, assuming that it is 
possible to charge each arc of the network any real valued toll. 

By combining (5), (4) and (6), we obtain the network loading map, which yields the arc 
flows as a function of the arc costs: 

f(c) = Π ⋅F(Π T⋅c) . (9) 
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Then, for a given value of the arc tolls m, a UE flow and cost pattern is determined by 
solving the fixed point problem obtained by combining (9), (7) and (8): 

f = f[ĉ(f) + m] .  (10) 

The existence of a solution to the above problem is guaranteed by the continuity of the arc 
performance function. It is well known that, in the case of undifferentiated congestion, the 
uniqueness of multi-class UE is conveniently analyzed by reformulating the problem in 
terms of standard times and equivalent flows (Cascetta, 2001, pag. 330). Using this 
approach, in Gentile and Papola (2003) it is proved that a sufficient condition for the 
uniqueness of the solution to problem (10) is the monotonicity of the standard time 
function s(v), moreover hypothesis on the coefficients of the supply model are drawn to 
ensure this condition. 

The social cost and its gradient, referred to as the marginal social cost, can be expressed 
in terms of the class-specific arc flows respectively as follows: 

sc(f) = ĉ(f)T⋅f, 

msc(f) = ∇f sc(f) = ĉ(f) + ∇f ĉ(f)⋅f . 

By definition (see Bellei, Gentile and Papola, 2002), a SE flow pattern is determined by 
solving the following fixed point problem: 

f = f[msc(f)] ,  (11) 

obtained by replacing in the UE problem (10) the cost function ĉ(f) + m with the marginal 
social cost function msc(f). The existence of a solution to the above problem is guaranteed 
by the continuity of the marginal social cost function which required the arc performance 
function to be C1. Unfortunately, the marginal social cost function does not satisfy the 
condition for undifferentiated congestion. Then, despite each component of the arc 
performance function is convex, the uniqueness of the above problem cannot be stated 
under the sufficient condition for the monotonicity of the marginal social cost function 
reported in Bellei, Gentile and Papola (2002). 

The analysis of road pricing from the point of view of economic efficiency leads to the 
well-known result that the optimal flow pattern is a SE, which enables us to generalize the 
notion of SO current in the literature to the case of stochastic equilibrium. Specifically, 
with reference to the following toll optimization problem: 

max f, m S(f, m) = ∑ i∈D Ni ⋅ Wi(Π T⋅[ĉ(f) + m]) + m T⋅f   

s. to: f = f[ĉ(f) + m] ,  (12) 

where the objective function is the social surplus and the UE constraint is expressed in 
terms of the fixed point formulation (10), in Bellei, Gentile and Papola (2002) it is proved 
that “for each arc toll vector that solves the problem there is another solution vector    
mcp(f) = ∇f ĉ(f)⋅f which leads to the same SE flow pattern f ” (proposition 5), and that “for 
an arc toll vector to solve the problem it is necessary for it to yield an SE flow pattern; if 
the SE is unique, then the condition is also sufficient and the solution is unique in terms of 
flow pattern” (proposition 6).  

With specific reference to the arc cost function introduced in section 3.3, the MCP tolls 
relative to the generic arc a∈A and mode m∈M is: 

mcpa
m(f) = ∑ b∈A ∑ x∈M(net(b)) fb

x ⋅ ∂ĉb
x(f)/∂fa

m . 

Due to the particular structure of the arc performance function considered here, we 
have: 
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∂ĉb
x /∂fa

m = ηx ⋅ ∂sb /∂va ⋅ ξ 
m    m∈M , x∈M , a∈A , b∈A  . 

On this basis we can rewrite the MCP tolls formula as follows: 

mcpa
m = ξ 

m ⋅ [∑ b∈A τb ⋅ ∂sb /∂va] ,  (13) 

where we have introduced the new symbol: 

τa = ∑ m∈M(net(a)) fa
m ⋅ ηm    a∈A  . 

The above expression shows that the mode-specific toll is obtained by multiplying a 
common arc toll by the weight of the mode on the equivalent flow, which reflects the 
“fairness” of MCP in the sense that the higher is the effect on the congestion the higher is 
the price that users must pay. 

A solution satisfying the necessary conditions of the toll optimization problem (12) can 
then be determined by solving a UE problem, where the tolls ma

m are replaced with the 
MCP toll functions (13). Clearly, if the SE is unique, then the solution obtained this way is 
a global solution. 

4 Solution algorithm 
The implicit path fixed point formulations (10) of the UE problem and (11) of the SE 

problem can be solved through Bather’s method as follows, where K is the number of 
iterations to be performed before stopping. The issue of the stop criterion has been 
neglected on purpose as it requires a non-trivial discussion. The algorithm converges to the 
equilibrium, in case of uniqueness; otherwise it becomes a well performing heuristic. 

 
function UE 
 f = f 0 

 for k = 0 to K 
  if SE then r = mcp(f) else r = r’  pricing 
  c = ĉ(f) + r      arc cost function 
  q = f(c)       network loading map 
  if k = 0 then α = 1 else α = 1/k  step 
  f dev = (1-α) ⋅ f dev +α⋅ (q-f)   flow averaging 
  f avg = (1-α) ⋅ f avg +α ⋅ f   flow averaging 
  f = f avg + 1/α1/3  ⋅ f dev    flow averaging 
 loop 
end function 
 

The Probit NLM is implemented through a Montecarlo simulation as follows: 
 

function h = f(c) 
 h = 0ν 
 for h = 1 to H 
  for each m∈M 
   g m = c m + Φ ⋅ (ρm ⋅ χ )0.5  perturbation of the arc costs 
  next m 
  q = fD(g)      deterministic network loading map 
  h = h +1/h ⋅(q -h)    flow averaging 
 next h 
end function 
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where Φ is a diagonal matrix whose elements are extracted at each evaluation from a 
standard normal variable N(0,1), and ρm is the ratio, assumed to be constant, between the 
variance of the error made by users on mode m in evaluating the generic arc cost ca

m and a 
fixed arc cost χa

m = ca
m(f 0). 

The computation of the Probit NLM requires calculating for H times the deterministic 
NLM, which is implemented in the following procedure by combining an All Or Nothing 
assignment of the travel demand on shortest routes and the Nested Logit demand model 
introduced in section 3.1: 

 
function f = fD(c) 
 f = 0ν , n = 0|C|⋅|M|⋅|N| 

 for each d∈C 
  for each m∈M 
   (σ dm, W dm) = st(c m, d, G(m)) 
  next m 
  for each i∈D: d(i) = d 
   u = u(i) 
   o = o(i) 
   wi1 = 0 
   for each m∈M(u) 
    wi1m = exp(Wo

dm + Xi1m) / θu
 

    wi1 = wi1 + wi1m
 

   next m 
   Vi1 = Xi1 + θu ⋅ log(wi1) 
   Pi1 = 1 / (1 + exp(-Vi1) / ϑu)) 
   for each m∈M(u) 
    Pi1m = wi1m / wi1 
    no

dm = no
dm + Ni ⋅ Pi1 ⋅ Pi1m 

   next m 
  next i 
  for each m∈M 
   f m = f m + load(σ dm, n dm, d, G(m)) 
  next m 
 next d 
end function 
 

We used the following notation: nk
dm is the flow of users of mode m travelling toward 

the destination node d that pass through node k, Wk
dm is the opposite of the minimum cost 

payable by the users of mode m for travelling from node k toward the destination node d, 
σk

dm is the successive arc utilized by the users of mode m at node k when travelling toward 
the destination node d (clearly, TL(σk

dm) = k), wi1 and wi1m are just free variables utilized in 
the computation of the satisfaction and of the probabilities for the modal split. 

Procedure st(z, d, G) provides the shortest tree on the hyper-graph G∈{GR, GT} toward 
the destination node d for given arc costs z, yielding the successive arc (hyper-arc) and the 
minimum cost for each node. Procedure load(p, x, d, G) performs the propagation on the 
hyper-graph G∈{GR, GT} of the node flows x travelling towards the destination node d for 
given successive arcs p, yielding the flow for each arc. The two procedures are not 
specified here for brevity, as they solve problems that are very well known in the literature 
(see, for instance, Pallottino and Scutellà, 1998). 
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The proposed algorithm has been implemented in a computer application capable of 
solving large scale instances of the problems at hand in quite reasonable time, such as that 
concerning the case study of Rome which will be presented in the next section. 

5 Numerical application to a large scale network 
Access control in Rome was first applied in 1989, when restrictions were placed on 

vehicle entrances to the old city center (the Limited Traffic Zone, LTZ), an area of about 6 
km2 containing an enormous historical and artistic heritage. Permission to enter was given 
free of charge to residents of the area and to certain categories of users. In 1998 a pricing 
policy for authorized non-residents was introduced. They are now required to pay for their 
permits an annual fare of about 300 euros (the equivalent of 12 monthly public transport 
passes). Both measures are now enforced through an automated system based on 23 
electronic gates able to identify the vehicle and to calculate the applicable fare for vehicle 
entrance into the restricted area. 

Due to several problems occurring with the current regime (high level of congestion in 
the surrounding area and very high number of mopeds), the introduction of different 
pricing policies has been envisaged by the local authorities. The aim of our study is to 
simulate the effects of such policies, where different fare structures are imposed to 
different categories of users (residents, authorized, non-authorized, non-LTZ) by means of 
the proposed model. Specifically, we are interested in comparing cordon pricing and 
rationing with MCP, in order to establish how far these simplified schemes are from the 
SO upper bound and to which extent may thus represent a second-best solution of the toll 
NDP. 

Despite the relatively limited area involved in the pricing intervention, the high 
attractivity of the LTZ has induced to consider in the traffic simulations a much larger 
study area (the whole Lazio Region). A graph with 16,878 directed arcs and 5,902 nodes, 
854 of which are centroids, was used as the base network on which 680 transit lines with 
19,626 line arcs (including the regional railway and bus systems) have been defined. The 
demand has been segmented in terms of trip purpose (systematic and non-systematic), 
personal attributes (5 combinations of age, sex, profession, car and motorcycle availability) 
and destination (ZTL and non-ZTL) giving rise to 1,534,788 demand components grouped 
in 20 user classes. Exploiting the concept of mode here introduced, this complex demand 
structure has been simplified at the route assignment level introducing only 3 modes 
(resident cars, authorized cars, non-authorized cars), while 2 additional modes have been 
introduced to simulate the multimodal urban network (mopeds, transit). 

Consistently with the aim of the simulations, the choice of the destination is assumed to 
be relevant only when it involves the access to the LTZ. In fact, should road pricing be 
implemented, we expect that very few drivers not directed to LTZ will cross it; on the 
other hand, the availability of the car mode for travelling towards the LTZ, is likely to 
attract trips previously directed to other destinations. Then, one additional user class has 
been introduced representing non-systematic trips with destination in the LTZ, for which 
the demand is considered elastic up to the generation model, while for all other user classes 
the generation is assumed fixed. On this basis, the distribution model is implemented as a 
generation model toward the LTZ. Then, three choice levels have been actually considered: 
generation, modal split and route assignment. The demand model has been calibrated using 
RP-SP data as the introduction of a road pricing scheme involves changing the choice set 
of road users. 

The computation of the above instance of the equilibrium problem by means of 50 
iterations of the proposed algorithm with H = 1 takes about 10 minutes on a 1500 Mhz PC. 
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Some preliminary results showed that, even with high level of fares, no substantial 
changes can be expected, in terms of overall total cost and modal split, should the access 
limitation remain operational and only authorized cars be charged an increasing toll. This 
is due to the limited number of vehicles potentially subject to charges, compared to the 
whole number of users accessing the area, and to the usually high level of income of the 
user categories charged. More relevant modifications occur when the access restriction is 
extended to mopeds, that represent a relevant share (19%) of private traffic. This policy 
also reduces the through traffic generated by such a category of private vehicles (some 
40% of the motorbike users currently accessing the LTZ have their destination outside this 
area).  

In the following we present and discuss some results relative to the application of road 
pricing policies where the access restriction for non-authorized car users is removed: 
residents may travel free of charge through the LTZ, authorized cars pay a fixed toll of 1 €, 
non-authorized cars pay a variable toll up to the amount of the fine (here we assume that, 
thanks to the automated control system, the probability of getting the fine for the non-
authorized vehicles violating the LTZ is 1). 

In Figure 5 is depicted the percentage of the cost savings achievable through a SO on 
the whole network, that amount to 52% of the total costs in the non-intervention option 
(LTZ toll = 0 €), captured by means of different cordon pricing policies with an increasing 
toll to enter the ZTL. Although the LTZ covers only a very small part of the whole area of 
analysis and includes the destination for only 14% of the travel demand, up to 18% of the 
theoretical savings due to MCP can be achieved through a cordon pricing policy. On this 
regard we must recall that implementing MCP would involve very high construction and 
maintenance costs, so that the real savings due to MCP would be much less than the 
theoretical ones; moreover, in evaluating the impact of any pricing policy we ignored the 
negative effects on the activity system related to the reduction of accessibility in the 
charged area. 

The optimal toll appears to be 12 €, which is consistent with the toll actually charged in 
other European cities (in London about 8 € are requested to access the LTZ). The rationing 
policy (LTZ toll = 100 €) is also effective, as it is capable of capturing one third of the 
savings due to the best cordon pricing policy, while it may require much smaller 
implementation costs depending on the control system adopted. The toll yielding the 
break-even in terms of total costs between pricing and rationing appears to be around 2 €. 
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Figure 5. Percentage of the SO savings 

versus cordon pricing toll. 
Figure 6. Ratio between total revenue and 

total cost versus cordon pricing toll. 
 

In Figure 6 is depicted the ratio between the total revenue and the total cost for a 
number of different cordon pricing tolls. Interestingly, the policy achieving the 
maximization of the total revenue (around 500.000 € per day) coincides with the optimal 
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one in terms of total costs; although, clearly, this is not a general result, and by thickening 
the values of the tolls this coincidence would vanish. Note that MCP implies a very high 
revenue-cost ratio (295%), and recall that in defining the total costs we did not take into 
account the impact of the pricing policies on the land use due to the reduction of 
accessibility. For this reasons, MCP is probably not acceptable from a social point of view, 
while the cordon pricing policies, although involving a restricted group of users, have a 
much softer impact on the network travel cost pattern (the revenue-cost ratio is at the most 
12%).  
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Figure 7. Relative reduction of user costs 

versus cordon pricing toll 
Figure 8. Percentage of the SO modal shift 

versus cordon pricing toll. 
 

In Figure 7 is depicted the relative reduction of user costs assuming as point of 
reference the non-intervention option. Note that not all the pricing policies considered are 
internally effective, in the sense that they are convenient, not only in terms of total costs, 
but also in terms of user costs. In the latter respect, with reference to the specific case study 
at hand, rationing turns out to be the best policy, and this is not a foregone conclusion. On 
the other hand, with reference to the systematic mobility with destination in the LTZ, 
whose travel demand is assumed rigid, the increase of monetary costs due to the tolls is not 
at all compensated by the time savings. Indeed, the advantages of the pricing policies are to 
be found in the reduction of congestion and externalities for all users. 

In Figure 8 is depicted the percentage of the increase of transit share achievable through 
a SO (equal to 4%) captured by means of increasing cordon pricing tolls, assuming as point 
of reference the non-intervention option. Clearly, the policy with the best modal shift is 
pure rationing, yielding here a 59% relative improvement. 

In Figure 9 are depicted the percentages of speed increases achievable through a SO 
equal to (66% for cars, 10% for mopeds, and -6% for transit) captured by means of 
increasing cordon pricing tolls. The high speed increase enjoyed by cars, which 
corresponds to a travel time decrease of 40%, is due to a decrease of traffic flows of almost 
20% (the car modal share diminishes from 48% to 40%; 4% switches to transit and 4% to 
the moped mode, whose relative weight on the main traffic stream is low) on a highly 
congested road network and reflects the non-linearity of the supply model. As expected, 
the policy with the best private speeds is rationing, yielding a 41% and a 23% relative 
improvement for cars and mopeds, respectively. The speed reduction characterizing the 
transit mode is due to the side effects of the cordon. In fact, in Rome’s city centre the bus 
lines benefit from dedicated lanes, so that the LTZ does not induce on transit vehicles any 
relevant speed improvement. At the same time, just outside the LTZ, where the congestion 
increases due to the discontinuity in the network cost pattern produced by the toll cordon, 
the line carriers share the road links with private vehicles. The effectiveness of road pricing 
would be higher (in terms of total costs and modal split) and the social impacts softer (in 
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terms toll values), should the policy be coupled with an improvement of the transit 
performances. Indeed, in the case of Rome, this is a priority and in particular the protection 
of the bus lines from road traffic outside the LTZ is a highly recommended intervention. 
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Figure 9. Percentage of the SO speed increment versus cordon pricing toll. 

 
In Figure 10 are depicted the modal shares and in Figure 11 the travel times for different 

cordon pricing tolls, with reference to non-authorized users travelling towards the LTZ. 
This is the category of users to which the pricing policies are mainly directed, and non 
surprisingly their effects are remarkable. Specifically, the transit share, starting from 43% 
in the non-intervention option, goes up to 79% in the case of rationing, while the car share 
decreases from 49% to zero. On the other hand, the motorcycle share increases from 7% to 
21% with a relative increment of 200% and thus a high negative impact on safety. The 
main effect on travel times involves the car mode, for which the commercial speed 
increases up to 50% in the 18 € solution (the value of car travel time for the rationing 
policy is not significant, as the modal share is too small); the improvement for mopeds, 
which are less affected by the congestion, is not as significant. 
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Figure 10. Mode shares for non-authorized 

users. 
Figure 11. Travel times for non-authorized 

users. 
 

In Figure 12 are depicted the mode travel times for different cordon pricing tolls, with 
reference to non-LTZ users. As the speed of private modes increases substantially with the 
toll, the initial conjecture regarding the side effects of the rationing policy results to be 
partially incorrect in the sense that the increment of congestion experimented right outside 
the LTZ is more than compensated by the benefits on the rest of the network. 
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Figure 12. Mode travel times for non-LTZ 
users 

Figure 13. Trip generation for non-
systematic users potentially directed 
to the LTZ. 

 
In Figure 13 is depicted the share of non-systematic users potentially travelling to the 

LTZ who actually make the trip. This user type is introduced to simulate implicitly the 
effects on the demand distribution pattern as previously explained. Note that the rationing 
policy induces all users to choose other destinations than the LTZ. 

6 Conclusions 
Starting from a theoretical framework proposed in a previous paper, in this work we 

present an effective specification of a multi-class equilibrium model on multimodal 
networks for which the existence and uniqueness of the solution is proved under operative 
conditions on the parameters of the arc performance function. We also propose an efficient 
algorithm, capable of solving the model for large scale networks, which has been 
implemented in a computer program and applied to the case study of Rome. 

The model is capable of simulating the simultaneous effect on traffic flows of applying 
different fare structures to different categories of users in urban networks with a variety of 
transport modes interacting among each and, in particular, where transit line vehicles 
sharing road links with private traffic are affected by the same overall congestion. In order 
to make practically possible a thick segmentation of users, on the demand side, and the 
introduction of many transport modes, on the supply side, while reducing to a minimum 
the calculation of specific shortest paths and network loading procedures, we provide an 
extension of the concept of mode which embodies elements of both the supply and the 
demand models and consists in an aggregation process aimed at optimizing the algorithm. 

The proposed model has been then utilized for analyzing advanced pricing and rationing 
policies where different combinations of the two policies are imposed simultaneously to 
different categories of users. In particular, we have investigated the possibility of applying 
simplified schemes, such as cordon pricing, as a second-best solution of the toll network 
design problem. The analysis has been conducted with reference to the case study of 
Rome, where there is an automated control system based on 23 electronic gates that 
constitute the cordon of a Limited Traffic Zone. 

In cases like these where the aim of the policy is to improve the modal split, it is not 
possible to evaluate any intervention by means of a fixed demand equilibrium model, while 
a classical monomodal elastic demand model does not reproduce correctly the context at 
hand. To meet such a requirement, a high-performance equilibrium model has been 
specified, capable of taking into account, in practical terms, variations in travel demand 
and modal split caused by broad-ranging measures, such as those considered here, and an 
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efficient algorithm has been implemented, which allows simulating in quite reasonable 
computing times the different reactions of the different categories of users. 

In evaluating the different operative policies, marginal cost pricing has been taken into 
account as an upper bound constituting an helpful point of reference, despite its being 
purely theoretical and not achievable in practice. When examining the effectiveness of a 
specific policy by comparison with the upper bound, two main aspects are to be 
considered: the implementation costs of marginal cost pricing are prohibitive with the 
available technologies; the extent of the charged area is very small compared with the 
whole network. In the light of the above, the results obtained can be considered definitely 
satisfactory: although the LTZ includes the destination for only 14% of the travel demand, 
up to 18% of the theoretical savings due to MCP can be achieved through a 12 € toll 
generating a total revenue of about 500.000 € per day and 1/3 of the modal shift produced 
by marginal cost pricing; rationing is capable of yielding 1/3 of the savings due to the 
above pricing policy and 60% of the modal shift produced by marginal cost pricing, while 
it may require much smaller implementation costs depending on the control system 
adopted, so being a valid alternative to road pricing, at least in the specific case of Rome. 

The results are also promising for future investigation, where, removing the limits of the 
case study at hand (position, size and shape of the toll cordon), more general policies and 
schemes can be considered, so making optimal use of the power and versatility of the 
model. 
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